Newly Proliferated Cells in the Adult Male Amygdala
Are Affected by Gonadal Steroid Hormones

Christie D. Fowler,¹ Marc E. Freeman,² Zuoxin Wang¹

¹ Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306

² Department of Biological Sciences, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306

Received 9 December 2002; accepted 19 May 2003

ABSTRACT: Gonadal steroid hormones play an important role in the proliferation, survival, and activation of neurons. The present study was performed to examine the effects of testosterone and its metabolites on newly proliferated cells in the amygdala of adult male meadow voles (Microtus pennsylvanicus). Treatment with testosterone propionate (TP) in castrated males resulted in plasma testosterone levels similar to males following mating. TP-treated males displayed a significant increase in the density of cells labeled with a cell proliferation marker (BrdU) in the amygdala. Treatment with estradiol benzoate (EB) exerted a similar effect as TP on the density of BrdU-labeled cells, whereas 5α-dihydrotestosterone (DHT) was ineffective. A larger proportion (~44%) of the BrdU-labeled cells in the amygdala displayed a neuronal phenotype, and a lesser percentage (~35%) displayed a glial progenitor phenotype; however, treatment effects were not found in either population of cells. Hormonal effects appeared to be site-specific as no group differences were found in the dentate gyrus of the hippocampus or ventromedial hypothalamus. Finally, a time course study indicated that BrdU-labeled cells in the amygdala are present as early as 30 min following an acute injection of BrdU. Together, these data suggest that gonadal steroid hormones influence the number of newly proliferated cells in the amygdala, most likely by acting through an estrogenic mechanism, and these effects may be exerted on locally proliferating progenitors within the amygdala.

INTRODUCTION

Adult mammalian neurogenesis may be influenced by a variety of exogenous and endogenous factors. In the dentate gyrus of the hippocampus (DG) of rodents, the number of new cells increases in response to environmental complexity (Kempermann et al., 1997; Nilsson et al., 1999), hippocampal-dependent learning (Gould et al., 1999a), or wheel running (van Praag et al., 1999). In contrast, psychosocial stress leads to a decrease in the number of new cells in the DG of tree shrews (Gould et al., 1997). The mechanisms underlying these effects may be attributed to changes in the animal’s hormonal and/or neurotransmitter levels. For example, the inhibitory effects of stress on neurogenesis may occur via adrenal steroids, such as glucocorticoids (Cameron and Gould, 1994; Fuchs et al., 2001), whereas the enhancement of new cells may be influenced by the presence of serotonin or brain-derived neurotrophic factor (BDNF) (Brezun and Daszuta, 1999, 2000; Pencea et al., 2001).
Although cells undergoing neurogenesis in the adult mammalian brain have been primarily documented in the DG and subventricular zone (SVZ), several other brain regions have been identified to contain newly proliferated cells. These regions include the amygdala and hypothalamus of voles and hamsters (Huang et al., 1998; Fowler et al., 2002), neocortex and amygdala of primates (Gould et al., 1999b; Bedard et al., 2001), and striatum, septum, and thalamus of rats (Pencea et al., 2001). Because the amygdala is responsive to gonadal hormones (Insel, 1990; Coolen and Wood, 1999) and has been implicated in reproductive-associated behaviors, such as olfactory/pheromonal processing (Luiten et al., 1985; Meredith, 1991), social learning and memory (Kirkpatrick et al., 1994; Cahill et al., 1996; Demas et al., 1997) and copulatory actions (Harris and Sachs, 1975; Dominguez et al., 2001), this region is of particular interest for the study of the hormonal effects on neurogenesis.

Gonadal steroid hormones may exert influential effects on cognition, memory, and mood in mammals, including humans (Vermeulen, 1993; Wang et al., 1996; Wolf and Kirschbaum, 2002). On the cellular level, these hormones may play a role in the proliferation (Ormerod and Galea, 2001), survival (Leranth et al., 2000), and activation (Insel, 1990) of neurons. Interestingly, estrogen administration does produce an increase in the number of new cells in the DG of adult female rats and meadow voles (Tanapat et al., 1999; Meredith, 1991), and activation (Insel, 1990) of neurons.

In the present study, we examined the effects of the gonadal steroid hormone, testosterone, and then its metabolites, estrogen and 5α-dihydrotestosterone (DHT), on the addition of new cells in the amygdala of male meadow voles (Microtus pennsylvanicus). We also identified the neuronal or glial phenotype of the newly proliferated cells in the amygdala. Finally, a time course study was performed to assess whether cells in the amygdala proliferate locally.

MATERIALS AND METHODS

Subjects

Subjects were sexually naive adult male meadow voles (Microtus pennsylvanicus) that were offspring of the F3 generation of a laboratory-breeding colony. The voles were weaned at 21 days of age and housed in same-sex sibling pairs in plastic cages (29 × 18 × 13 cm) that contained cedar chip bedding. All cages were maintained under 14:10 light/dark photoperiod with lights on at 0700. Temperature was kept at 21 ± 1°C. Animals were provided *ad libitum* with food (rabbit chow and sunflower seeds) and water. Subjects were randomly assigned to experimental groups.

Treatment Groups

In the first experiment, subjects (2–3 months old) were castrated, followed by a recovery period of 2–3 weeks. Thereafter, they were implanted with Silastic tubing (10 mm long, 2 mm i.d., 3.2 mm o.d.) filled with oil vehicle (n = 7) or testosterone propionate (TP; n = 7; 0.1 mg/μL sesame oil, ~20 μL each). In the second experiment, subjects (3–5 months old) were castrated, allowed to recover for 2–3 weeks, and were then divided into four groups that received implants of Silastic tubing filled with either oil vehicle (control, n = 5), TP (n = 6; 0.1 mg/μL oil), DHT (n = 7; 0.1 mg/μL oil), or estradiol benzoate (EB; n = 6; ~1.5 mg each). In both experiments, subjects received hormonal or control treatment until sacrifice, which occurred 72 h after tubing implantation. In the third experiment, intact male meadow voles (2–4 months old) that received no hormonal treatment were used as subjects to examine the presence of newly proliferated cells. Subjects were sacrificed at 30 min or 1, 6, or 24 h following an acute injection of 5-bromo-2′-deoxyuridine (BrdU; n = 3 for each time point).

Injections of BrdU

To label proliferating cells, subjects were injected with a cell proliferation marker, BrdU (Sigma, St. Louis, MO). In experiments 1 and 2, injections began 48 h following tubing implantation and continued at 6 h intervals during the next 24 h of treatment (total of four injections per animal). Injections of BrdU were given intraperitoneally (ip; 50 μg/g body weight) in 0.9% NaCl and 0.007 N NaOH, as described previously (Smith et al., 2001). In experiment 3, one injection of a higher concentration of BrdU (300 μg/g body weight) was given to maximally label the number of proliferating cells, as indicated in a recent report (Cameron and McKay, 2001), and the subjects were then sacrificed either 30 min or 1, 6, or 24 h later.

Brain Perfusion/Fixation

Subjects were anesthetized with sodium pentobarbital (0.1 mg/10 g body weight) and perfused through the ascending aorta using 0.9% saline followed by 4% paraformaldehyde in 0.1 M phosphate buffer solution (PBS; pH 7.4). Brains were harvested, postfixed for 2 h in 4% paraformaldehyde, and then stored in 30% sucrose in PBS. Brains were cut into 40 μm coronal or sagittal sections on a microtome, and the sections were stored in 0.1 M PBS with 1% sodium azide until processing either for peroxidase BrdU immunostaining or for triple fluorescence immunolabeling.
BrdU Immunocytochemistry

Floating brain sections at 120 μm intervals were processed for BrdU immunostaining. Sections were treated with 2 N HCl for 30 min at 60°C and then with 0.1 M borate buffer at room temperature for 25 min. After rinsing in 0.1 M PBS, sections were incubated in 0.3% hydrogen peroxide and 10% methanol in 0.1 M PBS for 15 min; 0.5% Triton X-100 in 0.1 M PBS with 10% normal goat serum (blocking serum) for 60 min; and rat anti-BrdU monoclonal antibody (1:1,000; Accurate, Westbury, NY) in blocking serum at 4°C overnight. Sections were then rinsed and incubated in biotinylated goat antirat IgG (1:200; Jackson Immunoresearch, West Grove, PA) in blocking serum for 2 h at room temperature. Thereafter, sections were incubated in ABC Vector Elite in 0.1 M PBS at room temperature. Thereafter, sections were incubated in 0.3% hydrogen peroxide and 10% methanol in 0.1 M PBS, treated with 2 N HCl for 30 min at 60°C and then with 0.1 M PBS, rinsed, and incubated in normal donkey serum, rat anti-BrdU (1:200; Accurate) in 0.1 M PBS with 0.1% Triton X-100 at 4°C 36 h, and Texas Red-conjugated donkey antirat IgG (1:200; Jackson Immunoresearch) for 2 h at room temperature. Sections were rinsed, mounted on slides with slowfade component A (Molecular Probes), and coverslipped.

Data Quantification and Analysis

All slides were coded to disguise group identity. For peroxidase BrdU immunostaining, BrdU+ cells were examined and quantified bilaterally in the DG, central (CeA), medial (MeA), and cortical (CorA) nuclei of the amygdala, and ventromedial nucleus of the hypothalamus (VMH) on coronal sections for all groups in experiment 1 and 2. For experiment 3, BrdU+ cells in the CeA, MeA, CorA, and VMH were examined on sagittal sections and quantified on coronal sections.

BrdU+ cells were visualized under 40X magnification using a Zeiss AxioskopII microscope. BrdU+ cells were counted in the hilus, granule, and molecular cell layers of the DG (corresponding to Plates 29–32 in Paxinos and Watson, 1998) for seven to eight sections per animal; groups did not differ in the number of sections counted. In the central, medial, and cortical nuclei of the amygdala (Plates 28–29 in Paxinos and Watson, 1998) and VMH (Plates 30–32 in Paxinos and Watson, 1998) three sections were counted per animal. Furthermore, the areas of these brain regions were measured using the NIH IMAGE program. The images were projected to a computer screen and the boundaries of each region were traced bilaterally. Because no region demonstrated an overall left-right asymmetry, both sides were combined and the area within each tracing was calculated. In all regions, the sections were carefully matched between animals. Cell counts and area measurements were averaged over the number of sections analyzed for each brain area, and cell density (number of cells per mm²) was calculated for each subject. Group differences in the size of the region and the density of BrdU+ cells for each region were analyzed either by a t test (experiment 1) or by a one-way analysis of variance (ANOVA), followed by a Student-Newman-Keuls (SNK) post-hoc test (experiments 2 and 3). Because the BrdU-labeled nuclei were ~5 μm in diameter and sections at 120 μm intervals were counted, the possibility of counting split cells on different sections was minimized to less than 10%, according to the equation of Abercrombie (Guillery and Herrup, 1997).

BrdU-, TuJ1-, and NG2-labeled cells were quantified in the amygdala for experiments 1 and 2. Cells were visualized under 63X magnification using a Zeiss 510NLO confocal microscope. At least 170 cells were counted per group from two sections/animal. Individual cells stained for BrdU/TuJ1, BrdU/NG2, or BrdU alone were counted. Percentages were calculated for the individual subject’s number of double-labeled cells divided by the corresponding subject’s total number of BrdU+ cells and multiplied by 100. Group differences in the percentage of BrdU+ cells containing a neuronal (TuJ1) or glial (NG2) marker were analyzed by a one-way ANOVA.
Radioimmunoassays (RIAs)

Prior to sacrifice, blood samples were obtained from the jugular vein. Blood was drawn with 20 μL of 0.2 M EDTA in the syringe to prevent clotting. Following collection, blood was placed in centrifuge tubes on ice and was then centrifuged at 3,000 rpm for 25 min. The resulting plasma was stored at −80°C. Plasma concentrations of testosterone were measured in duplicate by a Coat-a-Count total testosterone kit and of estradiol in duplicate by a Coat-a-Count estradiol kit (Diagnostic Products Corp.). For the testosterone kit, plasma from castrated male voles was added to the standards to control for nonspecific competition in male vole plasma and to prevent nonspecific binding of iodinated testosterone. Differing volumes of vole plasma were parallel to the standard curve of testosterone and estradiol, thus verifying the kits for use in voles. For the testosterone and estradiol assays, the sensitivities were 4 and 8 pg/mL, respectively, and the intra- and interassay coefficients of variation were both <5%. Sample values were analyzed by a t test or ANOVA, followed by a SNK post-hoc test.

RESULTS

Experiment 1

The size of each measured region did not differ between the two treatment groups (p > 0.05). BrdU immunocytochemistry produced dense nuclear staining of cells in specific regions of the vole brain. In the amygdala, the TP-treated males had a significantly higher density of BrdU+ cells compared to the oil-treated group (t = 3.81; p < 0.05) [Figs. 1(A,B) and 2]. Specifically, the TP-treated group displayed a higher density of BrdU+ cells in the cortical (t = 3.13; p < 0.05) and medial (t = 5.47; p < 0.001) nuclei, but not in the central nucleus, of the amygdala (t = 0.74; p > 0.05) [Fig. 2(B)]. Group differences were not found in the DG (t = 0.24; p > 0.05) and VMH (t = 0.76; p > 0.05) [Figs. 1(C,D) and 2(A)]. For the control group, the density of BrdU+ cells in the DG was approximately 5.6-times the cell density in the amygdala and 6.8-times the cell density in the VMH. Following the TP-treatment, the density of BrdU+ cells in the DG was approximately 2.4-times the cell density in the amygdala.

Experiment 2

In the amygdala, the EB-treated group had a significantly higher density of BrdU+ cells than did the DHT- and oil-treated groups (F = 7.52; p < 0.05) [Fig. 3(A)]. Upon performing a post-hoc contrast test, the TP-treated group appeared to approach significance in having a higher density of BrdU+ cells than
the oil-treated group ($p = 0.059$). For the specific subnuclei, the TP- and EB-treated groups had a higher density of BrdU$^+$ cells in the cortical ($F = 18.14; p < 0.001$) and medial ($F = 9.68; p < 0.001$) nuclei, but not in the central nucleus ($F = 3.07; p > 0.05$), of the amygdala than the DHT- or oil-treated groups; the latter two groups did not differ from each other [Fig. 3(B)]. Group differences in the density of BrdU$^+$ cells were not seen in the DG ($F = 1.93; p > 0.05$) or VMH ($F = 0.63; p > 0.05$) [Fig. 3(A)]. Further, no group differences were found for the area of each brain region measured ($p > 0.05$).

The testosterone and estradiol RIAs confirmed group assignment. The TP-treated group had a higher level of plasma testosterone (11.4 ± 1.4 ng/mL) than did the oil- (0.8 ± 0.1 ng/mL) or DHT-treated groups.
level of plasma estradiol (1.0 pg/mL). No differences were found in the ratio of BrdU marker (Fig. 5). No differences were found in the number of BrdU-labeled cells that did not colabel with TuJ1 or NG2. Thus, the actual percentage of new neurons expressing TuJ1, or mature glial cells no longer containing NG2, and 21.3% for BrdU alone (Table 1). The 21.3% of BrdU-labeled cells that did not colabel with TuJ1 or NG2 may indicate undifferentiated progenitors, differentiated cells having not yet begun to express either of these markers, mature neurons that may not express TuJ1, or mature glial cells no longer containing NG2. Thus, the actual percentage of new neurons or glia may be higher depending on the eventual fate of these cells or the presence of other markers.

Experiment 3

A time course experiment was performed on intact, untreated males to investigate whether cells proliferate locally within the amygdala or VMH. On coronal and sagittal sections, BrdU\(^+\) cells were visualized in the amygdala and VMH at 30 min, 1, 6, and 24 h following an acute injection of BrdU [Fig. 7(A)]. BrdU\(^+\) cells were then quantified on the coronal sections (Fig. 6). In the amygdala, the 1 and 6 h groups did not differ from each other; however, both groups had a density of BrdU\(^+\) cells that was higher than the 30 min group but lower than the 24 h group (F = 13.25; p < 0.05). In the MeA, the 24 h group had a higher density of cells than did the 30 min group (F = 4.10; p < 0.05). Group differences in BrdU cell density were not found in the CeA (F = 0.15; p > 0.05) or in the VMH (F = 1.31; p > 0.05). Prior reports have described a “stream” of cells migrating into the cerebral cortex (Gould et al., 1999b); however, upon qualitative analysis, we could not visually identify any observable migratory stream pattern from the SVZ into the amygdala at these time points. BrdU-labeling was considered specific because labeled cells could not be found in animals that did not receive BrdU injections (negative control). Further, BrdU/TuJ1/NG2 immunolabeling was also performed to identify the phenotype of the cells present 30 min following the BrdU injection. Cells colocalized with BrdU/TuJ1 and BrdU/NG2 were identified within the amygdala at this time point [Fig. 7(B)].

DISCUSSION

In the present study, we found that TP or EB, but not DHT, exerted site-specific increases in the density of new cells in the amygdala of adult male meadow voles. Plasma testosterone levels in the TP-treated males were similar to males following mating, indicating that hormonal treatment reached physiological levels. The majority of the new cells displayed neuronal (≈42%) or glial (≈35%) phenotypes. Finally, new cells were identified in the amygdala and VMH as early as 30 min following an acute injection of testosterone RIA was then performed to compare TP-treated values against naturally occurring levels similar to males that had mated with a female (Mated), or sexually naive males (Naive). Letters represent the results of the post-hoc test; nonshared letters indicate statistical difference at p < 0.05; and error bars indicate standard error of the mean.

(0.9 ± 0.2 ng/mL) (F = 74.56; p < 0.001). An additional testosterone RIA was then performed to compare TP-treated values against naturally occurring testosterone levels. The plasma testosterone levels of TP-treated males (n = 5) did not differ from males sacrificed after mating (n = 3), and both were higher than sexually naive males (n = 3) (F = 12.06; p < 0.05) (Fig. 4). The EB-treated group had a higher level of plasma estradiol (1.0 ± 0.3 ng/mL) than did the oil-treated group (less than detection limits of 8 pg/mL).

To confirm phenotypes, new cells were labeled with BrdU and a neuronal (TuJ1) or glial (NG2) marker (Fig. 5). No differences were found in the percentage of BrdU\(^+\) cells colocalized with either TuJ1 or NG2. Overall, approximately 44.2% of the cells labeled for BrdU and TuJ1, 34.5% for BrdU and NG2, and 21.3% for BrdU alone (Table 1). The 21.3% of BrdU-labeled cells that did not colabel with TuJ1 or NG2 may indicate undifferentiated progenitors, differentiated cells having not yet begun to express either of these markers, mature neurons that may not express TuJ1, or mature glial cells no longer containing NG2. Thus, the actual percentage of new neurons or glia may be higher depending on the eventual fate of these cells or the presence of other markers.

Table 1 Percentage ± SEM of BrdU\(^+\) Cells Double-Labeled with a Neuronal (TuJ1) or Glial (NG2) Marker in the Amygdala

<table>
<thead>
<tr>
<th>Treatment</th>
<th>BrdU/TuJ1</th>
<th>BrdU/NG2</th>
<th>BrdU Alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>41.0 ± 9.4</td>
<td>36.8 ± 12.3</td>
<td>22.2 ± 5.1</td>
</tr>
<tr>
<td>TP</td>
<td>32.8 ± 8.9</td>
<td>46.4 ± 6.4</td>
<td>20.9 ± 6.2</td>
</tr>
<tr>
<td>EB</td>
<td>44.7 ± 7.1</td>
<td>33.7 ± 6.5</td>
<td>21.6 ± 3.0</td>
</tr>
<tr>
<td>DHT</td>
<td>58.3 ± 15.9</td>
<td>21.0 ± 7.9</td>
<td>20.8 ± 9.1</td>
</tr>
<tr>
<td>Overall</td>
<td>44.2%</td>
<td>34.5%</td>
<td>21.3%</td>
</tr>
</tbody>
</table>
Figure 5 Confocal laser microscope images of cells stained for BrdU, TuJ1, and/or NG2 in the amygdala of male meadow voles. (A–D) Images display staining for (A) BrdU (red), (B) TuJ1 (green), (C) NG2 (blue), and (D) all three markers. BrdU and TuJ1 colocalized cells display a yellow image (arrow), and a BrdU-only labeled cell displays a red image. Scale bar = 10 μm. (E) Zoomed image of newborn neuron. Views along the y-z axis (right) and x-z axis (below) demonstrate 3D colocalization of BrdU and TuJ1. Scale bar = 5 μm. (F–I) Images display staining for (F) BrdU (red), (G) TuJ1 (green), (H) NG2 (blue), and (I) all three markers. BrdU and NG2 colocalized cells display a purple image (arrow). Scale bar = 10 μm. (J) Zoomed image of newborn glial cells. Views along the y-z axis (right) and x-z axis (below) demonstrate 3D colocalization of BrdU and NG2. Scale bar = 5 μm.

Figure 7 (A) Sagittal section photomicrograph of BrdU+ cells in the amygdala (Amy) 30 min after an acute injection of BrdU. Scale bar = 100 μm. The insert displays a higher magnification of BrdU-labeling within the amygdala. Scale bar = 5 μm. hpc, hippocampal complex; ic, internal capsule; LV, lateral ventricle; opt, optic tract. (B–D) Confocal laser microscope images of cells stained for BrdU, TuJ1, and/or NG2 in the amygdala 30 min after an acute injection of BrdU. Cells displayed staining for (B) BrdU/TuJ1, (C) BrdU/NG2, and (D) BrdU alone. Scale bar = 10 μm.
BrdU. Together, these data suggest that gonadal steroid hormones affect the number of newly proliferated cells in the amygdala, most likely by acting through an estrogenic mechanism, and these effects may be exerted on cells locally proliferating within the amygdala.

Gonadal Steroid Hormones Influence Cell Proliferation

In the mammalian brain, testosterone may exert its effects directly or via aromatization into estrogen (Naftolin et al., 1975) or reduction into DHT (Lieberburg and McEwen, 1977). We found that TP or EB treatment increased the density of new cells in the amygdala, particularly in the MeA and CorA. In contrast, DHT treatment was ineffective. The similarities between the TP and EB, but not DHT, effects indicate that testosterone may act through an estrogen receptor mechanism to affect the proliferation of new cells in the amygdala. It is interesting to note that testosterone and its metabolites also act on certain reproductive behaviors and neurotransmitters in a similar manner. For example, in male hamsters, implants of testosterone or estradiol, but not DHT, in the MeA stimulate sexual activity in castrated males (Wood and Newman, 1995; Wood, 1996), and aromatase inhibition decreases mating-associated behaviors (Steel and Hutchison, 1987). In gonadectomized rats, vasopressin mRNA in the MeA and serotonin receptor and transporter mRNAs in the dorsal raphe nucleus display an increased expression with testosterone or estrogen, but not DHT, treatment (Wang and De Vries, 1995; Fink et al., 1999). However, if DHT is given in combination with estrogen, it increases the number of AVP mRNA labeled cells in MeA (Wang and De Vries, 1995). Because androgen receptor immunoreactivity in the MeA of castrated male rats can be increased by estrogen treatment (Lynch and Story, 2000), the effects of DHT on the central nervous system may rely on the presence of estrogen (DeVries et al., 1994). Therefore, we cannot exclude the possibility that DHT may be able to act synergistically with estrogen to influence cell proliferation.

Several lines of evidence support this possibility of local gonadal steroid action within the amygdala. First, estrogen-receptor containing cells are present in the amygdala, particularly in the MeA and CorA, in a variety of rodent species, including rats (Pfaff and Keiner, 1973; Simerly et al., 1990), hamsters (Wood et al., 1992), and prairie voles (Hnatzuk et al., 1994). Second, high levels of aromatase activity are found in the MeA and CorA of male rats, and castration does not affect these levels (Roselli et al., 1984; Roselli and Resko, 1987). After testosterone infusions in castrated male rats, high levels of estrogen can be found in the amygdala (Lieberburg and McEwen, 1977). Finally, testosterone or estrogen treatment has been found to
affect the neuroanatomy of the amygdala in rodents, possibly due to changes in neuronal soma size or neurogenesis. In female rats, estrogen treatment prior to postnatal day 30 increases MeA volume (Mizukami et al., 1983), and in adult, castrated male hamsters, testosterone administration also increases MeA volume (Cooke et al., 2002). Interestingly, the latter finding could not be attributed to changes in soma size, presenting the possibility of increased neurogenesis in response to testosterone for this species.

The underlying mechanisms for the steroid regulation of cell proliferation in adulthood are still unknown. However, because steroid hormones are able to alter the transcription rates of genes (Simerly, 1990), one may speculate that estrogen can induce or facilitate progenitor cells to enter the cell cycle. Alternatively, estrogen may act on other cells, which, in turn, cause local progenitor cells to proliferate. For instance, astrocytes contain steroid hormone receptors (Finley and Kritzer, 1999) and have been shown to induce cell proliferation in vitro (Lim and Alvarez-Buylla, 1999; Song et al., 2002). In response to steroid hormones, astrocytes may secrete neurochemicals such as BDNF (Ikeda et al., 2001), which has been shown to enhance cell proliferation and survival in the adult brain (Pencea et al., 2001). Importantly, in prairie voles, a species closely related to meadow voles, increased BDNF expression is present in the amygdala following estrogen treatment (Liu et al., 2001). Thus, if stem or progenitor cells are locally situated within the amygdala, it is feasible that local astrocytes function to induce these cells to undergo proliferation.

The TP-treated and mated males had similar levels of plasma testosterone, both of which were higher than sexually naive males in the present study or males captured during the breeding season in a previous experiment (≈1.8 ng/mL; Galea and McEwen, 1999). These data suggest that mating was accompanied by an increase in plasma testosterone, and the TP treatment resulted in a level of testosterone similar to naturally occurring physiological levels following mating in male meadow voles. Indeed, reports have indicated that testosterone levels become elevated significantly after ejaculation in the closely related male prairie voles (increase from ≈1.4 to 8.8 ng/mL; Gaines et al., 1985), and a comparable level of testosterone in male meadow voles increases the attractiveness of male odors to females (Ferkin et al., 1994). A drawback in the present study was that blood samples were only taken at sacrifice, so it was unclear whether this level of testosterone was consistent throughout the 72 h of treatment. Therefore, the observed effects on cell proliferation may be due to the initial rising levels of infused TP, maintained infusion rate, or maximal level of TP released.

New Cells Proliferate Locally within the Amygdala

In a previous study of rats, the rate of migration for new cells derived from the SVZa into the olfactory bulb was calculated as 22.8 μm/h (Luskin and Boone, 1994). If we assume the same rate for migration into the amygdala, we would expect it to take about 13 h for the cell in Figure 7(A) to migrate from the nearest lateral ventricle into the amygdala. Certainly, we cannot exclude the possibility that new cells from the SVZa could migrate into the amygdala much faster, but this rate would need to be at least 26 times faster than the rate into the olfactory bulb. Therefore, because BrdU+ cells were identified in the amygdala 30 min postinjection, BrdU may only be incorporated during S-phase of the cell cycle, and a very high rate of migration would be necessary for migration from a ventricle, one may infer with high probability that these cells are dividing locally, rather than dividing and then migrating from a ventricular region. Furthermore, these data suggest that the differences seen in experiments 1 and 2 occurred due to the actions of the hormones on locally proliferating progenitors. However, we are currently unable to draw a definitive conclusion about the presence of stem cells within the amygdala. It has been estimated that stem cells proliferate approximately once every 4 weeks (Morshead et al., 1994), producing progenitor cells that may continue to progress through subsequent divisions ≈17 h while migrating (Smith and Luskin, 1998). Thus, it is possible that stem cells are located in the better-known proliferative population, such as the SVZ, and produce progenitors that migrate to the amygdala and continue to proliferate locally within this region. On the other hand, we cannot discount the possibility that stem cells are localized within the adult amygdala, a notion that is currently debatable. Some data suggest that stem cells are not localized outside of the ventricular subependyma, for example, within the adult DG (Seaberg and van Der Kooy, 2002), whereas others suggest that stem cells are present in the DG and in other non-neurogenic zones of the adult brain (Palmer et al., 1997, 1999).

Possible Functional Significance of New Cells in the Amygdala

The amygdala has been implicated in many reproductive-associated functions and behaviors, such as olfactory/pheromonal processing (Luiten et al., 1985;
behavioral functions (Albert and Walsh, 1984; Cahill et al., 1994; Romeo et al., 2002), and the amygdala is implicated in a variety of cognitive and affective mechanisms locally within the amygdala. In mammals, including humans, gonadal hormones are involved in the development, differentiation, and protection of the central nervous system (Garcia-Segura et al., 1994; Romeo et al., 2002), and the amygdala has been implicated in a variety of cognitive and behavioral functions (Albert and Walsh, 1984; Cahill et al., 1996). Therefore, in future studies, it will be both interesting and essential to determine the functional significance of new cell incorporation in the adult amygdala.

CONCLUSION

In male meadow voles, hormonal status influences the density of new neurons and glia in the MeA and CorA; this effect was site-specific, as differences were not seen in the DG and VMH. Because increases were seen with TP and EB, but not DHT, and because progenitors appear to be proliferating within the amygdala, it is hypothesized that the hormonal effects on new cells are most likely occurring via estrogenic mechanisms locally within the amygdala. In mammals, including humans, gonadal hormones are involved in the development, differentiation, and protection of the central nervous system (Garcia-Segura et al., 1994; Romeo et al., 2002), and the amygdala has been implicated in a variety of cognitive and behavioral functions (Albert and Walsh, 1984; Cahill et al., 1996). Therefore, in future studies, it will be both interesting and essential to determine the functional significance of new cell incorporation in the adult amygdala.

We are grateful to Dr. Yan Liu, Cheryl Pye, and Jenny Stowe for their technical assistance and to Dr. Thomas Curtis, Dr. Yan Liu, Brandon Aragona, and Jenny Stowe for a critical reading of the manuscript. We also thank Dr. Theresa Lee of the University of Michigan for providing the meadow vole colony.

REFERENCES

Dawson MR, Levine JM, Reynolds R. 2000. NG2-expressing

cells in the central nervous system: are they oligoden-

not hippocampal lesions impair olfactory memory for

mate in prairie voles (Microtus ochrogaster). Am J

Physiol 273:R1683–1689.

lites on vasopressin messenger RNA levels in the bed

nucleus of the stria terminalis of rats. J Neurosci 14:

1789–1794.

Fidler PS, Schuette K, Asher RA, Dobbertin A, Thornton

SR, Calle-Patio Y, Muir E, Levine JM, Geller HM,

Rogers JH, et al. 1999. Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: the

major axon-inhibitory proteoglycan is NG2. J Neurosci

19:8778–8788.

Finley SK, Kritzer MF. 1999. Immunoactivity for intra-
cellular androgen receptors in identified subpopulations of neurons, astrocytes and oligodendrocytes in primate

social environment on adult neurogenesis in the female

Fuchs E, Flugge G, Ohl F, Lucassen P, Vollmann-Honsdorf

GK, Michaelis T. 2001. Psychosocial stress, glucocortico-
id, and structural alterations in the tree shrew hip-

Gaines MS, Fugate CL, Johnson ML, Johnson DC, Hisey

JR, Quadagno D. 1985. Manipulation of aggressive be-
havior in male prairie voles (Microtus ochrogaster) im-

planted with testosterone in silastic tubing. Can J Zool

63:2525–2528.

Galea LAM, McEwen BS. 1999. Sex and seasonal differ-

ences in the rate of cell proliferation in the dentate gyrus of adult wild meadow voles. Neurosci 89:955–964.

Garcia-Segura LM, Chowen JA, Parducz A, Naftolin F.

1994. Gonadal hormones as promoters of structural syn-

aptic plasticity: cellular mechanisms. Prog Neurobiol 44:

Learning enhances adult neurogenesis in the hippocampal

Gould E, McEwen BS, Tanapat P, Galea LA, Fuchs E.

1997. Neurogenesis in the dentate gyrus of the adult tree

shrew is regulated by psychosocial stress and NMDA

Neurogenesis in the neocortex of adult primates. Science

286:548–552.

Guillery RW, Herrup K. 1997. Quantification without pon-
tification: choosing a method for counting objects in

Harris VS, Sachs BD. 1975. Copulatory behavior in male

rats following amygdaloid lesions. Brain Res 86:514–

518.

Hnatczuk OC, Lisciotto CA, DonCarlos LL, Carter CS,

Morrell JJ. 1994. Estrogen receptor immunoactivity in

specific brain areas of the prairie vole (Microtus ochro-
gaster) is altered by sexual receptivity and genetic sex.

J Neuroendocrinol 6:89–100.

Huang L, Bittman EL. 2002. Olfactory bulb cells generated in adult male golden hamsters are specifically activated

by exposure to estrous females. Horm Behav 41:343–

350.

Huang L, DeVries GJ, Bittman EL. 1998. Photoperiod

regulates neuronal bromodeoxyuridine labeling in the

brain of a seasonally breeding mammal. J Neurobiol

Ikeda O, Murakami M, Ino H, Yamazaki M, Nemoto T,

Koda M, Nakayama C, Moriya H. 2001. Acute up-regu-

lation of brain-derived neurotrophic factor expression

resulting from experimentally induced injury in the rat

Insel TR. 1990. Regional induction of c-fos-like protein in

rat brain after estradiol administration. Endocrinology

126:1849–1853.

Jones LL, Yamaguchi Y, Stallcup WB, Tuszyński MH.

2002. NG2 is a major chondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors. J Neuro-

sci 22:2792–2803.

Kameda Y, Kameya T, Frankfurter A. 1993. Immunohisto-

chemical localization of a neuron-specific β tubulin Iso-
type in the developing chicken ultimobranchial glands.

Brain Res 628:548–552.

Axon-sparing lesions of the medial nucleus of the amygdala decrease affiliative behaviors in the prairie vole

Wolf OT, Kirschbaum C. 2002. Endogenous estradiol and testosterone levels are associated with cognitive performance in older women and men. Horm Behav 41:259–266.

