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Abgtract

Until the past three decades, the genera scientific community did not regard adult mammalian neurogeness as

an actual phenomenon. However , with the advent of new scientific methods and techniques, researchers have been able to
identify and characterize new cdlsproliferating in severa brain regions, including the dentate gyrus of the hippocampus,
subventricular zone, and amygdala. Recently , studies have provided evidence that environmentd factors, both externd
and internd , may influence adult neurogeness. Secificaly , the addition and/ or surviva of newly proliferated cdlsin var-
ious regions of the adult brain may be increased by environmenta enrichment , voluntary activity , postive ocid interac
tions, short-day length , chemosensory stimuli , or increased leves of neurotransmitters including serotonin and brai n-de-
rived neurotrophic factor. Adult neurogeness may be inhibited/ decreased by negative ocia interactionsor the stress hor-
mone corticosterone. Interestingly , gonadal steroid hormones may exert postive or negative efects dgoending on the
gecies and sx of the animal. Fndly, current evidence supports the contention that these new cdls do become functionat
ly dgnificant in the adult brain [ Acta Zoologica Sinica 49 (2) : 151- 162, 2003].
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1 Introduction

Postnatal neurogeness in the mammalian brain
wasfirst reported in the 1960 s (Altman, 1969 ; Alt-
man et al. , 1966) and neurogeness in adulthood in
the 1970's (Kaplan et al., 1977). Although the
zeitgeist of the time accepted the posshility of new
glia being bornin the adult brain, the concept of new
neurons in the adult was heartily rgected , degite the
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identification of neurona characterigtics in new cdls
with the use of eectron microscopy ( Kaplan, 2001 ;
Kaplan et al. , 1977) . Indeed, the belief that neuro-
genessin the mammalian brain only occurs during a
discrete period in development was not extensvely
guestioned until (1) the acceptance of adult neuroge-
ness in nomrmammalian ecies, such as birds and
lizards, and (2) the advent of cell-type ecific mark-
ers to identify neurona phenotype. Throughout the

* This study was partialy supported by NIH grants: NIMH-64352 (CDF) , NIMH-58616 and NIMH-66734 (ZXW) .

** Corregponding author. Emall : fowler @psy.fsu. edu

c 2003 Acta Zoologica Sinica



152

49

(4 g

r

G o CA4
/ HIL

LV ')_
e XSVZ 215G
‘
B
RMS
‘"1;'**
| R "
g ._f‘ﬁ_tt:';&\Si
|2 }:'\_ .
!", ¥ -\\‘;‘_ 'ﬁ'h |
SR NN
LS 3a

Fig.1 Photomicrographs of new cells in the dentategyrus (DG , subventricular zone (SVZ2) ,
rogtral migratory sream ( RMS) and olfactory bulb (OB)
1. Newly proliferated cdls are mainly located on the border of the granule cdl layer (GrL) and hilus (HIL) inthe DG. Scae bar = 100U m. CA4:
CAA4 region of the hippocampus 2. Confocd laser microsoope images of cels stained for BrdU (2a) , a neurond marker (MAP-2, 2b) , an as
trogliad marker (GFAP, 2c) , and al three markers (2d) inthe DG. The BrdU and MAP-2 colocdized cdls digplay a yellow image. Scae bar =5
M m 3a Two days ater aBrdU injection, the magority of the BrdU-labeed cdls are found in the SVZ and RMS but few are present in the OB.
Scae bar = 1004 m 3b diplays densdy packed cdlslabeed for BrdU in the SVZ (Scae bar = 104 m) while 3c displays scattered cellslabeled for Br-
dU in the OB (Scae bar =10pu m) LV : latera ventride 4. Confocd laser microsoope images of cells colocdized (yelow) with BrdU (red) and a

neurond marker (Twl, green) inthe SVZ. Scae bar =5um

current scientific community , most have come to em-
brace the fact that new neurons are produced in the
brainsof adult mammals, and adult neurogeness has
been identified in a variety of mammalian ecies, in-
cluding rats (Kaplan et al. , 1977) , mice ( Kemper-
mann et al., 1998) , hamsters (Huang et al.,
1998) , voles (Fowler et al. , 2002 ; Ormerod et al . ,
2001) , tree shrews (Gould et al. , 1997) , non-hu-
man primates (Bernier et al. , 2002; Gould et al. ,
19993) , and even humans (Erikson et al. , 1998) .
Infact , it has been estimated that adult-born neurons
represent around 10 % - 20 % of the tota neurona
population, at least in the dentate gyrus of the hip-
pocampus (Jacobs et al. , 2000) .

To identify newly proliferated cdls, researchers
have utilized markers that are incorporated into the
DNA of mitoticaly active cells during Sphase; these
include ®Hthymidine and 5 bromo-2'-deoxyuridine
(BrdU). Usng these techniques, two regions, the
dentate gyrusof the hippocampus (DG and the sub-
ventricular zone (SV Z) , have been identified as the
main areasfor cdlular proliferation in the adult mam-
malian brain (Fig. 1). Inthe DG, cdlsproliferatein

the subgranular zone and migrate into the granule cdll
layer where the mgority develop into neurons
(Cameron et al. , 1993; Gould et al. , 1997 ; Kuhn
et al. , 1996). Inthe SVZ, cdlsproliferate and mi-
grate dong the rostral migratory stream (RMS) into
the olfactory bulb (Menezes et al. , 1995; Peretto et
al. , 1999) where they diperse and differentiate into
granule or periglomerular neuronsin the main olf acto-
ry bulb (Luskin, 1993; Peretto et al. , 1999) or into
granule neuronsin the accesory olfactory bulb (Bon-
fanti et al. , 1997; Peretto et al. , 1999) . Multipo-
tent progenitor cellscan be found throughout the DG,
SVZand RMS; however , the presence of stem cells
has been generaly accepted in the SV Z while remain-
ing debatable in the D G (Seaberg et al. , 2002 ; Song
et al. , 2002b) . Interestingly, a recent report sug
gests that astrocytes in the adult brain may function
as neura stem cells (Seri et al. , 2001) .

Although most studies have focused on the DG
and SV Z, severd other brain regions have been found
to contain newly proliferated cells. These regionsin-
clude the amygdaa and hypothaamus in voles and
hamsters ( Fowler et al., 2002; Huang et al.,
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1998) , amygdaa and neocortex in primates (Bernier
et al., 2002; Gould et al. , 19993) , and striatum,
septum and thaamusin rats (Pencea et al. , 2001) .
Snce 3H-thymi dine and BrdU label proliferating neu-
rons and glia, cel type secific markers have been
used to verify neurona or glid phenotype in dl of
these brain regions, but even 20, the identification of
new neuronsin the neocortex ugng these markers has
not gone without debate and <ill remains controver-
ga (Gould et al. , 2001; Kornack et al. , 2001) .
In the current paper , we will briefly review re-
cent developments in the field of adult mammalian
neurogenes s by focus ng on changesin the exogenous
and endogenous environments that increase or de
creasxe the rate of cell proliferation and/ or survival.

2 Exogenous influences on adult neu-
rogenes s

2.1 Environmental enrichment

Cerd Kempermann and oolleagues were among
the first to examine the efects of external environ-
ment on adult neurogeness ( Kempermann et al. ,
1997; Kempermann et al., 1999). In their first
study , adult mice were exposed either to an enriched
environment , composed of group housng, tubes, a
tunne , a running whed , and extrafood treats, or to
a standard laboratory environment. All animals were
housed in their repective environment for 40 days,
and the cdl proliferation marker BrdU was injected
during the last 12 days of this period. Theredfter ,
animals were sacrificed at either 1-day or 4-weeks
post-injection , and their brain sections were processed
for BrdU immunocytochemistry to visualize the newly
proliferated cells in the DG. Mice housed in the en
riched environment digplayed a larger number of Br-
dU-labdled cdls in the DG than did oontrols at 4
weeks, but not 1-day , post-injection, suggesting that
environmental enrichment enhances the survival of
the new D G neurons. Furthermore, the enriched ani-
malsperformed better on a atia learning task than
did the controls, ducidating the possble functiona
sgnificance of the new cells. Udng dmilar housng
conditions, these findings were then replicated in rats
(Nilson et al. , 1999). Snce many variables went

into creating an* enriched environment” , it was un-
clear whether certain agects of the enrichment (e.
g. , group housing, running whee , toys, etc.) or
whether the enriching experience as a whole &affected
the surviva of these new D G neurons. Therefore, in
afurther study examining the gecific effectsof phys
ica activity on adult neurogeness, mice given volun-
tary accessto a running wheel digplayed a dgnificant
increaxe in the number of BrdU-labeled cells in the
D G relative to inactive controls (van Praag et al. ,
1999) . When compared to the enriched environment
condition, the voluntary whed running animals had a
smilar number of surviving cells, suggesting that the
wheel running access dgnificantly contributed to the
gfects seen in the prior study.

The act of learning itself may d < influence new
cel numbers; training on hippocampal- dependent
tasksinduces a substantia increase in the number of
adult-generated neuronsin the DG of rats (Gould et
al. , 1999b) . In addition, the long-term surviva of
the new neurons in the DG may depend upon a conr
tinuoudy changing environment , independent of the
presence of enriching experiences. In* enriched envi-
ronment” mice, those that were withdrawn and sub-
sequently housed in standard lab conditions exhibited
an enhanced D G cél surviva , as compared to those
that remained in the enriched environment ( Kemper-
mann and Gage, 1999) .

2.2 Social interaction

Interaction with congecifics has a9 been found
to influence adult neurogeness; thisfinding has been
best demonstrated in studies usng microtine rodents
(voles). The femae prairie vole, Microtus ochro-
gaster, is highly scia , can be induced into behav-
ioral estrus by male exposure, and forms sdective -
cid attachment ater mating; thus, it provides an ex-
cellent opportunity to study the effects of environ
menta and endocrine changes on physology and be-
havior (Carter et al. , 1993; DeVries et al. , 1996;
Wang et al. , 1998) . Inour study (Fowler et al. ,
2002) , femde prairie voles that were exposed to a
male for 48 hrs with mating had more BrdU-labeled
cellsin the amygdaa than did females housed in socid
iolation, a difference which perdsted even 3 weeks
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Fig.2 The effects of social environment on new cells in the anmygdala

1. Photomicrographs of BrdU-labeled cdlsin the amygdda ater two daysof socid environment exposure. Femae prarie voles were ilated (1a)

exposed to afemde (1b) , or mated and exposed to a mde (1c) . Scde bars= 1004 m
3. In the dentate gyrus (DG , mean number of BrdU-labeled cells per brain section across groups. L etters represent

brain section across groups

2. In the amygdda, mean number of BrdU-labeled cdlls per

the resultsof the post hoc test ; shared lettersindicate no statistica difference; and error barsindicate standard error of the mean

later (Fig. 2). These efects were dte ecific, as
group differences were not foundinthe DG. Ina sp-
arate study , 48 hrs of mating sgnificantly increased
the number of new cellsin the anterior divison of the
SVZin femae prairie voles (Smith et al. , 2001) .
Together , these data suggest that experience with a
male enhances the proliferation and/or surviva of
new neuronsin a ste gecific manner in the brain of
adult femae prairie voles.

On the other hand, certain negative ocia inter-
actions have been shown to decrease neurogeness. In
adult male tree shrews, exposure to an unfamiliar
male decreases the number of proliferating cellsin the
DG, possbly due to psychosocial stress ( Gould et
al., 1997). In femae prairie voles, wocid iolation
appears to be stresful gnce it induces an increase in
the levels of serum corticoserone ( Kim et al. ,
1996) , and in relation to neurogeness, socialy iso-
lated females show dgnificantly less BrdU-labeled
cels in the amygdala than those exposed to males,
but such differences are not seen in the SVZor DG
(Fowler et al. , 2002) . These data may suggest the
presence of different stressinduced neurona mecha
nisms among the different goecies.

2.3 Season

Seana changes in brain structure and function
have been well established in songbirds: incorporation
and/ or surviva of new neurons are found in brain re-
gions critica for ong production and gatial memory
(AlvarezBuylla et al. , 1997 ; Barnea et al. , 1994;
Patel et al. , 1997) . Recent studies have ds demon-
srated seaona rhythms in adult mammalian neuro-
geneds. In male golden hamsters, constant short day
photoperiod, which mimics the winter months, en
hances the birth and/or survival of new cdlsin the
DG, hypothaamus, and cingulate cortex (Huang et
al. , 1998) . In wild-captured meadow voles ( Micro-
tus pennsyl vanicus) , fluctuations can be found during
the different seasons. Non-breeding femaes showed
an increaxe in new cell number in the granule cell lay-
er of the DG when compared to breeding femaes;
however, no sana differences were found among
males of this gecies (Gdea et al. , 1999) . This sear
ona change in D G neurogenessin the female mead
ow vole has been correlated with changesin hormona
levels, territory sze and atia performance ( Gdea
et al. ,1995; CGdea et al. , 1999; Sheridan et al. ,
1988) . However , additional studies are necessary to
determine whether a direct reationship exists be
tween seana changesin cdl proliferation and in be-
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havior and/ or neuroendocrine functions.
2.4 Chemosensory stimuli

Snce a large proportion of the cdls proliferating
in the adult rodent brain migratefrom the SVZto the
olfactory bulb, one may question whether a snsry
feedback mechanism exists which regulates the prolif-
eration and/ or migration of the new cells destined for
the olfactory bulb. In the adult mouse, exposure to
an odor-enriched environment enhances the survival of
newly proliferated cels in the olfactory bulb
(Rochefort et al. , 2002) , and following unilatera
naris closure, a decreased number of BrdU-labeed
cells and an increased number of pyknotic nucle are
present in the obstructed bulb when compared to the
unobstructed bulb (Corotto et al. , 1994) . Thiscon
cept has been further confirmed in an elegant study u-
tilizing ansomic mice lacking the olfactory cyclic nu-
cleotide gated channel. Relative to wild types, the
ansomic mice have a reduced number of surviving Br-
dU-labeled granule neuronsin the olfactory bulb (Pe-
treanu et al. , 2002) . Studies have a o incorporated
more dragtic olf actory input restriction by disconnect-
ing theolfactory bulbfrom the brainin adult animals.
Unilateral bulb sparation and complete bulb removal
resulted in a decreased number of proliferating cellsin
the RMS on the lesoned sde of the mouse brain,
suggesting that the lack of olfactory input negatively
dfects cel proliferation (Jankovski et al. , 1998;
Kirschenbaum et al. , 1999) . However , the animas
with unilaterally lesoned bulbs al© showed a decrease
inthe* control” bulb when compared to unlesoned
animas. Thus, the decrease in proliferation may be
attributable to the sde efects from bulb inury or to
removal of contraateral and/or reciproca connec
tions, rather than merely sensory deprivation.

The effectsof olfactory input on adult neurogen-
ess have not been limited to the SV Z and olfactory
bulbs; the amygdala has a9 been studied in this re-
gard since it receives direct input from the olfactory
bulb (Davis et al. , 1978; Meredith, 1991: Winans
et al. , 1970) and plays an important rolein the reg-
ulation of socia behavior (Demas et al. , 1997 ; Kirk-
patrick et al. , 1994; Wang et al. , 1997) . Maeex-
posure with mating induced an increase in the number

of BrdU-labeled cdllsin the amygdaaof femaeprairie
voles (Fowler et al., 2002) , and in a follow-up
study , exposure to mae bedding aone was sufficient
to influence cellular proliferation in the amygdala (Liu
et al. , 2001a) (Fig. 3). Female prairie voles that
were exposed to the bedding from a congecific mae
for 48 hrs had more BrdU-labdled cells in the amyg-
dda, particularly in the media and cortica nuclei ,
than did females exposed to their own bedding. Inter-
egingly , this bedding effect on cdl proliferation was
sxualy dimorphic, as no group differences were
found in the male prairie vole. Although the mecha
nisms underlying these sex differences are ill unr
known, it is posdble that the femae system is more
reponsve to opposite-sex pheromonal exposure than
the male system; for example , femae prairie voles re-
ly on mae exposure for estrus induction, whereas
males may need less cues to induce copulatory ac-

tions.
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Fig.3 The effects of soiled-bedding exposure on the
mean number of BrdUlabeled cells in the amygdala
L etters represent the resultsof the post hoc test , shared lettersindi-
cate no dtatistica difference, and error barsindicate standard error
of the mean

3 Endogenous factors regulating adult
neurogenes s

Snce agpects of the animal's externa environ-
ment likely influence neuronal and physologica pro-
cesesthat , in turn, ater cdl proliferation/ surviva ,
attempts have been made to identify these internd
factorsand to examine their influences on adult neu
rogeness.

3.1 Seroid hormones
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Snce the structure and function of certain brain
areas depend on the levels of circulating hormones
during adulthood ( GarciarSegura et al., 1994;
McEwen, 1999 ; McEwen et al. , 1999) , the influ-
ence of hormoneson adult neurogenes s has become a
fascinating research area. Recently , researchers have
found that , in the DG of female rats, the number of
new cellsfluctuates during the estrus cycle, with the
highest number of new cells during proestrus, and
ovariectomy decreases, whereas estrogen replacement
restores, new cell number relative to intact controls
(Tanapat et al., 1999) . Furthermore, it has been
observed that dividing cells are often located near the
vaculature in the subgranule zone of the adult DG
(Palmer et al., 2000) , supporting the contention
that peripheral circulating hormones may cross the
blood-brain-barrier to dafect cdlular proliferation.
The &fectsof gonadal steroid hormoneson adult neu
rogeness were further studied udng the vole as a
model system. Female voles are induced ovulators and
digplay an elevated level of estrogen following expo-
sure to a congpecific mae (Dluzen et al., 1979;
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Seabloom, 1985). Therefore, the exogenous envi-
ronment may induce changes to the internal hormonal
milieu, which then ater neurogeness. In the DG of
female meadow voles, differences in the number of
new cells can be seen across the breeding season and
may be attributable to the seana changesin estradi-
ol or corticosterone levels (Gdlea et al. , 1999) . Fur-
thermore, exposure to estradiol benzoate produces a
transent increase, followed by a decrease, in the
number of new DG neurons (Ormerod et al. ,
2001) . Thus, it appears that the effects of mae ex-
posure/ mating on cell proliferation are, at least in
part, attributable to circulating levels of estrogen.
Thisisfurther supported by findingsin female prairie
voles (Smith et al. , 2001) . Exposure to a male for
48 hrsinduces an devated level of serum estrogen as
ciated with an increased number of BrdU cells in
the SVZ. This efect can be prevented by ovariecto-
my and reinstated with estrogen treatment.
most recent experiment , treatment with estrogen
benzoate in ovariectomized voles had fecies Pecific
efectson neurogeness; it decreased the number of

In our

Fig.4 Hormonal influences on new cells in the male meadow vole
1. The effectsof tesosterone (TP) , estradiol benzoate (EB) , or ®-dihydrotestosterone (DHT) on the mean number of BrdU-labded cdlsin mde
meadow voles. Letters represent the resultsof the post hoc test , shared lettersindicate no statistica difference, and error barsindicate sandard er-
ror of the mean 2. Confoca laser microsoope images of cells stained for BrdU (2a) , a neurona marker (Twl, 2b) , an astroglia marker (N@&,
2c) , and dl three markers (2d) in the amygdda of mae meadow voles. BrdU and Tull colocdlized cdls display a yellow image, and a BrdU only

labeled cdl digplaysared image Scde bar =104 m
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new cellsin the Ventromedia nucleusof the hypotha
lamus (VMH) , VMH of prairie voles and increased
new cell number in the amygdaa of meadow voles
(Fowler and Wang, unpublished data) .

Much less work has been done to investigate the
efectsof hormona status on neurogeness in males.
We recently performed a study in which castrated
male meadow voles were implanted with tubing filled
with oil (control) , testosterone, estradiol benzoate
(EB) , or ®-dihydrotestosterone (DHT) (Fowler et
al. , 2001). Testosterone treatment up-regulated the
number of BrdU-labeled cdls in the amygdda, but
not in the DG, when compared to the controls (Fig.
4) . Interegtingly, treatment with EB had a smilar
effect as testosterone, whereas DHT was ineffective.
Thes data indicate that testosterone is most likely
being converted into estrogen by aromatization and
then regulates adult neurogeness by acting through
an estrogen- mediated mechanism in the male meadow
vole.

The observed decreasesin new cell number in the
amygdala of socidly ilated prarie voles (Fowler et
al. , 2002) and in the DG of psychosocialy stressed
tree shrews (CGould et al. , 1997) may be attributable
to changesin the levelsof stressassociated hormones.
Although not yet studied in volesor tree shrews, the
dfectsof adrena steroid hormoneson adult neurogen-
eds have been studiesin rats. Acute treatment with
corticosterone induces a sgnificant decrease in the
number of new cellsin the DG, whereas adrenalecto-
my enhances the number of new cells; however , the
adrendectomy-induced increase could not be reversed
2lely by corticosterone treatment , suggesting that
other mechanisms beyond hormonal levels are in-
volved in these differences (Cameron et al. , 1994) .
Infact , N-methyl-D-aspartate (NMDA) receptor ac-
tivation may underlie the stressinduced effectson D G
neurogeness: administration of a NMDA agonist pre-
vents the adrendectomy-induced increase in new DG
cell number and receptor blockade with a NMDA an
tagonist blocks the corticosterone-induced decrease
(Cameron et al. , 1998) .

3.2 Neurotransmitters
Snce an animal’ s externa environment may in-

duce downstream effectson the extracellular environ-
ment , neurotransmitter syssems are likely candidates
for a neurogened s mediating mechanism. For exant
ple, serotonin (5-HT) agppears to regulate adult neu
rogenedsin the rat : depletion of serotonin reducesthe
number of new cdlsin the DGand SVZ (Brezun et
al. , 2000) , whereas an increae in serotonin or
chronic antidepressant treatment enhances cell prolif-
eration in the DG (Jacobs et al. , 2000; Malberg et
al. , 2000) .

Brainderived neurotrophic factor (BDNF) aw
appears to play an important role in adult neurogene-
ss. BDNF syntheszing/ containing cells are found in
many brain areas (Castren et al. , 1995; Conner et
al., 1997; Hayashi et al., 1997; Hofer et al.,
1990). In vitro, BDNF enhances the number and
survival of new neurons derived from the SV Z (Gold-
man, 1998) , and in vivo, BDNF infusons into the
brain increase the number of new cellsin severa brain
areas, including theolfactory bulb, striatum, and hy-
pothaamusof rats (Pencea et al. , 2001; Zigova et
al. , 1998) . Recently, it has d= been reported that
astrocytes may secrete BDNF and induce neurogenes s
in adult neura stem cells (lkeda et al. , 2001; Song
et al. , 2002a) . Furthermore, endothelia cells may
screte BDNF and clugters of proliferating cells are
found around vasculature (Leventha et al. , 1999;
Palmer et al. , 2000) . Interestingly , the aore-men-
tioned effectsof steroid hormones may occur through
a BDNFmediated mechanism. In rats, BDNF mR-
NA in the hippocampus fluctuates across the estrous
cycle (Gbbs, 1998) , and ovariectomy decreases,
whereas estrogen administration in ovariectomized
rats increases, BDNF mRNA expresson in the hip-
pocampus (Sngh et al. , 1995). Estrogen treatment
a9 increasessBDN F expresson in the amygdaaof fe-
mae prairie voles (Liu et al., 2001b). Regarding
the effects of stress hormones, adrenalectomy , which
increases neurogeness, has been found to as enr
hance BDNF mRNA expresson in the hippocampus
of rats (Schast et al. , 1999). Findly, BDNF in
creases serotonin activity (Suciak et al. , 1996) , and
alternatively , serotonin reuptake inhibitors increase
BDNF expresson in the rat brain (Duman et al. ,
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1997) , suggesting that BDNF and serotonin may act
synergisticaly to regulate cdlular proliferation in the
adult brain.

4  Functional ggnificance of the new
cels

The olfactory bulb and amygdala have been im-
plicated in olfactory/ pheromona processing (L uiten
et al. , 1985; Meredith, 1991) , socid learning and
memory (Brennan et al., 1997; Cahill et al.,
1996 ; Kirkpatrick et al. , 1994) , sexud and socid
behaviors (Dominguez et al. , 2001; Harris et al. ,
1975; Williams et al. , 1992) and fear conditioning
(McNish et al. , 1997 ; Walker et al. , 2002) , while
the D Gplays an important role in gatia learning and
memory (Moser and Moser, 1998; Shors et al. ,
2001) . Snce new cdls are being incorporated into
these areas in adulthood, one is led to quegtion the
functiona sgnificance, if any, of the adult-born neu
rons. An early study demonstrated that cellsproduced
in adulthood exhibit properties of functiona neurons,
such as synapses, axons, and vedces ( Kaplan,
2001) . In vitro cultures from adult songbird brain
tissue show that new neurons can become synaptically
competent and develop stimulusevoked and gonta
neous action potentids ( Goldman et al., 1992).
More recently , in vitro studies have a9 shown that
new cellsfrom the adult rat hippocampus can become
dectricaly active neurons and exhibit functiond
synaptic transmisson (Song et al. , 2002b) .

The ability of these new cels to contribute to
adult neura processng has d been demonstrated in
vivo. In mice and golden hamsters, new cellsin the
olfactory bulb may become activated following odor
exposure, asindicated by increased expresson of the
immediate early gene cfos (Carlen et al., 2002;
Huang et al. , 2002). In addition, adult mice that
have deficits in the migration of olfactory bulb neu-
rona precursors digplay impaired discrimination be
tween odors (Gheud et al. , 2000) , and an increase
in the number of olfactory bulb neurons following
odor enrichment is asociated with enhanced short-
term odor memory (Rochefort et al. , 2002) . Fina-
ly, treatment with an anti-mitotic drug prevents adult

cell proliferation and results in hippocampal-depen-
dent memory formation deficits; importantly , ater
recovery from the drug treatment , new neurons can
be produced , and trace memory acquistion is restored
(Shors et al. , 2001) .

5 Conclusons

In summary , neurogenessin the adult brain has
been identified in many mammaian species. The rate
of proliferation and the fate of new neurons may be
influenced by a variety of factors. Agects of an
anima’ s external environment may induce changes in
itsinternd physology, which, in turn, can act on
neurochemical and/ or neurotransmitter systemsto -
fect cdlular proliferation and/or surviva. Although
many studies have characterized the factors that in
creaee or decreaze new cell numbers, the cdlular
mechanisms that directly act on the proliferation and/
or surviva of these cells hasyet to be eucidated. Fur-
thermore, severd studies have established reation
ships between the presence of newly proliferated cells
and behavioral/ cognitive functions, but more research
needs to be done to determine the exact contribution
of these new neurons. Brain areas that incorporate
new cells in adulthood, including the hippocampus,
olfactory bulb and amygdala, have been implicated in
sverad neurological disorders such as depresson,
schizophrenia, and Alzheimer's disease (Arnold et
al., 1998; Hyman et al., 1990; Klimek et al.
2002; Kromer Vogt et al., 1990; Nesler et al. ,
2002) . Therefore, studiesof adult neurogeness may
offer a better understanding of the mechanisms in-
volved in these disorders and may even lead to the de-
velopment of new thergpeutic treatments for these
neurologica diorders.
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