
M
O

D
ELAV

G
M

A
N

U
A

L

MODELAVG: A MATLAB Toolbox for Postprocessing of Model Ensembles

Jasper A. Vrugta,b

aDepartment of Civil and Environmental Engineering, University of California Irvine, 4130 Engineering Gateway, Irvine,
CA 92697-2175

bDepartment of Earth System Science, University of California Irvine, Irvine, CA

Abstract

Model averaging is statistical method that is widely used to quantify the conceptual uncertainty of environ-
mental system models and to improve the sharpness and skill of forecast ensembles of multi-model prediction
systems. Here, I present a MATLAB toolbox for postprocessing of forecast ensembles. This toolbox, called
MODELAVG implements many different model averaging techniques, including methods that provide point
forecasts only, and methods that produce a forecast distribution of the variable(s) of interest. MCMC sim-
ulation with DREAM is used for averaging methods without a direct closed-form solution of their point
forecasts. The toolbox returns to the user (among others) a vector (or matrix with posterior samples) of
weights and (if appropriate) standard deviation(s) of the members’ forecast distribution, a vector of averaged
forecasts (and performance metrics thereof), and (if appropriate) estimates of the width and coverage of
the forecast distribution, and convergence diagnostics of the DREAM algorithm. The toolbox also creates
many different figures with the results of each method. Three case studies illustrate the capabilities of the
MODELAVG toolbox.
Keywords: , Model averaging, Information criterion averaging, Bayes information criterion, Equal weights
averaging, Granger-Ramanathan averaging, Bates-Granger averaging, Mallows model averaging, Bayesian
model averaging, Markov chain Monte Carlo simulation, DREAM

Email address: jasper@uci.edu (Jasper A. Vrugt)
URL: http://faculty.sites.uci.edu/jasper (Jasper A. Vrugt),

http://scholar.google.com/citations?user=zkNXecUAAAAJ&hl=en (Jasper A. Vrugt)

Preprint submitted to Manual March 21, 2016

M
O

D
ELAV

G
M

A
N

U
A

L

1. Introduction and Scope

Multi-model ensemble prediction systems are used by many agencies in the world to forecast the behavior
of complex systems. Such systems much better capture the uncertainty of the initial states, boundary
conditions, and model physics, and therefore produce more skillful predictions than forecasts derived from
a single model run. Yet, as most ensemble prediction systems do not account perfectly for all sources of
uncertainty, some postprocessing is necessary to provide accurate forecasts.

Model averaging is a statistical methodology that can be used to improve the skill of a multi-model
ensemble. This methodology can also be used to quantify conceptual model uncertainty as predictions
generated by a single model are prone to statistical bias (by reliance on an invalid model) and underestimation
of uncertainty (by under-sampling the feasible model space) (Raftery et al., 1999; Hoeting et al., 1999;
Neuman, 2003; Raftery et al., 2005; Vrugt et al., 2006). Figure 1 illustrates the concept of model averaging.
Consider that at a given time we have available the output of multiple different models. These models do
not necessarily have to be calibrated. Now the goal is to weight the different models in such a way that the
weighted estimate (model) is a better (point) predictor of the observed system behavior (data) than any
of the individual models of the ensemble. Moreover, the density of the averaged model is hopefully a good
estimator of the total predictive uncertainty.

2

M
O

D
ELAV

G
M

A
N

U
A

L

Model Averaging

 model 1

measurement

 model 2

 model 3

time

M
o
d
e
l
o
u
tp

u
t

×

×

time

M
o
d
e
l
o
u
tp

u
t

×

point prediction

weighted forecast density

Figure 1: Schematic illustration of model averaging using a three member ensemble and single prediction of interest.
The forecast of each models are displayed with the solid red circle, blue square and green diamond, respectively, and
the verifying observation is indicated separately with the brown "×" symbol. The dotted black line connected with
the symbol "◦" denotes the weighted average of the forecasts of the three different models. This point predictor
satisfies the underlying premise of model averaging as it is in better agreement with the data (smaller distance) than
any of the three models of the ensemble. Some model averaging methods also construct a predictive density of this
averaged forecast. This overall forecast pdf (solid black line) can be used for probabilistic forecasting and uncertainty
analysis, and is simply a weighted average of each ensemble members predictive distribution (indicated with solid
red, blue and green lines) centered at their respective forecasts.

To formalize the various model averaging strategies considered herein, let me denote by Ỹ = {ỹ1, . . . , ỹn}
a n×1 vector of measurements of a certain quantity of interest. These observations can be made at different
times and locations in space, yet without loss of generality I conveniently ignore these two coordinates.
Further assume that there is an ensemble of K different models that predict the observed data. The
point forecasts of each model available with associated point forecasts Djk where k = {1, . . . ,K} and
j = {1, . . . , n}. If we merge the different model forecasts in a n×K matrix D then a weighted average can
be readily constructed to predict the entity, Ỹ of interest

ỹj = DT
j β+ εj =

K∑
k=1

βkDjk + εj , (1)

where Dj is a 1 ×K vector that stores the forecasts of each of the K models at a given location and time

3

M
O

D
ELAV

G
M

A
N

U
A

L

(= jth row of matrix D), β = {β1, . . . , βK} denotes the weight vector, the symbol T denotes transpose, and
{εj} is a white noise sequence, which will be assumed to have a normal distribution with zero mean and
unknown variance. In the remainder of this manual, the index j is used to mean "foralli ∈ {1, . . . , n}".

A bias correction step of the individual forecasts is performed prior to the construction of the weights.
For instance, a linear transformation of the form

D̃b
jk = ak + bkDjk, (2)

will often suffice. The coefficients ak and bk for each of the models, {k = 1, . . . ,K} can be calculated by
ordinary least squares using the simple regression model

ỹj = ak + bkDjk + εj , (3)

and the observations in the calibration set. This bias correction steps leads typically to a small improvement
of the predictive performance of each model of the ensemble with ak close to zero and bk close to unity. If the
calibration set is very small, the ordinary least squares estimates become unstable, and bias correction may
distort the ensemble (Vrugt and Robinson, 2007). Although a (linear) bias correction is recommended for
each of the constituent models of the ensemble, such correction is not made explicit in subsequent notation.
For convenience, I simply continue to use the notation Djk rather than Db

jk for the bias corrected predictors
of ỹj .

The point forecasts associated with model (1) are

ye
j = DT

j β =
K∑
k=1

βkDjk, (4)

where the superscript "e" is used to indicate the expected (predicted) value of the averaged model.
In this manual, I introduce a MATLAB toolbox for postprocessing of forecast ensembles. This toolbox,

called MODELAVG implements a large number of model averaging techniques, including methods that
provide only a point forecast, and methods that produce a forecast distribution of the variable(s) of interest.
MCMC simulation with DREAM is used for averaging methods without a direct closed-form solution of their
(optimal) point forecasts. The toolbox returns to the user (among others) a vector (or matrix with posterior
samples) of weights and (if appropriate) standard deviation(s) of the members’ forecast distribution, a vector
of averaged forecasts (and performance metrics thereof), and (if appropriate) estimates of the width and
coverage of the forecast distribution, and convergence diagnostics of the DREAM algorithm. The various
options of the toolbox are illustrated using three different case studies involving ensemble forecasts of river
discharge, sea surface temperature and sea level pressure. These studies serve as templates for other data
sets.

The remainder of this manual is organized as follows. Section 2 summarizes the theory of each of the
model averaging methods that is available to the user. This is followed in section 3 with a detailed description
of the MODEALVG toolbox. In this section I discuss each of the input and output arguments of the toolbox,
and discuss the various options available to the user. Section 4 illustrates the different functionalities of the
toolbox by application to three different forecast ensembles. Section 5 highlights recent research efforts aimed

4

M
O

D
ELAV

G
M

A
N

U
A

L

at further improving the sharpness and coverage of the ensemble. Finally, section 6 provides a summary of
the content of this manual.

2. Model Averaging methods

The MATLAB toolbox MODELAVG implements seven different model averaging techniques. These
methods will be described in this section. Some of these methods restrict the weights of the ensemble
members to the unit simplex, ∆K ∈ RK or {βk ≥ 0 and

∑K
k=1 βk = 1}. Other methods in the toolbox relax

this assumption and allow for positive and negative values of the weights, β = {β1, . . . , βK}.

2.1. Equal weights averaging

Equal weights averaging (EWA) assumes that each member of the ensemble has a similar value of the
weight,

βEWA =
(

1
K
, . . . , . . . ,

1
K

)
. (5)

These weights are independent of the training data set, Ỹ and result in a weighted forecast, ye
j = 1

K

∑K
k=1Djk

which is simply equivalent to the mean ensemble prediction.

2.2. Bates-Granger averaging

A well-known choice, proposed by Bates and Granger (1969), is to weight each model by one over its
forecast variance, βk = 1/σ̂2

k where the error variance, σ̂2
k of the kth model is derived from its forecast errors

of the calibration period, σ̂2
k = 1

n

∑n
j=1(ỹj − Djk)2. If the models’ forecasts are unbiased and their errors

uncorrelated, these weights are optimal in the sense of producing predictors with the smallest possible Root
Mean Square Error (RMSE). To enforce the weights to lie on ∆K they are normalized as follows

βBGA,k = 1/σ̂2
k

K∑
k=1

1/σ̂2
k

(6)

so that they add up to one. In the remainder of this manual, I use the acronym BGA for Bates-Granger
averaging.

2.3. Information criterion averaging

Information criterion averaging (ICA) was proposed by Buckland et al. (1997) and Burnham and Ander-
son (2002) and calculates the weights as follows

βICA,k =
exp

(
− 1

2Ik
)

K∑
k=1

exp
(
− 1

2Ik
) , (7)

where Ik is an information criterion that depends on the complexity and goodness-of-fit of each model

Ik = −2 log(Lk) + q(pk), (8)

5

M
O

D
ELAV

G
M

A
N

U
A

L

where Lk is the maximum likelihood of model k, and q(pk) signifies a penalty term which corrects for the
number of model parameters. I consider herein Akaike’s information criterion (AIC), for which q(p) = 2p,
and Bayes information criterion (BIC), for which q(p) = p log(n), where n denotes the size of the calibration
data set. I refer to the model averaging method of Equation (7) for IC and BIC as AICA and BICA,
respectively, and to their respective weights values as βAICA and βBICA. In the literature these methods are
sometimes referred to as smooth AIC and smooth BIC, respectively. I assume that the number of parameters
of each model are stored in the K-vector p, and thus p = {p1, . . . , pn}.

To evaluate the information criteria numerically, it is convenient to assume, as I do herein, that the
errors of the individual models are normally distributed. In this case, the log-likelihood of the kth model of
the ensemble, log(Lk) can be calculated from

− 2 log(Lk) = n log σ̂2
k + n (9)

2.4. Granger-Ramanathan averaging

The weighting schemes described above do not exploit the covariance structure that may be present
in the forecast errors of the individual models. A natural way to exploit the presence of covariances is to
implement ordinary least squares (OLS) using the regression model of Equation (4).

Granger and Ramanathan (1984) suggests the following OLS estimates of the weights

βGRA =
(

DTD
)−1

DT Ỹ, (10)

where D is the n × K matrix of ensemble forecasts and Ỹ signifies the n × 1 vector with observations of
the calibration data set. The OLS estimator can be shown to be the best linear unbiased estimator of β. I
conveniently refer to this model averaging method as GRA.

2.5. Bayesian model averaging

Hoeting et al. (1999) provide an excellent overview of the different variants of Bayesian Model Averaging
(BMA) proposed in the literature. BMA differs from the other model averaging methods in this toolbox as
it considers explicitly the uncertainty of each model’s forecasts - and uses this uncertainty to construct a
predictive distribution instead of only a weighted-average, deterministic, forecast. The BMA method offers
an alternative to the selection of a single model from a number of candidate models, by weighting each
candidate model according to its statistical evidence. Applications of BMA in hydrology and meteorology
have been described by Raftery et al. (2005), Gneiting et al. (2005), Vrugt and Robinson (2007), Vrugt et
al. (2008b) and Bishop and Shanley (2008).

The BMA method has several desirable properties, one of which is that it cannot only provides users with
a deterministic (averaged) forecast but also with an associated forecast distribution. This forecast distribu-
tion summarizes all our knowledge about the target variable of interest, and can be used for probabilistic
analysis and/or construction of 90 or 95% intervals. The BMA forecast density imposes one important con-
straint for the weights however, and that is that they must lie on the unit simplex, {β|βk ≥ 0, k = {1, . . . ,K}
and

∑K
k=1 βk = 1. Without this restriction their values can produce rather awkward forecast distributions

with densities that can even become smaller than zero. Such negative weights are tolerated if the goal of

6

M
O

D
ELAV

G
M

A
N

U
A

L

the inference is point prediction, but cannot be sustained for density forecasts. I now describe an imple-
mentation of the BMA method that has found widespread application and use for postprocessing forecast
ensembles of dynamic simulation models.

To start, lets assume that the forecasts of each model are subject to uncertainty. We can describe
this uncertainty, with an (unknown) forecast distribution, fk(·). This distribution expresses the prediction
uncertainty of each model, k = {1, . . . ,K} and its parameters can be inferred from a training data set.
For now, I conveniently assume that the forecast distribution is centered at the forecasts of each individual
model of the ensemble. We can then compute the forecast density of the BMA model, gj , as follows

gj =
K∑
k=1

βkfk(ỹj) (11)

The black line in Figure 1 provides an example of how the BMA density is computed from the individual
models’ forecast distribution, fk(·). If we use for fk(·) (k = {1, . . . ,K}) a normal distribution with mean
equivalent to Djk and variance equal to, σ2

k

fk(ỹj |Djk, σ
2
k) = 1√

2πσ2
k

exp
(
−1

2σ
−2
k (ỹj −Djk)2), (12)

then the BMA predictive density, gj , is simply equivalent to a Gaussian mixture distribution made up of K
normal conditional distributions, each centered at their individual point forecast Djk and with variance σ2

k

(see Figure 2).

7

M
O

D
ELAV

G
M

A
N

U
A

L

22 22.5 23 23.5 24 24.5 25 25.5 26

0.2

0.4

0.6

0.8

1.0

 Sea surface temperature, [
o
C]

 F
o

re
ca

st
 d

en
si

ty
,

[
-

]

model 1

model 2

model 3

BMA

Figure 2: Schematic illustration of Bayesian model averaging using a K = 3 member ensemble for the sea surface
temperature in degrees Celsius. The BMA predictive pdf, gj , is indicated with the solid black line and equivalent to
a weighted average of the conditional forecast distributions, fk(·), of the members, k = {1, . . . ,K} of the ensemble
(displayed with solid red, blue and green lines). The forecast density of BMA can be used to compute prediction
uncertainty ranges of the quantity of interest (sea surface temperature) at any desired confidence interval, α = 0.9,
0.95 or 0.99. Also shown are the individual model forecasts (’×’ symbol), the BMA deterministic point forecast (’◦’)
symbol), and the verifying observation (’+’ symbol). The deterministic point forecast of BMA can be compared to
the ensemble mean and/or point predictors of other model averaging methods.

To ensure that gj is a proper density (integrates to one), the BMA weights must lie on the unit simplex,
∆K in RK+ and thus the weights must be strictly positive and up to one

K∑
k=1

βk = 1 ; βk ≥ 0, (13)

The BMA weight of each ensemble member can then be viewed as each model’s relative contribution to
predictive skill over the training (calibration) period. The BMA weights can thus be used to assess the
usefulness of ensemble members, and this can be used as a basis for selecting ensemble members given the
CPU-cost of running large ensembles (Raftery et al., 2005).

The BMA point predictor, g•j is simply a weighted average of the individual models of the ensemble

g•j =
K∑
k=1

βkDjk (14)

which is a deterministic forecast in its own right, whose predictive performance can be compared with the

8

M
O

D
ELAV

G
M

A
N

U
A

L

individual models of the ensemble, or with the ensemble mean (median). If we assume a normal conditional
pdf for each model of the ensemble, then the BMA forecast variance, var(·), of Equation (14) can be computed
directly using (Raftery et al., 2005)

var
(
g•j |Dj1, . . . , DjK

)
=

K∑
k=1

βk
(
Djk −

K∑
l=1

βlDjl

)2 +
K∑
k=1

βkσ
2
k (15)

This variance consists of two terms, the first representing the ensemble spread, and the second representing
the within-ensemble forecast variance.

2.5.1. Inference of BMA weights and variances
Successful implementation of the BMA method requires estimates of the weights, β = {β1, . . . , βK}, and

standard deviations, σ = {σ1, . . . , σK}, of the normal conditional pdfs of the ensemble members. Their
values can be estimated by maximum likelihood from the training data set. This estimator has several
desirable statistical properties and involves finding the optimum of the likelihood function (Raftery et al.,
2005) (

β̂BMA, σ̂BMA

)
= arg max
β∈∆K ,σ∈RK

+

n∏
j=1

K∑
k=1

βkfk(ỹj |Djk, σ
2
k). (16)

The likelihood of the BMA parameter values, x = {β,σ} is thus computed as follows. First, the density of
the BMA mixture distribution is evaluated at each observation of the training data set, Ỹ using Equation
(11). This BMA density is simply a weighted average of the pdfs of the individual ensemble members at the
respective observations. These n values are then multiplied and this product is equivalent to the likelihood
on the right-hand-side of Equation 16).

Figure 2 presents an example of the density function of the BMA mixture distribution for a three model
ensemble with equal weights. If the observation (symbol ":") were part of the training data set then the
density of the BMA mixture distribution (black line) at this observation would equal about 0.3.

The use of the product operator in Equation (16) can pose numerical issues due to rounding errors
introduced by the floating-point arithmetic of digital computers. Indeed, if n is sufficiently large, the
likelihood of Equation (16) will eventually go to zero. For algebraic simplicity and numerical stability we
therefore work with the logarithm of the likelihood instead. For the normal conditional forecast distribution
of Equation (12) the log-likelihood function, L(·), is equivalent to

L(βBMA,σBMA|D, Ỹ) =
n∑
j=1

log
{

K∑
k=1

βk
1√
2πσ2

k

exp
[
−1

2σ
−2
k (ỹj −Djk)2

]}
. (17)

where the summation is over all models, k = {1, . . . ,K}, and observations, j = {1, . . . , n}, of the training
data set. This thus involves the inference of d = 2K parameters, namely the weight, βk and standard
deviation, σk of the normal distribution of each of the members of the ensemble.

Unfortunately, there are no closed-form solutions that conveniently maximize Equation (17). We there-
fore have to resort to an iterative solution method. In their seminal paper, Raftery et al. (2005) recommends
the Expectation-Maximization (EM) algorithm for BMA model training. This method alternates between
an expectation (E) step, which calculates the expected value of the log-likelihood of Equation (17) at the

9

M
O

D
ELAV

G
M

A
N

U
A

L

current estimate of the BMA parameters, and a maximization (M) step, which computes new values of the
parameters that maximize the expected log-likelihood value of the E step. A detailed description of the EM
method appears in Appendix A of this manual. There, I also present a MATLAB code of this algorithm
that can be used for BMA model training if the forecast pdf of each member is described with a normal
distribution.

The EM method exhibits many desirable properties as it is relatively easy to implement, computationally
efficient, and the maximization step of Equation (A.2) is designed such that that the weights are always
positive and add up to one. Nonetheless, global convergence of this algorithm cannot be guaranteed as a
single starting point is used in the BMA model space. Of course, multiple different initial starting points
can be used, but as each trial operates independently, this is rather CPU-inefficient (Duan et al., 1992).
What is more, the mathematical formulations of the E and M step in the EM algorithm depend on the
forecast distribution, fk(·); k = {1, . . . ,K} that is used for the members of the ensemble. Indeed, the
function EM_normal in Appendix A can be used only for variables such as temperature and pressure
whose conditional pdf is well described with a normal distribution (see left two plots in Figure 3). The
histograms of the other three variables (C: wind speed, D: rainfall, and E: discharge) are truncated by zero
and exhibit much more skew to the right. Their conditional pdf is much better approximated by a gamma
distribution (Vrugt and Robinson, 2007; Sloughter et al., 2010), yet this requires modifications to the E and
M step in the EM algorithm (more later).

260 280 300
0

0.2

0.4

0.6

0.8

1.0

temperature, [K]

d
en

si
ty

(A)

1000 1020 1040

pressure, [mbar]

(B)

0 5 10 15 20

wind speed, [m/sec]

(C)

0 20 40 60

discharge, [mm/day]

(E)

0 25 50 75 100

precipitation, [mm/day]

(D)

Figure 3: Histograms of daily measurement records of five different variables, including (A) outside temperature
[K], (B) atmospheric pressure [mbar], (C) wind speed [m/sec], (D) precipitation [mm/day], and (E) river discharge
[mm/day]. Whereas the first two variables (temperature and pressure) follow a normal distribution, the last three
variables are truncated at zero and much better described with a gamma (skewed) distribution

Another limitation of the EM method is that it returns only the maximum likelihood values of the BMA
model parameters without recourse to their underlying posterior uncertainty. This information is helpful
to assess the usefulness of individual ensemble members (Vrugt and Robinson, 2007). A small ensemble
has important computational advantages as fewer models need to be setup and executed. These imitations
of the EM method motivated (Vrugt et al., 2008b) to use Bayesian inference with the DREAM algorithm
for BMA model training. This multi-chain Markov chain Monte Carlo simulation method uses differential
evolution as genetic algorithm for population evolution with a Metropolis selection rule to decide whether
candidate points should replace their respective parents or not. This approach scales automatically the
orientation and scale of the proposal distribution en route to the target distribution, and returns not only
the maximum likelihood values of the BMA model parameters but also their posterior uncertainty. The use
of multiple chains also offers a robust protection against premature convergence, and opens up the use of

10

M
O

D
ELAV

G
M

A
N

U
A

L

a wide arsenal of statistical measures to test whether DREAM has converged to the posterior distribution.
What is more, the user does not have to adapt the formulation of the log-likelihood function

`(x|D, Ỹ) =
n∑
j=1

log
{

K∑
k=1

βkfk(·)
}
, (18)

where x is a vector with the parameters of the forecast density of the BMA mixture distribution. The user
only has to specify which statistical distribution to use for the fk(·)s of the ensemble. A detailed description
of DREAM appears in Appendix B of this manual along with a basic implementation of this algorithm
in MATLAB. Interested readers are also referred to the MATLAB toolbox of DREAM presented in Vrugt
(2016).

2.5.2. The BMA conditional distribution
The MATLAB toolbox presented herein allows the user to implement two different distributions for the

conditional pdf, fk(·), of the ensemble members. This includes the normal and gamma distribution, and
allows a proper characterization of variables with/without a skew (see Figure 3). The gamma distribution
is given by

fk(ỹj |a, b) ∼
1

baΓ(a) ỹ
(a−1)
j exp(−ỹj/b), (19)

where a > 0 and b > 0 are a shape and scale parameter, respectively and fk(ỹj) = 0 if ỹj ≤ 0. The mean
and variance of the gamma distribution are determined by the values of a and b, as follows, µ = ab and
σ2 = ab2. Hence, the values of a and b cannot be chosen freely as their product should equate to Djk and
the mean of the gamma distribution centers around the actual forecast of the kth member of the ensemble.
I therefore calculate the values of a and b as follows

ajk = |Djk|2

σ2
k

; bjk = σ2
k

|Djk|
, (20)

and estimate the standard deviation of the gamma distribution, σk using MCMC simulation with DREAM.
This involves the inference of d = 2K parameters, namely the weight, βk and standard deviation, σk of the
gamma forecast distribution of each member, k = {1, . . . ,K} of the ensemble.

Thus far I have made three important assumptions, (a) each member of the ensemble has the same "type"
of forecast distribution (normal or gamma), (b) the variance of this distribution differs among the members
of the ensemble, and (c) the variance is constant. The first assumption will not be contested, as the shape of
the forecast distribution is determined by the frequency distribution (histogram) of the target variable, yet
the second and third assumption might be too restrictive. The MATLAB toolbox of MODELAVG therefore
implements four different parameterizations of the standard deviation of the forecast distribution.

(1) common constant variance: all members of the ensemble have the same standard deviation, that is
σ1 = σ2 = . . . = σK . This simplifies somewhat the inference and involves d = K+1 fitting parameters.

(2) individual constant variance: all members of the ensemble have their own standard deviation, and
thus σ = {σ1, . . . , σK}. This assumption was made in our notation thus far and results in a BMA
mixture distribution with d = 2K unknowns.

(3) common non-constant variance: the standard deviation of the forecast distribution is dependent on

11

M
O

D
ELAV

G
M

A
N

U
A

L

the magnitude of the forecast. This approach is implemented using σjk = cDjk, where the multiplier
c applies to all models and forecasts of the ensemble. This approach involves d = K + 1 fitting
parameters.

(4) individual non-constant variance: the standard deviation of the forecast distribution is member and
forecast dependent. This approach is implemented using σjk = ckDjk, where the K multipliers are
subject to inference. This involves d = 2K unknowns.

The first two approaches assume a homoscedastic (constant) variance of the conditional distribution of
each ensemble member. This approach might be appropriate for variables such as the temperature and
pressure of the atmosphere that are known to have a constant measurement error (Vrugt et al., 2006). The
last two approaches assume a heteroscedastic (non-constant) variance of the conditional forecast distribution.
The variance of this distribution increases with value of the forecast. This assumption is appropriate for
variables such as rainfall (Sloughter et al., 2007), discharge (Vrugt and Robinson, 2007) and wind speed
(Sloughter et al., 2010) whose measurement errors are known to increase with magnitude of the observation.
Note, it is rather easy to formulate other models for the variance of the forecast distribution, for instance,
one can augment the heteroscedastic variance with a constant value, for instance, σjk = ckDjk + c2 so that
the variance does not have to become zero if Djk = 0. This adds one additional parameter, c2 to the BMA
forecast density of Equation (11) and now involves d = 2K + 1 unknowns.

The MATLAB function BMA_calc calculates the value of the log-likelihood, L(x|D, Ỹ) of the BMA
model in Equation (16) for a given vector, x (input argument) of weights and standard deviations (or proxies
thereof) of the ensemble members, ensemble forecast D and training data observations Ỹ. The fifth input
argument, options contains the properties of the forecast distribution, and is defined by the user in the
MODELAVG toolbox (see section 3).

12

M
O

D
ELAV

G
M

A
N

U
A

L

MATLAB code of BMA_calc: This function computes the value of the log-likelihood (return argument) for a vector x
with BMA weights and standard deviations (or proxies thereof) of the members’ conditional distribution. The second
and third input argument store the ensemble forecasts, D and verifying observations, Y, respectively, and the last input
argument options is a structure with fields that determines the properties of the members’ forecast distribution.
Notation is consistent with main text. Built-in functions are highlighted with a low dash. The fields PDF and
VAR of options store the name and variance option of the conditional distribution. The switch function switches
among the several cases listed in the code. The function normpdf(Y,D(:,k),sigma(:,k)) returns the probability
densities of the normal distribution with mean equal to the n forecasts of the kth ensemble member, "D(:,k)", and
standard deviation "sigma(:,k)", evaluated at the observed values, Y. The function gampdf(Y,A(:,k),B(:,k))

computes the density at the observed values, Y, of the gamma distribution with shape, "A(:,k)", and scale, "B(:,k)",
vectors of the kth ensemble member, respectively. log(L) computes the natural logarithm of the n likelihood values
of the BMA mixture distribution, and sum() returns the sum of the n log-likelihood values.

function [loglik] = BMA_calc (x , D , Y , options)

% This function calculates the log likelihood of the BMA mixture distribution

% Function of MODELAVG toolbox, V1.0

if nargin<4,

error('MODELAVG:BMA_calc:TooFewInputs','Requires at least four input arguments.');

end

[PDF,VAR] = v2struct(options,{'Fieldnames','PDF','VAR'}); % Unpack fields options

[n,K] = size(D); % Number of forecasts and number of ensemble members

beta = x(1:K)'; % Unpack weights of member's conditional pdf

switch VAR % VARIANCE OPTION -> (n x K)-matrix "sigma" with forecast standard deviations

case {'1'} % 1: common constant variance

sigma = x(K+1) * ones(n,K);

case {'2'} % 2: individual constant variance

sigma = bsxfun(@times,x(K+1:2*K),ones(n,K));

case {'3'} % 3: common non-constant variance

c = x(K+1); sigma = c * D;

case {'4'} % 4: individual non-constant variance

c = x(K+1:2*K); sigma = bsxfun(@times,c,D);

otherwise

error('MODELAVG:BMA_calc','Unknown variance option');

end

sigma = max(sigma,eps); % each element (n x K)-matrix sigma at least equal to 2.22e-16

switch PDF % CONDITIONAL DISTRIBUTION -> (n x K)-matrices "A" and "B"

case {'normal'} % Gaussian with mean "D" and standard deviation "sigma"

A = D; B = sigma;

case {'gamma'} % Gamma with shape "A" and scale "B"

mu = abs(D); var = sigma.^2; A = mu.^2./var; B = var./mu;

end

L = pdf(PDF,repmat(Y,1,K),A,B); % (n x K)-matrix of likelihoods forecasts at Y

lik = L*beta + realmin; % (n x 1)-vector of likelihoods BMA model at Y

loglik = sum(log(lik)); % Return log-likelihood of BMA model

13

M
O

D
ELAV

G
M

A
N

U
A

L

Thus, the code first computes the value of the standard deviation for each forecast and member of the
ensemble. This results in the n × K matrix sigma which has the same numbers of rows and columns as
matrix D with ensemble forecasts. Then, the likelihood of the BMA mixture distribution is evaluated at
each observation of the training data set by taking the sum of the weighted densities of the K different
conditional distributions evaluated at Ỹ. Then, the log-likelihood is computed by taking the sum of the
natural log values of the n different densities. For users, it is rather straightforward to implement their own
variance definition.

2.6. Mallows model averaging

Mallows model averaging (MMA) is a Frequentist solution to the problem of model averaging. The MMA
method uses the following penalized sum of squared residuals objective function

Cn(β|D, Ỹ, σ̂2,p) =
n∑
j=1

(
ỹj − βTDj

)2 + 2σ̂2
K∑
k=1

βkpk (21)

where, as before, pk denotes the number of "free" parameters of the kth model of the ensemble, the symbol
T signifies transpose, and σ̂2 is an estimate of the variance σ2 of εj in Equation (1). This value is often
set equivalent to the variance of the forecast error of the most complex model (= parameter rich) of the
ensemble.

We can now find the optimal values of the MMA weights by minimizing Mallows’ criterion in Equation
(21) or

β̂MMA = arg min
β∈RK

Cn(β|D, Ỹ, σ̂2,p), (22)

where the weights are allowed to vary freely in RK and are thus not restricted to the unit simplex ∆K . The
value of βMMA can also be estimated by maximizing the following log-likelihood function

L(β|D, Ỹ, σ̂2,p) ' −1
2Cn(β|D, Ỹ, σ̂2,p), (23)

using MCMC simulation with DREAM (Diks and Vrugt, 2010; Vrugt et al., 2008b, 2009). Indeed, the
maximum likelihood of the MMA weights is simply equivalent to the sample of DREAM with largest value
of Equation (23). This sample is easy to find in MATLAB using the built-in max operator. The theory and
MATLAB implementation of the DREAM algorithm is presented in Appendix B. A separate toolbox of this
algorithm is available in MATLAB and described in detail by Vrugt (2016).

If so desired, we can also restrict the MMA weights to lie on the unit simplex, ∆K , in RK+ and thus to
be positive and add up to one, βk ≥ 0;

∑K
k=1 βk = 1. This alternative model averaging method is hereafter

conveniently referred to as MMA∆.
The MATLAB function MMA_calc listed below calculates the log-likelihood of Equation 23 for a given

input vector of weights, beta.

14

M
O

D
ELAV

G
M

A
N

U
A

L

MATLAB code of MMA_calc: This function calculates the log-likelihood of the MMA deterministic point forecasts
using as input arguments, the weights x, ensemble forecasts, D, verifying observations, Y, number of "free" parameters
of each model of the ensemble, p, and variance of the forecast error, var_err of the most complex model of the
ensemble. Notation is consistent with Equation (23) in main text. Matrix algebra is used to minimize the CPU-time.
Built-in functions are highlighted with a low dash. The function sum() calculates the sum of the squared differences
between the MMA point forecast and the verifying observations, and size(D) returns the number of rows and
columns of the matrix D.

function [loglik] = MMA_calc (beta , D , Y , var_err , p);

% This function calculates the log likelihood of MMA

% Function of MODELAVG toolbox, V1.0

% B.C. Hansen, "Least Squares Model Averaging", Econometrica, vol. 75,

% no. 4, pp. 1175-1189, 2007

if nargin<5,

error('MODELAVG:MMA_calc:TooFewInputs','Requires at least five input arguments.');

end

G = D*beta'; % MMA deterministic point forecast

Cn = sum((Y - G).^2) + 2*var_err*beta*p'; % Mallows criterion: ref Equation (11)

loglik = -Cn/2; % Log-likelihood of x = { MMA weights }

This concludes the theory of the different model averaging methods. I now describe the implementation
of the theory and codes describes above in the MODELAVG toolbox in MATLAB.

3. The MODELAVG toolbox

The MODELAVG toolbox implements each of the model averaging methods described in section 2 in
MATLAB and returns to the user the values of the weights, β = {β1, . . . , βK} and members’ standard
deviation(s) (or proxies thereof) of the conditional distribution, fk(·) (if BMA is used). You can download
the MODELAVG toolbox from my website at the following link http://faculty.sites.uci.edu/

MODELAVG. Appendix C explains how to setup the MODELAVG toolbox in MATLAB.

3.1. MODELAVG: MATLAB implementation

The MODELAVG toolbox can be executed from the MATLAB prompt by typing the following statement
in the command window

[x,output] = MODELAVG(method,D,Y,options) (24)

where method (string), D (n × K matrix), Y (n × 1 vector) and options (structure array) are input
arguments defined by the user, and x (vector) and output (structure array) are output arguments that are
computed by the function MODELAVG and returned to the user. To minimize the number of input and
output arguments of MODELAVG, the structure options and output group related variables using data

15

http://faculty.sites.uci.edu/MODELAVG
http://faculty.sites.uci.edu/MODELAVG

M
O

D
ELAV

G
M

A
N

U
A

L

containers called fields, more of which later. The structure options is an optional input argument required
only for information criterion averaging, Bayesian model averaging and Mallows model averaging.

A summary of the different functions of the MODELAVG toolbox appears in Appendix D. I will now
discuss each of the input and output variables.

3.2. First input argument: method

The variable method defines with a string enclosed between quotes the name of the model averaging
method that will be used by the function MODELAVG. The user can select among the eight different
methods discussed of section 2 using the acronym (in quotes) listed in the first column of Table 1.

Table 1: Acronym used by input argument method for each of the model averaging methods of section 2. The last
column summarizes for each method whether the weights are restricted to the unit simplex, ∆K , or not.

Content method Description ∆K

’EWA’ Equal weight averaging Yes
’BGA’ Bates-Granger averaging Yes
’AICA’ Akaike information criterion averaging Yes
’BICA’ Bayes information criterion averaging Yes
’GRA’ Granger-Ramanathan averaging No
’BMA’ Bayesian model averaging Yes
’MMA’ Mallows’ model averaging No
’MMA-S’ Mallows’ model averaging Yes

The function MODELAVG is case insensitive; thus, the user can input to method lower case (small) and
upper case (capital) letters of the acronyms listed in Table 1. Almost all methods restrict the weights to the
unit simplex, except Granger-Ramanathan averaging (method = ’GRA’) and variant MMA∆ of Mallows
Model Averaging (method = ’MMA-S’).

The first five model averaging methods listed in Table 1 (’EWA’, ’BGA’,’AICA’, ’BICA’ and ’GRA’) will
execute rapidly as they have a direct closed-form solution for their weights. The last three methods (’BMA’,
’MMA’, and ’MMA-S’) require an iterative solution with DREAM to locate the maximum likelihood values
of their weights. If BMA is used, then DREAM returns as well estimates of the standard deviation of the
members’ conditional distribution, fk(·); k = {1, . . . ,K}.

3.3. Second input argument: D

The second input argument D of the function MODELAVG is a n×K matrix with n forecasts of each
member of the ensemble. This input argument is thus equivalent to D and uses a separate column for each
of the K models of the ensemble. Bias correction is recommended for each ensemble member particularly
for model averaging methods that restrict the weights to the unit simplex. The MODELAVG toolbox has a
built-in utility for linear bias correction (see Equation (2)), yet more advanced bias-correction methods can
be devised by the user - more of which later.

16

M
O

D
ELAV

G
M

A
N

U
A

L

3.4. Third input argument: Y

The third input argument Y of the MODELAVG function stores the training data set, Ỹ with verifying
observations. This n×1 vector is used to determine the weights of each model averaging method. If BMA is
used, then this also includes estimates of the variance(s) of the members’ forecast distribution. The number
of rows of Y should match exactly the number of rows of the forecast ensemble stored in D (second input
argument of function MODELAVG).

3.5. Fourth input argument: options

The fourth and last input argument of the function MODELAVG is the structure options. This input
argument is optional and used only by information criterion averaging (AICA or BICA), BMA, MMA, and
MMA∆ although the field print applies to all methods. Table 2 summarizes the different fields of structure
options and their content.

Table 2: Overview of the different fields of input argument options

Field options Description Options Type method

PDF Forecast distribution ’normal’/’gamma’ string BMA
VAR Variance option ’1’/’2’/’3’/’4’ string BMA
alpha Prediction interval e.g. 0.90/0.95/0.99 real BMA
p Model complexity > 0 K-vector AICA/BICA/MMA/MMA∆

print Screen output ’yes’ or ’no’ string All

The first three fields PDF, VAR and alpha of structure options are necessary input for the BMA method.
The field PDF lists with a string enclosed between quotes the name of the conditional distribution, fk(·)
that is used for the k = {1, . . . ,K} ensemble members. Built-in options include ’normal’ and ’gamma’ for
a Gaussian and gamma forecast distribution, respectively.

The field VAR of structure options allows the user to select with a string (between quotes) the variance
of the conditional distribution. The user can select among four different options,

1. (A) VAR = ’1’ : common constant variance; σ1 = σ2 = . . . = σK .
2. (B) VAR = ’2’ : individual constant variance; σ = {σ1, . . . , σK}.
3. (C) VAR = ’3’ : common non-constant variance; σjk = cDjk.
4. (D) VAR = ’4’ : individual non-constant variance; σjk = ckDjk.

These options allow for a homoscedastic and heteroscedastic variance of the conditional distribution of
the ensemble members, and have been discussed in section 2.5.2 of this manual.

The field alpha of structure options defines the prediction interval of the BMA model. This interval is
computed for each observation of the training data set, Y, and returned to the user in the output argument
output of MODELAVG (see next section). Typical values of alpha are 0.90, 0.95 or 0.99 for a 90, 95 or
99% prediction interval of the BMA mixture distribution, respectively. If the user does not specify the field
alpha or leaves empty its content then the toolbox will assume alpha = 0.95.

The field p of structure options stores the number of parameters for each model of the ensemble. Thus,
p should contain K values, and have dimensions 1 × K (horizontal vector) or K × 1 (vertical vector),

17

M
O

D
ELAV

G
M

A
N

U
A

L

respectively. This field is required input for information criterion averaging (AICA and BICA), MMA, and
MMA∆.

Finally, the field print of structure options controls the output writing of the MODELAVG toolbox. If
the content of print equates to ’yes’ then the toolbox will visualize, in many different figures, the output of
each model averaging method. This output writing is suppressed if field print is set to ’no’.

The user can employ upper case and lower case letters for each of the fields of structure options. The
same holds for the content of each field of options. Thus, options.pdf = ’NORMAL’ is equally valid
as options.PDF = ’normal’.

3.6. Output arguments

The function MODELAVG returns to the user two output arguments, x (vector or matrix) and output
(structure array). The content of these two output arguments differs per model averaging method and the
respective settings that are being used.

3.6.1. Return argument x
The content of x depends on the model averaging method that is being used (see Table 3).

Table 3: Content and number of rows and columns of output argument x of the MODELAVG toolbox

method VAR Content of x Size of x
’EWA’ {β1, . . . , βK} 1×K
’BGA’ {β1, . . . , βK} 1×K
’AICA’ {β1, . . . , βK} 1×K
’BICA’ {β1, . . . , βK} 1×K
’GRA’ {β1, . . . , βK} 1×K
’MMA’ M × {β1, . . . , βK ,L(β|D, Ỹ, σ̂2,p)} M × (K + 1)
’MMA-S’ M × {β1, . . . , βK ,L(β|D, Ỹ, σ̂2,p)} M × (K + 1)
’BMA’ ’1’ M × {β1, . . . , βK , σ,L(β|D, Ỹ)} M × (K + 2)
’BMA’ ’2’ M × {β1, . . . , βK , σ1, . . . , σK ,L(β|D, Ỹ)} M × (2K + 1)
’BMA’ ’3’ M × {β1, . . . , βK , c,L(β|D, Ỹ)} M × (K + 2)
’BMA’ ’2’ M × {β1, . . . , βK , c1, . . . , cK ,L(β|D, Ỹ)} M × (2K + 1)

For EWA, BGA, AICA, BICA and GRA, the output argument x is equivalent to a horizontal vector
with K values of the weights, {β1, . . . , βK}. The entries of x correspond to the different columns of input
argument D. Thus, entry k of x stores the weight of the kth column (ensemble member) of matrix D.

If MMA or MMA∆ are used then output argument x consist of a M × (K + 1) matrix with M posterior
samples of the MMA or MMA∆ weights and their corresponding values of the log-likelihood of Equation
(23). These M solutions summarize the posterior of the MMA or MMA∆ weights and can be used (among
others) to analyze the uncertainty of the MMA weights and point forecasts.

The maximum likelihood values of the MMA and MMA∆ weights, β̂MMA or β̂MMA∆ are stored separately
in the field ML of output argument output (more of which later). Their values can also be derived from x

by locating the row number of this matrix with largest value of the log-likelihood of Equation (23). This

18

M
O

D
ELAV

G
M

A
N

U
A

L

row of x can be located with the MATLAB command

[na , row_max] = max(x(:,K+1)) (25)

and thus the maximum likelihood values of the MMA or MMA∆ weights are equivalent to

beta_MMA = x(row_max,1:K) (26)

Finally, if BMA is used for postprocessing of the forecast ensemble, then output argument x is equivalent
to a M × (d + 1) matrix with M posterior samples of the d parameters of the BMA mixture distribution,
and corresponding value of the log-likelihood of Equation (16). The first K columns of x list the values of
the BMA weights of each member of the ensemble. The content of columns K + 1 to d of x depends on
the assumed properties of the members’ forecast distribution defined by the user in field VAR of structure
options. For instance, if options.VAR = ’1’ then all K members of the ensemble are assumed to have
the same standard deviation of their forecast distribution, hence d = K+ 1, and column K+ 1 of x lists the
posterior values of σ. If options.VAR = ’2’ then each members’ forecast distribution has a different
standard deviation, d = 2K, and columns K + 1 to d store the posterior values of {σ1, . . . , σK}. Table 3
summarizes the content of each column of x for the different settings of field VAR of structure options.

The maximum likelihood values of the parameters of the BMA mixture distribution are stored in field
ML of structure options. The user can also derive these values from output argument x by locating the
(posterior) sample of this matrix with largest value of the log-likelihood. The recipe of how to do this in
MATLAB was given in Equations (25) and (26).

3.6.2. Return argument output
The second output argument of the function MODELAVG is a structure array called output and

stores important information about the performance of each model averaging method, and (if appropriate)
convergence properties of the DREAM algorithm. Most of the fields of structure output are only defined if
MMA, MMA∆ or BMA are used (see Table 4).

19

M
O

D
ELAV

G
M

A
N

U
A

L

Table 4: Content of the return argument output of the MODELAVG function

Field output Description Content
Ye Deterministic point forecast, Equation (4) n× 1 vector
RMSE Root mean square error point forecast scalar
R Cross-correlation of point forecasts and training data scalar
RMSE_mod Root mean square errors ensemble members 1×K vector
RunTime Elapsed time scalar

MMA and MMA∆ methods
ML Maximum likelihood values of weights 1×K vector
loglik Maximum value of log-likelihood Equation (23) scalar
std Posterior standard deviation weights 1×K vector
corr Posterior correlation coefficients of weights K ×K matrix

BMA method
ML Maximum likelihood BMA model parameters 1× d vector
loglik Maximum value of log-likelihood Equation (16) scalar
corr Posterior correlation coefficients BMA parameters d× d matrix
std Posterior standard deviation BMA parameters 1× d vector
pred Prediction intervals mixture distribution n× 2 matrix
coverage Coverage of prediction intervals scalar
spread Average width of prediction intervals scalar

BMA, MMA and MMA∆ (DREAM diagnostics)
MR_stat Multivariate scale-reduction factor N × 2 matrix
R_stat Univariate scale-reduction factor N × (d+ 1) matrix
AR Acceptance rate (%) of proposals N × 2 matrix

The field Ye of options stores the weighted forecast of each model averaging method. This n × 1
vector is derived from Equation (4) using the (maximum likelihood) weights of each averaging method and
ensemble forecasts of input argument D. The fields RMSE and R of output (both scalars) summarize the
performance of the averaged forecast using the root mean square error and Pearson’s correlation coefficient,
respectively. The field RMSE_mod is a 1×K vector with RMSEs of the individual members of the ensemble,
and the field RunTime (scalar) of output stores the CPU-time of each method.

If MMA or MMA∆ are used then the structure output contains several other fields. The fields ML
(vector), and loglik (scalar) store the maximum likelihood values of the MMA or MMA∆ weights and
corresponding value of the log-likelihood function of Equation (23), respectively. The fields std (vector) and
corr (matrix) list the posterior standard deviations and correlation coefficients of the weights.

If the BMAmethod is used then structure options returns to the user several more fields that summarize
the performance of the BMA mixture distribution. The field pred (matrix) lists the prediction intervals of
the BMA forecast distribution, and coverage and spread (both scalars) store the coverage and spread of these
intervals, respectively. The statistical significance of the prediction intervals is defined by the user in field
alpha of input argument options.

Diagnostic information about the performance of the DREAM algorithm can be found in fields MR_stat
(matrix), R_stat (matrix) and AR (matrix) of the return argument output. These fields are only defined

20

M
O

D
ELAV

G
M

A
N

U
A

L

if MMA, MMA∆, or BMA are used as these three methods use MCMC simulation with DREAM to find
the maximize likelihood values of the weights (MMA and MMA∆) or weights and standard deviation(s) of
the members forecast distribution (BMA) The fields R_stat and MR_stat list the values of the R̂ and R̂d

convergence diagnostics of Gelman and Rubin (1992) and Brooks and Gelman (1998) at different iterations,
respectively. Field AR of output stores the acceptance rate of DREAM. The MATLAB command

plot(output.R_stat(:,1),output.R_stat(:,2:end)) (27)

plots the evolution of the R̂ convergence diagnostic of the weights of each member of the ensemble. If BMA
is used then this plot includes as well the standard deviation of the members’ forecast distribution. The
results in this graph can be used to judge when convergence of DREAM has been achieved and thus which
samples to return in output argument x.

The MODELAVG toolbox not only returns to the user the variables x and output but also generates
graphical output. These figures display many of the input and output variables of the toolbox, and include
(i) a time series plot of the forecast ensemble with averaged forecast and verifying observations, (ii) a
plot of the predictions intervals of the BMA model and corresponding observations, (iii) histograms and
bivariate scatter plots of the posterior samples of DREAM, (iv) trace plots of the Markov chains sampled
by DREAM, (v) trace plots of the convergence diagnostics of DREAM, and (vi) a quantile-quantile plot of
the residuals of the weighted-average forecast. The main results of the toolbox are also written to the file
"MODELAVG_output.txt" in the MATLAB editor. The case study section provides a screen shot of the
content of this file.

3.7. Evaluation data set: structure val

The output variables returned by MODELAVG apply to the training data set only. The built-in script
MODELAVG_eval allows the user to calculate performance statistics for the evaluation data set. This
function can be executed as follows

[val] = MODELAVG_eval(method,D_eval,Y_eval,options,a,b,output) (28)

where method and options are defined by user prior to running the main function, MODELAVG of the
MODELAVG toolbox, a and b are 1 ×K vectors with intercepts and slopes of the K ensemble members
derived from linear bias correction of the training data set using Equation (2), output is the return argument
of the MODELAVG function, and D_val (m×K matrix) and Y_val (m× 1 vector) signify the ensemble
forecasts and corresponding observations of the evaluation data set, respectively. The fields of the return
argument val are listed in table 5.

21

M
O

D
ELAV

G
M

A
N

U
A

L

Table 5: Content of the argument val computed by the function MODELAVG_eval after the MODELAVG toolbox
has returned the output arguments x and output

Field val Description Content
Ye Deterministic point forecast, Equation (4) m× 1 vector
RMSE Root mean square error point forecast scalar
R Cross-correlation of point forecasts and training data scalar
RMSE_mod Root mean square errors ensemble members 1×K vector
RunTime Elapsed time scalar

BMA method
pred Prediction intervals mixture distribution m× 2 matrix
coverage Coverage of prediction intervals scalar
spread Average width of prediction intervals scalar

Thus, the structure val stores metrics for the evaluation data set. This data set is used to evaluate
the performance of each model averaging method for an independent data set. The structure val can be
computed after the main function MODELAVG has returned its output (with/without screen output).

4. Numerical examples

I now illustrate the main functionalities of the MODEAVG package by application to multi-model forecast
ensembles of river discharge, surface temperature and sea level pressure, respectively.

4.1. Case Study 1: The rainfall-runoff transformation
The first case study involves an eight-member ensemble of calibrated watershed models of the Leaf River,

near Collins, Mississippi. This discharge ensemble was created by Vrugt and Robinson (2007) and used to
evaluate the sharpness and coverage of the BMA forecast distribution. Figure 4 provides a snapshot of the
model ensemble for a portion of the training data set.

1860 1890 1920 1950 1980 2010 2040 2070

1

3

5

7

9

11

Figure 4: Streamflow predictions of the eight individual models of the ensemble for a representative portion of the
calibration period. The red dots represent the verifying observations.

22

M
O

D
ELAV

G
M

A
N

U
A

L

The spread of the ensemble is sufficient and generally brackets the observations (red dots). The calibrated
models appear to provide somewhat different forecasts. This is a necessary requirement for an ensemble
prediction system, otherwise model averaging cannot improve the forecast skill and distribution.

The following script file (.m) summarizes the setup of case study 1 in the MODELAVG toolbox.

23

M
O

D
ELAV

G
M

A
N

U
A

L

MODELAVG INPUT FILE FOR CASE STUDY 1: The BMA method is used (method = ’bma’) with a gamma
conditional pdf (options.PDF = ’gamma’) for the members’ forecast distribution. As the field VAR of options is set
to ’3’, the standard deviation of the gamma distribution is assumed to be heteroscedastic, or, σjk = cDjk, where
the value of the multiplier c applies to all models of the ensemble. The discharge forecasts of the ensemble members
and verifying observations are stored in the ascii-file "discharge.txt". This data file is unpacked in the n×K matrix
D and n × 1 vector Y. Bias correction is used of the forecasts of each member using the linear regression model of
Equation (2).

% --- %

% %

% MM MM OOOOOOO DDDDDDDD EEEEEEEE LL AAA VV VV GGGGGGGG %

% MMM MM OOOOOOOOO DDDDDDDDD EEEEEEEE LL AA AA VV VV GGG GGG %

% MMMM MMMM OO OO DD DD EE LL AA AA VV VV GG GG %

% MM MM MM MM OO OO DD DD EEEEE LL AA AA VV VV GGG GGG %

% MM MMM MM OO OO DD DD EEEEE LL AAAAAAAAA VV VV GGGGGGGG %

% MM MM OO OO DD DD EE LL AA AA VV VV GG %

% MM MM OOOOOOOOO DDDDDDDDD EEEEEEEE LLLLLLLL AA AA VV VV GGGGGGG %

% MM MM OOOOOOO DDDDDDDD EEEEEEEE LLLLLLLL AA AA VVV GGGGGGGG %

% %

% --- %

%% CASE STUDY I: RAINFALL-RUNOFF TRANSFORMION - ENSEMBLE OF CALIBRATED WATERSHED MODELS

%% PLEASE CHECK: J.A. VRUGT AND B.A. ROBINSON, WRR, 43, W01411, doi:10.1029/2005WR004838,

2007

%% DEFINE MODEL AVERAGING METHOD

method = 'bma'; % 'ewa'/'bga'/'aica'/'bica'/'gra'/'bma'/'mma'/'mma-s'

%% BMA -> CONDITIONAL DISTRIBUTION NEEDS TO BE DEFINED

options.PDF = 'gamma'; % normal conditional pdf

options.VAR = '3'; % common constant variance

options.alpha = 0.95; % prediction intervals of BMA model (0.90/0.95/0.99)

options.print = 'yes'; % print output (figures, tables) to screen

%% NOW LOAD DATA

S = load('discharge.txt'); % daily discharge forecasts (mm/day) of models and verifying data

T_idx = [1:1:3000]; % start/end training period

%% DEFINE ENSEMBLE AND VECTOR OF VERYFYING OBSERVATIONS

D = S(T_idx,1:8); Y = S(T_idx,9);

%% APPLY LINEAR BIAS CORRECTION TO ENSEMBLE (UP TO USER)

[D , a , b] = Bias_correction (D , Y);

%% NUMBER OF PARAMETERS OF EACH MODEL (ABC/GR4J/HYMOD/TOPMO/AWBM/NAM/HBV/SACSMA)

options.p = [3 4 5 8 8 9 9 13]; % (only used for AICA, BICA, MMA, MMA-S)

%% NOW EXECUTE THE MODELAVG TOOLBOX

[beta , output] = MODELAVG (method , D , Y , options);

24

M
O

D
ELAV

G
M

A
N

U
A

L

The BMA method is used for postprocessing of the discharge forecast ensemble. A gamma forecast
distribution is used for each ensemble members’ conditional pdf. The standard deviation of this distribution
is assumed to be heteroscedastic with coefficient c that applies to all models of the ensemble. This thus
requires the inference of d = K + 1 parameters with DREAM, namely the values of the K weights of the
watershed models, and multiplier c, or x = {β1, . . . , βK , c} (see Table 3).

Figure 5 presents histograms of the marginal posterior distribution of the weights of each model of the
ensemble. The maximum likelihood values are separately indicated with the "×" symbol.

0.05 0.1 0.15 0 0.005 0.01 0 0.02 0.04

0 0.01 0.02
0

0.2

0.4

0.6

0.8

1

0.04 0.08 0.12 0.32 0.37 0.42 0.4 0.45 0.5

(B) model 2 (C) model 3 (D) model 4

(E) model 5 (F) model 6 (G) model 7 (H) model 8

0 0.005 0.01
0

0.2

0.4

0.6

0.8

1
(A) model 1

Figure 5: Histograms of the marginal posterior distribution of the weights of each watershed model of the discharge
ensemble. The corresponding forecasts of each model can be found in Figure 4. The red cross symbol in each plot
indicates the maximum likelihood solution.

Most histograms are well described with a normal distribution, except those of models with a very low
weight truncated at zero to lie on the unit simplex. The posterior uncertainty of the models’ weights appears
rather small as most histograms are well defined. Models 1, 3, 4, and 5 receive negligible weights and can
thus be removed from the ensemble without much loss of forecast skill. The marginal distributions of the
weights are particularly useful to determine the importance of each members forecasts.

To understand how the BMA posterior parameter uncertainty translates into predictive uncertainty,
please consider Figure 6 that presents the 95% hydrograph prediction uncertainty ranges (gray region) of
the BMA mixture distribution for a portion of the training data period. The mean forecast of the BMA
model is separately indicated with the black line, and the red dots denote the verifying observations.

25

M
O

D
ELAV

G
M

A
N

U
A

L

1860 1890 1920 1950 1980 2010 2040 2070

1

3

5

7

9

11

Figure 6: 95% prediction intervals (gray region) of the BMA predictive density for a representative portion of the
3000 days calibration period. The black line displays the mean point forecast of the BMA model derived from
Equation 14), whereas the red dots signify the verifying observations.

The 95% prediction uncertainty ranges of the BMA model appear rather large, particularly at lower
discharge values, yet envelop almost 95% observations (data appears in Table 6). The RMSE of the BMA
point forecast (mean of the mixture density) is about 0.723 mm/day, and nearly similar as the value of 0.720
derived from the best model of the ensemble (= Sacramento soil moisture accounting model).

Table 6 summarizes the results of the BMAmethod for two different forecast distributions (options.PDF
= ’normal’ or ’gamma’) and four different treatments of the variance of this distribution (options.VAR
= ’1’, ’2’, ’3’ or ’4’). For convenience, I list only the maximum likelihood values of the weights of each
implementation. Values listed in parentheses denote the posterior standard deviation derived from the
DREAM sample. I also report the maximum value of the log-likelihood of Equation (16), the RMSE
(mm/day) of the averaged forecast, coverage (%) and spread (mm/day) of the 95% prediction intervals of
the BMA model.

26

M
O

D
ELAV

G
M

A
N

U
A

L

Table 6: BMA results for the discharge ensemble of the Leaf River watershed using the normal and gamma forecast
distribution and four different treatments of the variance of these distributions (see section 2.5.2). The different
columns list the maximum likelihood values of the BMA model parameters, corresponding value of the log-likelihood
function of Equation (16), RMSE (mm/day), coverage (%) and spread (mm/day) of the 95% prediction intervals of
the BMA model.

BMA Normal distribution Gamma distribution
’1’ ’2’ ’3’ ’4’ ’1’ ’2’ ’3’ ’4’

β1 0.0169 0.0382 0.0022 0.0038 0.1087 0.0369 0.0026 0.0027
β2 0.2005 0.1631 0.0882 0.0891 0.1859 0.1431 0.0852 0.0857
β3 0.1041 0.0080 0.0059 0.0109 0.0180 0.1107 0.0025 0.0010
β4 0.0701 0.1129 0.0271 0.0246 0.0022 0.0433 0.0054 0.0134
β5 0.0330 0.0317 0.0002 0.0004 0.0633 0.0443 0.0007 0.0037
β6 0.0444 0.1303 0.1228 0.1582 0.0076 0.0987 0.0818 0.0841
β7 0.0423 0.1401 0.3226 0.3024 0.3342 0.2297 0.3663 0.3674
β8 0.4887 0.3757 0.4309 0.4108 0.2801 0.2932 0.4555 0.4422
σ 0.4724 0.4013
c 0.317 0.3548
σ1 0.5277 0.3348
σ2 0.1587 0.0854
σ3 5.4986 0.7936
σ4 1.0512 2.7103
σ5 0.1827 0.0489
σ6 0.0722 0.0470
σ7 0.0830 0.0882
σ8 0.1125 0.0959
c1 0.3023 0.3360
c2 0.2379 0.2910
c3 0.3737 0.9083
c4 0.1975 0.1234
c5 0.2974 0.5990
c6 0.4333 0.3868
c7 0.3096 0.3610
c8 0.2992 0.3495

L(x|D, Ỹ) -2416.3 -617.92 150.93 164.95 -2965.6 -831.63 244.75 249.28
RMSE 0.7072 0.7210 0.7234 0.7258 0.7499 0.7332 0.7237 0.7245
Coverage 96.133 94.767 95.600 95.667 95.867 94.633 96.033 95.967
Spread 2.2263 2.0809 1.4444 1.4589 2.2217 1.4665 1.4493 1.4465

The maximum likelihood values of the BMA weights depend somewhat on the assumed forecast distri-
bution of the deterministic prediction of each model. The HBV (model 7) and SAC-SMA (model 8) models
almost always receive the highest weights of the ensemble and their forecasts are thus of crucial importance
for the BMA model. The TOPMO model (model 6) receives particularly low weights, despite it having
the second lowest RMSE for the 3000-day raining data period. The TOPMO forecasts might be redundant
as they are correlated with other models of the ensemble. Note that the performance of the BMA model
appears to be much more affected by the standard deviation of the forecast distribution, than the shape of
this distribution (normal or gamma). The best results are obtained if a heteroscedastic standard deviation
is assumed for the members forecast distribution. This is perhaps not surprising as the measurement error

27

M
O

D
ELAV

G
M

A
N

U
A

L

of the discharge data is known to increase with flow level. I refer interested readers to the paper of Vrugt and
Robinson (2007) and Rings et al. (2012) for a more detailed analysis of the BMA results, and a comparison
with data assimilation methods.

4.2. Case Study 2: 48 hour forecasting of sea level temperature

The second case study involves a five-member multianalysis ensemble of 48-h forecasts of surface tem-
perature (in Kelvin) between January and June 2000 in the Pacific Northwest of the USA. The data set was
created by the mesoscale short-range ensemble system of the University of Washington (UW) (Grimit and
Mass, 2002) using different runs of the fifth-generation Pennsylvania State University - National Center for
Atmospheric Research Mesoscale Model (MM5) and initial conditions from different operational centers.

I use a 25-day period between April 16 and 9 June 2000 for BMA model calibration. This involves a
total of n = 14668 temperature forecasts at different locations in the Pacific Northwest. For some days the
data were missing, so that the number of calendar days spanned by the training data set is larger than the
number of days of training used.

Figure 7 displays the ensemble forecasts, D and verifying observations, Ỹ for a small portion of the
training data set.

9700 9750 9800 9850 9900 9950 10,000

275

280

285

290

295

300

Figure 7: Temperature forecasts for the Pacific Northwest of the five-member UW ensemble for a short period of the
training data set. The red dots represent the verifying observations.

The different members of the ensemble issue different 48-h temperature forecasts, yet the spread is not
always sufficient to bracket the observations (red dots). Note, that Raftery et al. (2005) used the exact same
25-day data set to introduce and benchmark the BMA method.

The MATLAB script (.m file) listed below details the setup of case study 2 in the MODELAVG toolbox.

28

M
O

D
ELAV

G
M

A
N

U
A

L

MODELAVG INPUT FILE FOR CASE STUDY 2: The BMA method is used (method = ’bma’) with a normal
conditional pdf (options.PDF = ’normal’) for the members’ forecast distribution. As the field VAR of options
is set to ’2’, each model is assumed to have a different standard deviation of the forecast distribution, but this
standard deviation is constant. The surface temperature forecasts and verifying observations are stored in the ascii-
file "temp.txt". This data file is unpacked in the n ×K matrix D and n × 1 vector Y. Bias correction is used of the
forecasts of each member using the linear regression model of Equation (2).

% --- %

% %

% MM MM OOOOOOO DDDDDDDD EEEEEEEE LL AAA VV VV GGGGGGGG %

% MMM MM OOOOOOOOO DDDDDDDDD EEEEEEEE LL AA AA VV VV GGG GGG %

% MMMM MMMM OO OO DD DD EE LL AA AA VV VV GG GG %

% MM MM MM MM OO OO DD DD EEEEE LL AA AA VV VV GGG GGG %

% MM MMM MM OO OO DD DD EEEEE LL AAAAAAAAA VV VV GGGGGGGG %

% MM MM OO OO DD DD EE LL AA AA VV VV GG %

% MM MM OOOOOOOOO DDDDDDDDD EEEEEEEE LLLLLLLL AA AA VV VV GGGGGGG %

% MM MM OOOOOOO DDDDDDDD EEEEEEEE LLLLLLLL AA AA VVV GGGGGGGG %

% %

% --- %

%% CASE STUDY II: 48-FORECASTS OF SEA SURFACE TEMPERATURE

%% PLEASE CHECK: A.E. RAFTERY ET AL., MWR, 133, pp. 1155-1174, 2005.

%% DEFINE MODEL AVERAGING METHOD

method = 'bma'; % 'ewa'/'bga'/'aica'/'bica'/'gra'/'bma'/'mma'/'mma-s'

%% BMA -> CONDITIONAL DISTRIBUTION NEEDS TO BE DEFINED

options.PDF = 'normal'; % pdf predictor: normal/heteroscedastic/gamma

options.VAR = '2'; % individual non-constant variance

options.alpha = 0.95; % prediction intervals of BMA model (0.90/0.95/0.99)

options.print = 'yes'; % print output (figures, tables) to screen

%% NOW LOAD DATA

T = load('temp.txt'); % 48-hour forecasts temperature (Kelvin) and verifying

observations

%% DEFINE ENSEMBLE AND VECTOR OF VERYFYING OBSERVATIONS (APRIL 16 TO JUNE 9, 2000)

idx = find(T(:,1) == 2000 & T(:,2) == 4 & T(:,3) == 16); start_idx = idx(1);

idx = find(T(:,1) == 2000 & T(:,2) == 6 & T(:,3) == 9); end_idx = idx (e n d);

D = T(start_idx : e n d_idx,5:9); Y = T(start_idx : e n d_idx,4);

%% APPLY LINEAR BIAS CORRECTION TO ENSEMBLE (UP TO USER)

[D , a , b] = Bias_correction (D , Y);

%% NOW EXECUTE THE MODELAVG TOOLBOX

[beta , output] = MODELAVG (method , D , Y , options);

I implement the BMA for the 25-day temperature ensemble and assume a normal distribution for the
members forecast distribution. The choice of this forecast distribution is supported by the frequency dis-
tribution of the temperature observations of the training data set (see also Figure 3A). As temperature

29

M
O

D
ELAV

G
M

A
N

U
A

L

observations have a constant measurement error, we assume that the forecast distribution has a fixed vari-
ance, but allow this variance to vary among the ensemble members. This thus involves the inference of
d = 2K = 10 parameters with DREAM, namely the weight and standard deviation of each modelsâĂŹ
forecast distribution. Appendix E presents the screen output of the main function of the MODELAVG
toolbox for the data set and BMA model defined in the MATLAB input file above.

Figure 8 presents trace plots of the R̂-statistic of Gelman and Rubin (1992) for the DREAM sampled
weights and standard deviations of each members’ conditional distribution.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
1

1.5

2

2.5

3

3.5

4

Figure 8: Evolution of the R̂ scale reduction factor of Gelman and Rubin (1992) used to diagnose convergence of the
sampled Markov chains of DREAM to a limiting distribution. The dashed grey horizontal line signifies the commonly
used threshold for convergence.

The R̂ diagnostic illustrates that about 10, 000 generations are required with DREAM to reach con-
vergence to a stationary distribution R̂ ≤ 1.2;∀i = {1, . . . , d}. This constitutes a relative large number
of iterations and is explained by bimodality of the posterior distribution of the standard deviation of the
forecast distribution of ETA. This is demonstrated graphically in Figures E17 and E18 in Appendix E.

Figure 9 presents marginal distributions of the posterior samples of the BMA weights (top panel) and
standard deviations (bottom panel) of the forecast distribution. The maximum likelihood values are sepa-
rately indicated with the red cross "×" symbol.

30

M
O

D
ELAV

G
M

A
N

U
A

L

0.35 0.4 0.45
0

0.2

0.4

0.6

0.8

1

0.20 0.23 0.26 0.25 0.28 0.31 0.34 0.01 0.03 0.05 0.07 0.03 0.06 0.09

1.9 2.1 2.3 2.5
0

0.2

0.4

0.6

0.8

1

3 3.2 3.4 3.6 1.8 2 2.2 2.4 1 3 5 7 2 4 6

Figure 9: Histograms of the marginal posterior distribution of the weights and standard deviations of the five models
of the ensemble. The maximum likelihood solution of each BMA model parameter is indicated with the red cross.

All histograms appear approximately Gaussian, and the median solution of each weight and standard
deviation coincides almost perfectly with their respective maximum likelihood values. Note the presence of
bimodality in the marginal distribution of the standard deviation of the forecast distribution of the NGM
and NOGAPS models. This bimodality is particularly obvious for σNGM (two disconnected modes) and
makes it much more difficult to MCMC methods to sample the target distribution (Vrugt, 2016). Hence,
this explains why DREAM needs a relatively large number of function evaluations to convergence to the
posterior distribution. In fact, NGM and NOGAPS, receive much lower weights than the order three models
of the ensemble, and can perhaps be discarded without affecting too much the predictive skill and coverage
of the BMA model.

Figure 10 presents the 95% prediction uncertainty of the maximum likelihood BMA mixture distribution.
The deterministic point forecast of the BMA model is separately indicated with the solid black line. This
point predictor is derived from Equation (14) using the forecast ensemble, D and maximum likelihood values
of the weights, β̂BMA.

31

M
O

D
ELAV

G
M

A
N

U
A

L

9700 9750 9800 9850 9900 9950 10,000

275

280

285

290

295

300

Figure 10: 95% prediction intervals (gray region) of the BMA predictive density for a representative portion of the
25-day training data set. The black line displays the mean point forecast of the BMA model derived from Equation
(14), whereas the red dots signify the verifying observations.

The 95% prediction uncertainty ranges of the BMA model appear rather large with average spread of
about 9.7 Kelvin and coverage of 90.7% of the observations. The RMSE of the BMA point forecast (mean
of the mixture density) is approximately 2.96 K which is equivalent to the RMSE of the best model (AVN)
of the ensemble (see Table 7)

Table 7 lists the (maximum likelihood) values of the weights for each of the model averaging methods of
the MODELAVG toolbox.

Table 7: Results of different model averaging methods for the five-member multimodel ensemble of 48-h forecasts of
surface temperature in the Pacific Northwest of the USA. The first two columns list the names of each model of the
ensemble and their corresponding RMSE values (in Kelvin), respectively. Subsequent columns list the (maximum
likelihood) values of the weights of each model averaging method of the toolbox. The bottom part of the Table lists
the RMSE of the deterministic forecast of each method. This point forecast is calculated with Equation (4) using
the ensemble forecasts of D and (maximum likelihood) weights.

Model RMSE EWA BGA AICA† BICA† GRA BMA MMA† MMA∆ †,‡

AVN 3.0578 0.2000 0.2208 1.0000 1.0000 0.4836 0.3896 0.4798 0.4730
GEM 3.3425 0.2000 0.1848 0.0000 0.0000 0.2028 0.2277 0.2002 0.1984
ETA 3.1143 0.2000 0.2129 0.0000 0.0000 0.3602 0.2877 0.3596 0.3119
NGM 3.1881 0.2000 0.2031 0.0000 0.0000 -0.0692 0.0442 -0.0712 0.0000
NOGAPS 3.4020 0.2000 0.1784 0.0000 0.0000 0.0227 0.0508 0.0316 0.0166
Point 2.9941 2.9886 3.0578 3.0578 2.9541 2.9587 2.9542 2.9548

†: I assume p = 20*ones(1,K) (twenty parameters assigned to each model)
‡: Presence of numerous local optima on likelihood surface

Information criterion averaging (AICA and BICA) assigns the AVN model a weight of unity, whereas all
other models are given a zero weight. The BMA method distributes the weights more equally among the
different ensemble members, yet assigns the NGM and NOGAPS members relatively low weights. Discarding
these two models hardly affects the performance of each of the model averaging methods.

The point forecasts of the different model averaging methods exhibit a rather similar performance. The
main advantage of the BMA method, however is that it provides a forecast distribution which can be used

32

M
O

D
ELAV

G
M

A
N

U
A

L

for probabilistic analysis and prediction. Nevertheless, if point forecasting is of main concern, the Granger-
Ramanathan averaging provides the lowest RMSE of the deterministic forecast at a negligible CPU-cost.

4.3. Case Study 3: 48 hour forecasting of sea surface pressure

I now do a similar analysis but using 48-h forecasts of sea surface pressure (in hPa) from the University of
Washington mesoscale short-range ensemble prediction system (Grimit and Mass, 2002). The same 25-day
training period as in case study 2 is used for BMA model calibration (April 16 - June 9, 2000). For some
days the data were missing, so that the number of calendar days spanned by the training data set is larger
than the number of days of training used. The training data set includes n = 4013 observations.

Figure 11 displays the ensemble forecasts of the sea level pressure, D and verifying observations, Ỹ for
a small portion of the training data set.

2000 2050 2100 2150 2200 2250 2300

1000

1005

1010

1015

1020

1025

1030

Figure 11: 48-h sea level pressure forecasts for the Pacific Northwest of the five member UW ensemble. I only display
a small portion of the training data set. The red dots represent the verifying observations.

The models differ in their 48-h pressure forecasts, and the ensemble covers a large majority of the observed
sea level pressure data (red dots). Note, that Raftery et al. (2005) used the exact same 25-day data set to
introduce and benchmark the BMA method.

The MATLAB script (.m file) listed below details the setup of case study 3 in the MODELAVG toolbox.

33

M
O

D
ELAV

G
M

A
N

U
A

L

MODELAVG INPUT FILE FOR CASE STUDY 3: The BMA method is used (method = ’bma’) with a normal
conditional pdf (options.PDF = ’normal’) for the members’ forecast distribution. As the field VAR of options is set
to ’2’, each model is assumed to have a different standard deviation of the forecast distribution, but this standard
deviation is constant. The sea pressure forecasts are verifying observations are stored in the ascii-file "pressure.txt".
The built-in function find is used to extract the temperature forecasts of April 16 to June 9. This data is unpacked
in the n ×K matrix D and n × 1 vector Y. Bias correction is used of the forecasts of each member using the linear
regression model of Equation (2).

% --- %

% %

% MM MM OOOOOOO DDDDDDDD EEEEEEEE LL AAA VV VV GGGGGGGG %

% MMM MM OOOOOOOOO DDDDDDDDD EEEEEEEE LL AA AA VV VV GGG GGG %

% MMMM MMMM OO OO DD DD EE LL AA AA VV VV GG GG %

% MM MM MM MM OO OO DD DD EEEEE LL AA AA VV VV GGG GGG %

% MM MMM MM OO OO DD DD EEEEE LL AAAAAAAAA VV VV GGGGGGGG %

% MM MM OO OO DD DD EE LL AA AA VV VV GG %

% MM MM OOOOOOOOO DDDDDDDDD EEEEEEEE LLLLLLLL AA AA VV VV GGGGGGG %

% MM MM OOOOOOO DDDDDDDD EEEEEEEE LLLLLLLL AA AA VVV GGGGGGGG %

% %

% --- %

%% CASE STUDY III: 48-FORECASTS OF SEA SURFACE PRESSURE

%% PLEASE CHECK: A.E. RAFTERY ET AL., MWR, 133, pp. 1155-1174, 2005.

%% DEFINE MODEL AVERAGING METHOD

method = 'bma'; % 'ewa'/'bga'/'aica'/'bica'/'gra'/'bma'/'mma'/'mma-s'

%% BMA -> CONDITIONAL DISTRIBUTION NEEDS TO BE DEFINED

options.PDF = 'gamma'; % gamma distribution

options.VAR = '4'; % individual non-constant variance

options.alpha = 0.95; % prediction intervals of BMA model (0.90/0.95/0.99)

options.print = 'yes'; % print output (figures, tables) to screen

%% NOW LOAD DATA

P = load('pressure.txt'); % 48-hour forecasts air-pressure and verifying observations (mbar

)

%% DEFINE ENSEMBLE AND VECTOR OF VERYFYING OBSERVATIONS (APRIL 16 TO JUNE 9, 2000)

idx = find(P(:,1) == 2000 & P(:,2) == 4 & P(:,3) == 16); start_idx = idx(1);

idx = find(P(:,1) == 2000 & P(:,2) == 6 & P(:,3) == 9); end_idx = idx (e n d);

D = P(start_idx : e n d_idx,5:9); Y = P(start_idx : e n d_idx,4);

%% APPLY LINEAR BIAS CORRECTION TO ENSEMBLE (UP TO USER)

[D , a , b] = Bias_correction (D , Y);

%% NOW EXECUTE THE MODELAVG TOOLBOX

[beta , output] = MODELAVG (method , D , Y , options);

The BMA method is used for postprocessing of the 25-day sea level pressure ensemble. A normal
distribution is used for the ensemble members’ forecast distribution. The choice of this forecast distribution

34

M
O

D
ELAV

G
M

A
N

U
A

L

is supported by the frequency distribution of the pressure observations of the training data set (see also
Figure 3B). As air pressure observations have a constant measurement error, we assume that the forecast
distribution has a fixed variance, but allow this variance to vary among the ensemble members. This thus
involves the inference of d = 2K = 10 parameters with DREAM, namely the weight and standard deviation
of each models’ forecast distribution. Prior to this BMA model training, the individuals members of the
ensemble were bias corrected using simple linear regression of their forecasts on the verifying observations
of the training data set.

Figure 12 presents histograms of the DREAM derived marginal posterior distributions of the BMA
weights and standard deviations of the different ensemble members. The optimal values derived with the
EM algorithm are separately indicated in each panel with the black cross symbol. These EM values are
computed using the following command

[beta,sigma,loglik] = EM_normal(D,Y,options) (29)

where beta (1×K vector) and sigma (1×K vector) return the maximum likelihood values of the weights
and standard deviations of the membersâĂŹ forecast distribution, respectively, and variable loglik (scalar)
contains the maximized value of the log-likelihood function of Equation (16). The function EM_normal
is discussed in Appendix B and part of the MODELAVG toolbox.

0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

0.45 0.5 0.55 0 0.0006 0.0012 0 0.02 0.04 0.1 0.15 0.2

2.3 2.6 2.9 3.2
0

0.2

0.4

0.6

0.8

1

2.1 2.2 2.3 2.4 0 10 20 1 2 3 42 7 12 17

Figure 12: Histograms of the marginal posterior distributions of the BMA weights and standard deviations of the
ensemble members’ forecast distribution. The EM solution is separately indicated in each panel with the "◦" symbol.

The results show an excellent agreement between the modes of the histograms derived from MCMC
simulation with DREAM (loglik = -9864.1) and the maximum likelihood values of the EM algorithm
(loglik = -9863.7). Hence, previous applications of the EM algorithm are likely to have yielded robust
estimates for the BMA weights and standard deviations (variances) (see also Vrugt et al. (2008b)). However,
DREAM has the desirable feature that it not only returns to the user the maximum likelihood values of

35

M
O

D
ELAV

G
M

A
N

U
A

L

the BMA weights and standard deviations of the members’ forecast distribution, but also their underlying
posterior distribution and (posterior) correlation among ensemble members. This information is of great
practical value as it helps determine each ensemble members’ contribution to the predictive skill, and the
dependencies among the forecasts of the K different members. This is crucial information to help determine
which ensemble members to keep and which ones to discard as it takes time to setup and run each model of
the ensemble. For instance, the ETA and NGM models receive very low weights in the present application.
In fact, the forecast distribution of the ETA model is particularly ill-defined as its standard deviation has
an almost uniform marginal distribution. The weights and standard deviations of the other models forecast
distributions (AVN, GEM, and NOGAPS) appear much better defined, hence their forecasts play a key role
in the construction of the BMA model.

I now turn attention to the DREAM algorithm. Figure 13 displays trace plots of the sampled weights of
the AVN (top), GEM (middle) and NOGAPS (bottom) model. I use color coding for each different Markov
chain sampled by DREAM. The maximum likelihood values are indicated at the right hand side with the
"×" symbol. The EM solutions are also presented separately with the black "◦" symbol.

0.1

0.3

0.5

0.7

0.9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

Figure 13: Trace plots of the sampled BMA weights of the AVN, GEM, and NOGAPS model in the Markov chains
generated with DREAM. The maximum likelihood estimates computed of DREAM and the EM algorithm are
separately indicated at the right hand side in each panel using the × and ◦ symbols.

During the initial stages of the search (first few hundred BMA_calc evaluations, the chains occupy
different parts of the weight space, resulting in a relatively high value for the R̂-convergence diagnostic (not
shown). After this, the five chains settle down in the approximate same region of the parameter space and
successively visit solutions stemming from a stable distribution. This demonstrates convergence to a limiting
distribution.

Figure 14 presents the 95% prediction uncertainty of the maximum likelihood BMA mixture distribution.
The deterministic point forecast of the BMA model is separately indicated with the solid black line. This
point predictor is derived from Equation (14) using the maximum likelihood values of the weights, β̂BMA,

36

M
O

D
ELAV

G
M

A
N

U
A

L

and forecasts of the members of the ensemble stored in the n×K matrix D.

2000 2050 2100 2150 2200 2250 2300

1000

1005

1010

1015

1020

1025

1030

Figure 14: 95% prediction intervals (gray region) of the BMA predictive density for a representative portion of the
25-day training data set. The black line displays the mean point forecast of the BMA model derived from Equation
(14), whereas the red dots signify the verifying observations.

The 95% prediction uncertainty ranges of the BMA model appear rather large with average spread of
about 10.86 mbar and coverage of 94.36% of the observations. The RMSE of the BMA point forecast (mean
of the mixture density) is approximately 2.80 mbar which is equivalent to the RMSE of the best model
(NOGAPS) of the ensemble (see Table 8).

Table 8 lists the (maximum likelihood) values of the weights for each of the model averaging methods of
the MODELAVG toolbox.

Table 8: Results of different model averaging methods for the five-member multimodel ensemble of 48-h forecasts
of sea level pressure in the Pacific Northwest of the USA. The first two columns list the names of each model of
the ensemble and their corresponding RMSE values (in mbar), respectively. Subsequent columns list the (maximum
likelihood) values of the weights of each model averaging method of the toolbox. The bottom part of the Table lists
the RMSE of the deterministic forecast of each method. This point forecast is calculated with Equation (4) using
the ensemble forecasts of D and (maximum likelihood) values for the weights.

Model RMSE EWA BGA AICA† BICA† GRA BMA MMA MMA∆ †,‡

AVN 2.8507 0.2000 0.2304 0.0000 0.0000 0.5402 0.2538 0.5048 0.2774
GEM 2.9769 0.2000 0.2112 0.0000 0.0000 0.3461 0.1834 0.3457 0.2038
ETA 3.4640 0.2000 0.1560 0.0000 0.0000 0.0005 0.0003 0.0606 0.0000
NGM 3.5664 0.2000 0.1472 0.0000 0.0000 -0.4903 0.0009 -0.5305 0.0000
NOGAPS 2.7084 0.2000 0.2552 1.0000 1.0000 0.6035 0.5616 0.6194 0.5188
Point 2.8734 2.7875 2.7084 2.7084 2.4327 2.5731 2.4337 2.5714

†: I assume p = 20*ones(1,K) (twenty parameters assigned to each model)
‡: Presence of numerous local optima on likelihood surface

Information criterion averaging (AICA and BICA) assigns the NOGAPS model a weight of unity, whereas
all other models are given a zero weight. The BMA method distributes the weights more equally among the
different 882 ensemble members, yet assigns almost zero weights to ETA and NGM. Discarding these two
models hardly affects the predictive skill of the averaged model and (in case of BMA) the forecast density.

37

M
O

D
ELAV

G
M

A
N

U
A

L

The GRA and MMA methods receive the lowest RMSE for their deterministic (point) forecasts. These are
the only two methods that do not restrict the weights to lie on the unit simplex.

Finally, I follow Vrugt et al. (2008b) and benchmark the performance of the DREAM algorithm by
comparing the maximum likelihood estimates of this method against those derived separately using the EM
algorithm. The function EM_normal of Appendix A applies only to Gaussian forecast distributions, and
hence we compare both methods using a normal forecast distribution for the members of the sea surface
pressure ensemble. Figure 15 compares the log-likelihood estimates derived from the EM method (solid red
line) and DREAM (blue squares) for different lengths of the training data set (x-axis). I also compare the
corresponding estimates of the spread (B) and coverage (C) of the 95% BMA model prediction ranges. Bias
correction was applied to each training data set using simple linear regression of Dk on Ỹ of the training
data set.

1 5 10 15 20 25
-40,000

-30,000

-20,000

-10,000

0
(A)

1 5 10 15 20 25

81

83

85

87

89

91 (B)

1 5 10 15 20 25

7.5

8

8.5

9

9.5

10
(C)

Figure 15: Maximum value of the log-likelihood of the EM (red) and DREAM (blue) method (A) and corresponding
coverage (B) and spread (C) of the BMA prediction intervals.

The panels plot only the results for the training data set. The results presented here highlight several
important observations. First, the DREAM algorithm and EM method derive exactly similar estimates of
the log-likelihood value of the BMA model, irrespective of the length of the training data set. Secondly, the
log-likelihood increases linearly with length of the training data set. This is simply the effect of the number
of observations, n. Thirdly, the coverage of the 95% prediction intervals increases with length of the training
data set. The same observation is made for the spread of the 95% prediction ranges. Both findings are
not surprising as longer training data sets typically involve a larger diversity of weather events, requiring a
larger standard deviation of the forecast distribution.

5. Recent developments

The original BMA approach presented by Raftery et al. (2005) assumes that the conditional pdf of each
individual model is adequately described with a rather standard Gaussian or Gamma statistical distribution,
possibly with a heteroscedastic variance. The work of Rings et al. (2012) has introduced a variant of
BMA with a flexible representation of the conditional forecast distribution. A joint particle filtering and
Gaussian mixture modeling framework was used to derive, as closely and consistently as possible, the
evolving forecast density (conditional pdf) of each constituent ensemble member. These distributions are

38

M
O

D
ELAV

G
M

A
N

U
A

L

subsequently combined with BMA and used to derive one overall predictive distribution. Benchmark studies
demonstrate that this revised BMA method significantly receives lower-prediction errors than the original
default BMA method (due to filtering) with predictive uncertainty intervals that are substantially smaller
but still statistically coherent (due to the use of a time-variant conditional pdf)

39

M
O

D
ELAV

G
M

A
N

U
A

L

6. Summary

In this manual I have introduced a MATLAB package, entitled MODELAVG, which provides inter-
ested users with a simple toolbox for postprocessing of forecast ensembles. This toolbox implements equal
weight averaging, Bates-Granger averaging, information criterion averaging, Granger-Ramanathan averag-
ing, Bayesian model averaging and Mallows model averaging. For those averaging methods for which an
iterative solution is required to derive the weights and/or variance(s) of the conditional forecast distribution,
MCMC simulation with DREAM is used, and a sample of the posterior distribution is generated. Three
different case studies were used to illustrate the main capabilities and functionalities of the MATLAB tool-
box. These example studies are easy to run and adapt and serve as templates for other modeling problems
and watershed data sets.

The toolbox allows for different formulations of the BMA conditional forecast distribution. Forecast
densities that differ from a normal or gamma distribution are readily implemented in the source code of the
MODELAVG toolbox by adding a new "case" in the functions BMA_calc.

Our current work involves new approaches to density forecasting using least-squares model averaging
methods. Applications include precipitation estimation and forecasting using binomial conditional distribu-
tions.

7. Acknowledgements

The MATLAB toolbox of MODELAVG is available upon request from the first author, jasper@uci.du.

40

M
O

D
ELAV

G
M

A
N

U
A

L

Appendix A. The Expectation-Maximization algorithm

The Expectation - Maximization (EM) algorithm is a broadly applicable approach to the iterative com-
putation of maximum likelihood estimates, useful in a variety of incomplete-data problems (Dempster et
al., 1997; McLachlan and Krihnan, 2008). I use herein the index j to mean "forallj ∈ {1, . . . , n}" and the
index k to mean "forallk ∈ {1, . . . ,K}" and use the latent variable zjk to help find the optimal values of the
BMA weights and standard deviations. This unobserved quantity has a value of unity if ensemble member
k is the best forecast of ỹj and zero otherwise. For each observation of the training data set, only one of the
{zj1, . . . , zjK} values is thus equal to one, and all the other values are zero.

The EM algorithm alternates between an expectation (E) step and a maximization (M) step until con-
vergence is achieved. In the expectation step, the values of zjk are calculated given the current values of the
BMA weights and variances. For the BMA model of Equation (11) and (12) the E step is given by

ẑ
(t)
jk =

βkN (ỹj |Djk, σ
(t−1)
k)

K∑
i=1

βiN (ỹj |Dji, σ
(t−1)
i)

(Expectation Step), (A.1)

where the function N (a|b, c) returns the density at a of a normal distribution with mean b and standard
deviation c, and the superscript t signifies iteration counter. In the subsequent maximization step, the values
of βk and σ2

k are updated using the current estimates of zjk, i.e. ẑ(t)
jk as follows

β
(t)
k = 1

n

n∑
m=1

ẑ
(t)
mk

(Maximization Step)

σ
2(t)
k =

n∑
m=1

ẑ
(t)
mk(ỹm −Dmk)2

n
n∑

m=1
ẑ

(t)
mk

,

(A.2)

where n denotes the number of observations of the training data set. By alternating between Equations
(A.1) and (A.2) the EM algorithm improves iteratively the values of βk and σ2

k. Convergence is achieved
when the values of the likelihood (= denominator of Equation (A.1)), weights, β = {β1, . . . , βK}, variances,
σ2 = {σ2

1 , . . . , σ
2
K} and ẑ

(t)
jk s remain constant from one iteration to the next.

The function EM_normal listed below implements the EM algorithm in MATLAB. This subroutine
has three input arguments, including D (matrix with ensemble forecasts), Y (calibration data vector), and
structure options (for field VAR with variance option) and returns the maximum likelihood values of the
BMA weights, β = {β1, . . . , βK} and standard deviation, σ (options.VAR = ’1’) or standard deviations,
σ = {σ1, . . . , σK} (options.VAR = ’2’) and corresponding log-likelihood, L(β,σ|D, Ỹ) in Equation (16).

41

M
O

D
ELAV

G
M

A
N

U
A

L

MATLAB code of the Expectation-Maximization algorithm: This function calculates the maximum likelihood values
of the BMA weights, beta and standard deviations, sigma of each members normal forecast distribution for a given
(n×K) matrix of ensemble forecasts, and (n×1) vector of training observations. The third input argument, options
is a structure with field VAR that determines whether to use a single common variance for all forecast distributions
of the members of the BMA ensemble (options.VAR = ’1’) or a member specific variance (options.VAR = ’2’).
Notation and variable names are consistent with main text and vectorization is used to minimize somewhat the
number of lines of the code. Built-in functions are highlighted with a low dash. The binary singleton expansion
function bsxfun(FUNC,A,B) applies an element-by-element binary operation to the (n×K) matrix A and (n× 1)
vector B using either a right array divide (FUNC = @rdivide) or a minus operation (FUNC = @minus). The
function abs(X) calculates the absolute value of the elements of X, and sum(X,dim) sums along the dimension dim
(1: vertical, 2: horizontal).

function [beta , sigma , loglik , t] = EM_normal (D , Y , options)

% Expectation-Maximization method for training of BMA model %

% SYNOPSIS [w,sigma,lik] = EM_normal(D,Y); %

% [w,sigma,lik] = EM_normal(D,Y,options); %

% INPUT D (n x K)-matrix of ensemble forecasts %

% Y (n x 1)-vector with training data set %

% options structure with settings %

% OUTPUT beta (1 x K)-vector of BMA weights %

% sigma (1 x K)-vector of BMA standard deviations %

% lik log-likelihood value %

% ---

% Assumption: Gaussian forecast distribution

if nargin < 2,

error('EM:TooFewInputs', 'Requires at least two input arguments.');

end

if nargin < 3, VAR = '1'; else VAR = lower(options.VAR); end

[n,K] = size(D); % Matrix of ensemble forecasts

beta = ones(1,K)/K; % Initial values weights

sigma = std(Y)*ones(1,K); sigma2 = sigma.^2; % Initial values stds./var.

z_t = zeros(n,K); % Initial values latent variables

loglik_t = -Inf; err = 1; t = 0; max_t = 1e4; % Settings/constraints while loop

while (max(err) > 1e-6) && (t < max_t), % Until ... do

loglik = loglik_t; z = z_t; % Copy z and loglik

for k = 1:K, % EXPECTATION STEP

z_t(:,k) = beta(k)*normpdf(Y,D(:,k),sigma(k)); % Update latent variables

end

loglik_t = sum(log(sum(z_t,2))); % Log-likelihood BMA model

z_t = bsxfun(@rdivide,z_t,sum(z_t,2)); % Normalize latent variables

beta_t = sum(z_t)/n; % MAXIMIZATION STEP

sigma2_t = sum(z_t.*bsxfun(@minus,D,Y).^2)./sum(z_t);

if strcmp(VAR,'1'), % If common constant variance

sigma2_t = mean(sigma2_t)*ones(1,K); % Use mean value

end

err(1) = max(abs(beta_t - beta)); % Convergence: weights

err(2) = max(abs(log(sigma2_t./sigma.^2))); % Convergence: variance(s)

err(3) = max(max(abs(z - z_t))); % Convergence: latent variables

err(4) = max(abs(loglik - loglik_t)); % Convergence: log-likelihood

beta = beta_t; sigma = sqrt(sigma2_t); % Update BMA weights and variances

t = t + 1; % Iteration counter

end % End while loop

42

M
O

D
ELAV

G
M

A
N

U
A

L

Appendix B. The DREAM algorithm

The DREAM algorithm is an efficient multi-chain MCMC simulation method that uses differential evo-
lution as genetic algorithm for population evolution with a Metropolis selection rule to decide whether
candidate points should replace their parents or not. In DREAM, N different Markov chains are run si-
multaneously in parallel. If the state of a single chain is given by the d-vector x, then at each generation
t − 1 the N chains in DREAM define a population X, which corresponds to an N × d matrix, with each
chain as a row. If A is a subset of d∗-dimensions of the original parameter space, Rd∗ ⊆ Rd, then a jump,
dXi in the ith chain, i = {1, . . . , N} at iteration t = {2, . . . , T} is calculated from the collection of chains,
X = {x1

t−1, . . . ,xNt−1} using differential evolution (Storn and Price, 1997; Price et al., 2005)

dXi
A = ζd∗ + (1d∗ + λd∗)γ(δ,d∗)

δ∑
j=1

(
Xaj

A −Xbj

A
)

dXi
,A = 0,

(B.1)

where γ = 2.38/
√

2δd∗ is the jump rate, δ denotes the number of chain pairs used to generate the jump,
and a and b are vectors consisting of δ integers drawn without replacement from {1, . . . , i− 1, i+ 1, . . . , N}.
The default value of δ = 3, and results, in practice, in one-third of the proposals being created with
δ = 1, another third with δ = 2, and the remaining third using δ = 3. The values of λ and ζ are sampled
independently from Ud∗(−c, c) and Nd∗(0, c∗), respectively, the multivariate uniform and normal distribution
with, typically, c = 0.1 and c∗ small compared to the width of the target distribution, c∗ = 10−6 say. In
20% of the proposals, I use a jump rate of unity, p(γ=1) = 0.2, to enable the chains of DREAM to jump
directly between disconnected posterior modes. The candidate point of chain i at iteration t then becomes

Xi
p = Xi + dXi, (B.2)

and the Metropolis ratio
pacc(Xi → Xi

p) = min[1, p(Xi
p)/p(Xi)], (B.3)

is used to determine whether to accept this proposal or not. If pacc(Xi → Xi
p) ≥ U(0, 1) the candidate point

is accepted and the ith chain moves to the new position, that is xit = Xi
p, otherwise xit = xit−1. The default

equation for γ should, for Gaussian and Student target distribution, result in optimal acceptance rates close
to 0.44 for d = 1, 0.28 for d = 5, and 0.23 for large d (please refer to section 7.84 of Roberts and Casella
(2004) for a cautionary note on these references acceptance rates).

The d∗-members of the subset A are sampled from the entries {1, . . . , d} (without replacement) and
define the dimensions of the parameter space to be sampled by the proposal. This subspace spanned by A
is construed in DREAM with the help of a crossover operator. This genetic operator is applied before each
proposal is created and works as follows. First, a crossover value, cr is sampled from a geometric sequence
of nCR different crossover probabilities, CR = { 1

nCR
, 2
nCR

, . . . , 1} using the discrete multinomial distribution,
M(CR,pCR) on CR with selection probabilities pCR. Then, a d-vector z = {z1, . . . , zd} is drawn from a
standard multivariate normal distribution, z D∼ Ud(0, 1). All those values j which satisfy zj ≤ cr are stored
in the subset A and span the subspace of the proposal that will be sampled using Equation (B.1). If A is
empty, one dimension of {1, . . . , d} will be sampled at random to avoid the jump vector to have zero length.

43

M
O

D
ELAV

G
M

A
N

U
A

L

The use of a vector of crossover probabilities enables single-site Metropolis (A has one element), Metropolis-
within-Gibbs (A has one or more elements) and regular Metropolis sampling (A has d elements), and con-
stantly introduces new directions in the parameter space that chains can take outside the subspace spanned
by their current positions. What is more, the use of subspace sampling allows for N < d, thereby reducing
as much as possible the total number of function evaluations required for burn-in. Subspace sampling as
implemented in DREAM adds one extra algorithmic variable, nCR to the algorithm. The default setting of
nCR = 3 has shown to work well in practice, but larger values of this algorithmic variable might seem ap-
propriate for high-dimensional target distributions, say d > 50, to preserve the frequency of low-dimensional
jumps. Note, more intelligent subspace selection methods can be devised for target distributions involving
many highly correlated parameters.

To enhance search efficiency the selection probability of each crossover value, stored in the nCR-vector
pCR, is tuned adaptively during burn-in by maximizing the distance traveled by each of the N chains.
This adaptation is described in detail inVrugt et al. (2008a, 2009), and a numerical implementation of this
approach appears in the MATLAB code of DREAM below.

The core of the DREAM algorithm can be written in about 30 lines of code (see algorithm) and include
the function handles prior and pdf and the values of N (number of chains), T (number of iterations) and
d (number of parameters).

44

M
O

D
ELAV

G
M

A
N

U
A

L

MATLAB code of the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm: Built-in functions are
highlighted with a low dash. The jump vector, dX(i,1:d) of the ith chain contains the desired information about
the scale and orientation of the proposal distribution and is derived from the remaining N-1 chains. deal() assigns
default values to the algorithmic variables of DREAM, std() returns the standard deviation of each column of X,
and sum() computes the sum of the columns A of the chain pairs a and b. The function check() is a critical patch
for outlier chains that impair convergence to a limiting distribution.

function [x,p_x] = dream(prior,pdf,N,T,d)

% DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm

[delta,c,c_star,n_CR,p_g] = deal(3,0.1,1e-12,3,0.2); % Default of algorithmic parameters

x = nan(T,d,N); p_x = nan(T,N); % Preallocate chains and density

[J,n_id] = deal(zeros(1,n_CR)); % Variables select. prob. crossover

for i = 1:N, R(i,1:N-1) = setdiff(1:N,i); end % R-matrix: index of chains for DE

CR = [1:n_CR]/n_CR; p_CR = ones(1,n_CR)/n_CR; % Crossover values and select.

prob.

X = prior(N,d); % Create initial population

for i = 1:N, p_X(i,1) = pdf(X(i,1:d)); end % Compute density initial

population

x(1,1:d,1:N) = reshape(X',1,d,N); p_x(1,1:N) = p_X'; % Store initial states and density

for t = 2:T, % Dynamic part: Evolution of N chains

[~,draw] = sort(rand(N-1,N)); % Permute [1,...,N-1] N times

dX = zeros(N,d); % Set N jump vectors to zero

lambda = unifrnd(-c,c,N,1); % Draw N lambda values

std_X = std(X); % Compute std each dimension

for i = 1:N, % Create proposals + accept/reject

D = randsample([1:delta],1,'true'); % Select delta (equal probability)

a = R(i,draw(1:D,i)); b = R(i,draw(D+1:2*D,i)); % Extract vectors a + b unequal i

id = randsample([1:n_CR],1,'true',p_CR); % Select index of crossover value

z = rand(1,d); % Draw d values from U[0,1]

A = find(z < CR(id)); % Subset A dimensions to update

d_star = numel(A); % How many dimensions sampled?

if d_star == 0, [~,A] = min(z); d_star = 1; end % A must contain one dimension

gamma_d = 2.38/sqrt(2*D*d_star); % Calculate jump rate

g = randsample([gamma_d 1],1,'true',[1-p_g p_g]); % Select gamma: 80/20 mix [def: 1]

dX(i,A) = c_star*randn(1,d_star) + ...

(1+lambda(i))*g*sum(X(a,A)-X(b,A),1); % Compute ith jump diff. evol.

Xp(i,1:d) = X(i,1:d) + dX(i,1:d); % Compute ith proposal

p_Xp(i,1) = pdf(Xp(i,1:d)); % Calculate density ith proposal

p_acc = min(1,p_Xp(i,1)./p_X(i,1)); % Compute acceptance probability

if p_acc > rand, % p_acc larger than U[0,1]?

X(i,1:d) = Xp(i,1:d); p_X(i,1) = p_Xp(i,1); % True: Accept proposal

else

dX(i,1:d) = 0; % Set jump back to zero for pCR

end

J(id) = J(id) + sum((dX(i,1:d)./std_X).^2); % Update jump distance id crossover

n_id(id) = n_id(id) + 1; % How many times id crossover used

end

x(t,1:d,1:N) = reshape(X',1,d,N); p_x(t,1:N) = p_X'; % Append current X and density

if t<T/10,

p_CR = J./n_id; p_CR = p_CR/sum(p_CR); % Update selection prob. crossover

end

[X,p_X] = check(X,mean(log(p_x(ceil(t/2):t,1:N)))); % Outlier detection and correction

end % End dynamic part

45

M
O

D
ELAV

G
M

A
N

U
A

L

The MATLAB code listed above implements the different steps of the DREAM algorithm as detailed
in the main text of this Appendix. Variable names correspond with their symbols used in Equations (B.1)
and (B.2). Indents and comments are used to enhance readability and to convey the main intent of each
line of code. The computational efficiency of this code can be improved considerably, for instance through
vectorization of the inner for loop, but this will affect negatively readability. Note that this basic code of
DREAM does not monitor convergence of the sampled chain trajectories.

The function check scans for dissident chains using as proxy for fitness the mean log density of the
second half of the samples stored in each Markov chain. These N values are examined for anomalies using
an outlier detection test. Those chains that are labeled as an outlier will relinquish their dissident state by
moving their position to one of the other chains (chosen at random). Details of this procedure can be found
in Vrugt et al. (2009).

For those proficient in statistics, computer coding and numerical computation, the DREAM code listed
above will be sufficient to solve for the posterior distribution of the BMA, MMA, and MMA∆ parameters.
Yet, for others this code might not suffice as it has very few built-in options and capabilities. I therefore
refer to MATLAB toolbox of the DREAM algorithm described in Vrugt (2016).

46

M
O

D
ELAV

G
M

A
N

U
A

L

Appendix C. Download and installation

The MODELAVG code can be downloaded from my website at the following link http://faculty.

sites.uci.edu/MODELAVG. Please save this file called "MATLAB-pCode-MODELAVG-V1.0" to your
hard disk, for instance, in the directory "D:\Downloads\Toolboxes \MATLAB\MODELAVG". Now open
Windows explorer in this directory (see Figure C1).

Figure C1

You will notice that the file does not have an extension - it is just called MATLAB-pCode-MODELAVGV1.0.
That is because Windows typically hides extension names.

If you can already see file extensions on your computer, then please skip the next step. If you cannot see
the file extension, please click the View tab. Then check the box titled "File name extensions" (see Figure
C2).

47

http://faculty.sites.uci.edu/MODELAVG
http://faculty.sites.uci.edu/MODELAVG

M
O

D
ELAV

G
M

A
N

U
A

L

Figure C2

Now you should be able to see the file extension. Right-click the file name and select Rename (see
Figure C3).

48

M
O

D
ELAV

G
M

A
N

U
A

L

Figure C3

Now change the extension of "MATLAB-pCode-MODELAVG-V1.0" from ".pdf" to ".rar" (see Figure C4).

49

M
O

D
ELAV

G
M

A
N

U
A

L

Figure C4

After entering the new extension, hit the Enter (return) key. Windows will give you a warning that the
file may not work properly (see Figure C5). This is quite safe - remember that you can restore the original
extension if anything goes wrong.

50

M
O

D
ELAV

G
M

A
N

U
A

L

Figure C5

It is also possible that you might get another message telling you that the file is "read-only". In this case
either say yes to turning off read-only, or right-click the file, select Properties and uncheck the Read-only
box.

If you do not have permission to change the file extension, you may have to login as Administrator.
Another option is to make a copy of the file, rename the copy and then delete the original.

Now you have changed the extension of the file to ".rar" you can use the program WinRAR to extract
the files to whatever folder your desire, for instance "D:\Downloads\Toolboxes\MATLAB\MODELAVG".
Right-click the file name and select Extract Here (see Figure C6).

51

M
O

D
ELAV

G
M

A
N

U
A

L

Figure C6

Now WinRAR should extract the files to your folder. The end result should look as in Figure C7.

52

M
O

D
ELAV

G
M

A
N

U
A

L

Figure C7

The MODELAVG toolbox is now ready for use in MATLAB.

53

M
O

D
ELAV

G
M

A
N

U
A

L

Appendix D. Main functions of MODELAVG toolbox

Table D1 summarizes, in alphabetic order, the different function/program files of the MODELAVG
package in MATLAB.

The main program runMODELAVG calls the input file of each case study. Template input files were
given on Pages 24, 29 and 34 for each of the three case studies considered herein. These templates can be
used for other data sets and/or forecast ensembles. The last line of each template file involves a call to the
function MODELAVG, which computes the values of the weights (all methods except BMA) or weights and
standard deviations (or proxies thereof) of the forecast density (if BMA is used). What is more, a structure
output with results of each model averaging method is produced, and tables and figures are printed to the
screen if the print option in structure options is activated (’yes’). The data of each case study are stored
in their respective folders in the root directory of the MODELAVG toolbox (see Figure C7 for a screen shot
of these directories).

The function MODELAVG_dream contains a basic implementation of the DREAM algorithm. This
function is used to derive the posterior distribution of the BMA, MMA, and MMA∆ weights and standard
deviation(s) of the members’ forecast distribution (BMA). Users are referred to the DREAM toolbox of
Vrugt (2016).

The directory "postprocessing" in the root of the MODELAVG toolbox contains the script MOD-
ELAVG_postproc which is called by the main function of the toolbox, MODELAV and prints to the
screen a table with the main results of each model averaging method, and many different figures. The tables
are displayed in the MATLAB editor (see Appendix E), whereas figures are printed directly to the screen,
including a time series plot of the ensemble members, the verifying observations and the averaged forecast,
an autocorrelation function and a quantile-quantile graph of the error residuals of this point predictor. If
BMA, MMA or MMA∆ are used, many more figures are created using the DREAM output including trace
plots of the sampled chain trajectories and R̂-convergence diagnostic, and histograms of the marginal dis-
tributions of the parameters sampled by DREAM posterior samples (among others). Appendix E presents
the screen output produced by MODELAVG_postproc for case study 2.

54

M
O

D
ELAV

G
M

A
N

U
A

L

Ta
bl
e
D
1:

D
es
cr
ip
tio

n
of

th
e
M
AT

LA
B

fu
nc
tio

ns
an

d
sc
rip

ts
(.m

fil
es
)
us
ed

by
M
O
D
E
LA

V
G
,v

er
si
on

1.
0.

N
am

e
of

fu
nc
tio

n
D
es
cr
ip
tio

n
B

ia
s_

co
rr

ec
ti

on
A
pp

lie
s
lin

ea
r
bi
as

co
rr
ec
tio

n
of

ea
ch

m
em

be
r
of

en
se
m
bl
e

B
M

A
_

ca
lc

C
al
cu

la
te
s
th
e
lo
g-
lik

el
ih
oo

d
of

B
M
A

m
od

el
pa

ra
m
et
er
s

B
M

A
_

qu
an

ti
le

C
om

pu
te
s
th
e
pr
ed

ic
tio

n
in
te
rv
al
s
of

B
M
A

m
ix
tu
re

di
st
rib

ut
io
n

E
M

_
no

rm
al

Ex
pe

ct
at
io
n
m
ax

im
iz
at
io
n
al
go
rit

hm
fo
r
B
M
A

m
od

el
tr
ai
ni
ng

M
M

A
_

ca
lc

C
al
cu

la
te
s
th
e
lo
g-
lik

el
ih
oo

d
of

th
e
M
M
A

w
ei
gh

ts
M

O
D

E
LA

V
G

M
ai
n
fu
nc

tio
n
of

th
e
to
ol
bo

x
-r

et
ur
ns

ou
tp
ut

ar
gu

m
en
ts
x
an

d
st
ru
ct
ur
e
o
u
t
p
u
t

M
O

D
E

LA
V

G
_

ch
ec

k
Ve

rifi
es

in
pu

t
ar
gu

m
en
ts

of
M
O
D
EL

AV
G

to
ol
bo

x
M

O
D

E
LA

V
G

_
dr

ea
m

B
as
ic

im
pl
em

en
ta
tio

n
of

D
R
EA

M
al
go
rit

hm
fo
r
B
M
A

an
d
M
M
A

m
od

el
tr
ai
ni
ng

M
O

D
E

LA
V

G
_

en
d

Pr
ep

ar
es

gr
ap

hi
ca
lo

ut
pu

t
an

d
re
tu
rn

ar
gu

m
en
ts

of
M
O
D
EL

AV
G

to
ol
bo

x
M

O
D

E
LA

V
G

_
ev

al
C
al
cu

la
te
s
st
at
ist

ic
s
of

in
de

pe
nd

en
t
ev
al
ua

tio
n
da

ta
se
t

M
O

D
E

LA
V

G
_

ge
lm

an
C
al
cu

la
te
s
th
e
R̂
d
an

d
R̂
-c
on

ve
rg
en

ce
di
ag
no

st
ic
s

M
O

D
E

LA
V

G
_

se
tu

p
Se

tu
p
of

co
m
pu

ta
tio

na
lf
ra
m
ew

or
k
of

M
O
D
EL

AV
G

to
ol
bo

x
ru

nM
O

D
E

LA
V

G
M
ai
n
pr
og
ra
m

of
th
e
M
O
D
EL

AV
G

to
ol
bo

x
w
hi
ch

ex
ec
ut
es

th
e
di
ffe

re
nt

ca
se

st
ud

ie
s

55

M
O

D
ELAV

G
M

A
N

U
A

L

Appendix E. Screen output

The MODELAVG toolbox presented herein returns to the user tables and figures which jointly summarize
the results of the toolbox. This appendix displays all this output for the second case study involving
application of the BMA method to the five-member ensemble of temperature forecasts in Pacific Northwest
of the USA). A normal forecast distribution was assumed for each model of the ensemble. The standard
deviation of this distribution was assumed to be constant, yet member-dependent.

Figure E1 displays the ascii file "MODELAVG_output.txt" which is created by the main function MOD-
ELAVG of the toolbox and printed to the screen in the MATLAB editor.

Figure E1: Screen print of ascii file "MODELAVG_output.txt". This file is created by the toolbox and printed to the
screen in the MATLAB editor. The notation that is used in this Table matches exactly the names of the variables
used in the Equations and main text.

The toolbox also presents to the user a large number of figures that visualize the results. I now display
all these figures, two per page.

56

M
O

D
ELAV

G
M

A
N

U
A

L

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure E2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
0

10
1

Figure E3

57

M
O

D
ELAV

G
M

A
N

U
A

L

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

30

35

Figure E4

0.35 0.4 0.45
0

0.5

1

0.2 0.22 0.24 0.26 0.28
0

0.5

1

0.26 0.28 0.3 0.32 0.34
0

0.5

1

0 0.02 0.04 0.06 0.08
0

0.5

1

0.04 0.06 0.08 0.1
0

0.5

1

2 2.2 2.4 2.6
0

0.5

1

3 3.2 3.4 3.6
0

0.5

1

1.8 2 2.2 2.4
0

0.5

1

2 4 6
0

0.5

1

Figure E5

58

M
O

D
ELAV

G
M

A
N

U
A

L

2 4 6
0

0.5

1

Figure E6

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure E7

59

M
O

D
ELAV

G
M

A
N

U
A

L

Figure E8

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure E9

60

M
O

D
ELAV

G
M

A
N

U
A

L

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0.1

0.15

0.2

0.25

0.3

Figure E10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0.15

0.2

0.25

0.3

0.35

Figure E11

61

M
O

D
ELAV

G
M

A
N

U
A

L

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Figure E12

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0.05

0.1

0.15

0.2

0.25

Figure E13

62

M
O

D
ELAV

G
M

A
N

U
A

L

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Figure E14

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Figure E15

63

M
O

D
ELAV

G
M

A
N

U
A

L

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

1.5

2

2.5

3

3.5

4

4.5

Figure E16

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

1

2

3

4

5

6

7

Figure E17

64

M
O

D
ELAV

G
M

A
N

U
A

L

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

2

3

4

5

6

7

Figure E18

0 200 400 600 800 1000 1200 1400

265

270

275

280

285

290

295

300

305

310

315

Figure E19

65

M
O

D
ELAV

G
M

A
N

U
A

L

0 200 400 600 800 1000 1200 1400

265

270

275

280

285

290

295

300

305

310

315

Figure E20

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

0.4

0.6

0.8

1

Figure E21

66

M
O

D
ELAV

G
M

A
N

U
A

L

-4 -3 -2 -1 0 1 2 3 4
-20

-15

-10

-5

0

5

10

15

20

Figure E22

67

M
O

D
ELAV

G
M

A
N

U
A

L

Appendix F. References

J.M. Bates and C.M.W. Granger, "The combination of forecasts," Operations Research Quarterly, vol. 20, pp. 451-468, 1969.
C.H. Bishop and K.T. Shanley, "Bayesian modeling averaging’s problematic treatment of extreme weather and a paradigm shift

that fixes it," Monthly Weather Review, vol. 136, pp. 4641-4652, 2008.
G.E.P. Box, and D.R. Cox, "An analysis of transformations," Journal of the Royal Statistical Society, Series B, vol. 26 (2), pp.

211-252, 1964.
C.J.F. ter Braak, "A Markov chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing

for real parameter spaces," Statistics & Computing, vol. 16, pp. 239-249, 2006.
C.J.F. ter Braak, and J.A. Vrugt, "Differential evolution Markov chain with snooker updater and fewer chains," Statistics &

Computing, vol. 18 (4), pp. 435-446, doi:10.1007/s11222-008-9104-9, 2008.
S.P. Brooks, and A. Gelman, "General methods for monitoring convergence of iterative simulations," Journal of Computational

and Graphical Statistics, vol. 7, pp. 434-455, 1998.
S.T. Buckland, K.P. Burnham, and N.H. Augustin, "Model selection: An integral part of inference," Biometrics, vol. 53, pp.

603-618, 1997.
K.P. Burnham, and D.R. Anderson, "Model selection and multimodel inference: A practical information-theoretic approach,"

2nd edition, Springer, New York, 2002.
A.P. Dempster, N.M. Laird, and D.B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," Journal of

the Royal Statistical Society, vol. 39(B), pp. 1-39, 1977.
C.G.H. Diks, and J.A. Vrugt, "Comparison of point forecast accuracy of model averaging methods in hydrologic applications,"

Stochastic Environmental Research and Risk Assessment, 24(6), pp. 809-820, doi:10.1007/s00477-010-0378-z, 2010.
Q.Y. Duan, S. Sorooshian, and V.K. Gupta, "Effective and efficient global optimization for conceptual rainfall-runoff models,"

Water Resources Research, 28 (4), pp. 1015-1031, doi:10.1029/91WR02985, 1992.
A.G. Gelman, and D.B. Rubin, "Inference from iterative simulation using multiple sequences," Statistical Sciences, vol. 7, pp.

457-472, 1992.
T. Gneiting, A.E. Raftery, A.H. Westveld, and T. Goldman, "Calibrated probabilistic forecasting using ensemble model output

statistics and CRPS estimation," Monthly Weather Review, vol. 133, pp. 1098-1118, 2005.
C.W.J. Granger and R. Ramanathan, "Improved methods of combining forecast accuracy," Journal of Forecasting, vol. 3, pp.

197-204, 1984.
E.P. Grimit, and C.F. Mass, "Initial results of a mesoscale shortrange ensemble forecasting system over the Pacific Northwest",

Weather Forecasting, vol. 17, pp. 192-205, 2002.
B.E. Hansen, "Least-squares model averaging," Econometrica, vol. 75, pp. 1175-1189, 2007.
B.E. Hansen, "Least-squares forecast averaging," Journal of Econometrics, vol. 146, pp. 342-350, 2008.
J.A. Hoeting, D. Madigan, A.E. Raftery, and C.T. Volinsky, "Bayesian model averaging: A tutorial," Statistical Science, vol.

14, pp. 382-417, 1999.
J. Geweke, "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments," in

Bayesian Statistics 4, edited by J.M. Bernardo, J.O. Berger, A.P. Dawid, and A.F.M. Smith, pp. 169-193, Oxford Uni-
versity Press, 1992.

E. Laloy, and J.A. Vrugt, "High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and
high-performance computing," Water Resources Research, vol. 48, W01526, doi:10.1029/2011WR010608, 2012.

G. McLachlan, and T. Krishnan, The EM algorithm and extensions: 2nd Edition, 400 pages, Wiley, Apr. 2008.
S.P. Neuman "Maximum likelihood Bayesian averaging of uncertain model predictions," Stochastic Environmental Research

and Risk Assessment, vol. 17, pp. 291-305, 2003.
K.V. Price, R.M. Storn, and J.A. Lampinen, Differential evolution, A practical approach to global optimization, Springer,

Berlin, 2005.
A.E. Raftery, and S.M. Lewis, "One long run with diagnostics: Implementation strategies for Markov chain Monte Carlo,"

Statistical Science, vol. 7, pp. 493-497, 1992.
A.E. Raftery, and S.M. Lewis, "The number of iterations, convergence diagnostics and generic Metropolis algorithms," in

Practical Markov chain Monte Carlo, edited by W.R. Gilks, D.J. Spiegelhalter and S. Richardson, London, U.K., Chapman
and Hall, 1995.

A.E. Raftery, D. Madigan, and J.A. Hoeting, "Bayesian model averaging for linear regression models," Journal of the American
Statistical Association, vol. 92, pp. 179-191, 1997.

68

M
O

D
ELAV

G
M

A
N

U
A

L

A.E. Raftery, T. Gneiting, F. Balabdaoui, and M. Polakowski, "Using Bayesian model averaging to calibrate forecast ensembles,"
Monthly Weather Review, vol. 133, pp. 1155-1174, 2005.

J. Rings, J.A. Vrugt, G. Schoups, J.A. Huisman, and H. Vereecken, "Bayesian model averaging using particle filtering and
Gaussian mixture modeling: Theory, concepts, and simulation experiments," Water Resources Research, 48, W05520,
doi:10.1029/2011WR011607, 2012.

C.P. Roberts, and G. Casella, "Monte Carlo statistical methods," 2nd edition, Springer, New York, 2004.
M. Sadegh, and J.A. Vrugt, "Approximate Bayesian computation using Markov chain monte Carlo simulation: DREAM(ABC),"

Water Resources Research, vol. 50, doi:10.1002/2014WR015386, 2014.
J.M. Sloughter, A.E. Raftery, T. Gneiting, and C. Fraley, "Probabilistic quantitative precipitation forecasting using Bayesian

model averaging," Monthly Weather Review, vol. 135, pp. 3209-3220, 2007.
J.M. Sloughter, T. Gneiting, and A.E. Raftery, "Probabilistic wind speed forecasting using ensembles and Bayesian model

averaging," Monthly Weather Review, vol. 105, no. 489, pp. 25-35, doi:10.1198/jasa.2009.ap08615, 2010.
R. Storn, and K. Price, "Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces,"

Journal of Global Optimization, vol. 11, pp. 341-359, 1997.
J.A. Vrugt, H.V. Gupta, W. Bouten, and S. Sorooshian, "A Shuffled Complex Evolution Metropolis algorithm for op-

timization and uncertainty assessment of hydrologic model parameters," Water Resources Research, vol. 39 (8), 1201,
doi:10.1029/2002WR001642, 2003.

J.A. Vrugt, M.P. Clark, C.G.H. Diks, Q. Duan, and B.A. Robinson, "Multi-objective calibration of forecast ensembles using
Bayesian model averaging," Geophysical Research Letters, vol. 33, L19817, doi:10.1029/2006GL027126.

J.A. Vrugt, and B.A. Robinson, "Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation
and Bayesian model averaging," Water Resources Research, vol. 43, W01411, doi:10.1029/2005WR004838, 2007.

J.A. Vrugt, C.J.F. ter Braak, M.P. Clark, J.M. Hyman, and B.A. Robinson, "Treatment of input uncertainty in hydrologic
modeling: Doing hydrology backward with Markov chain Monte Carlo simulation," Water Resources Research, vol. 44,
W00B09, doi:10.1029/2007WR006720, 2008a.

J.A. Vrugt, C.G.H. Diks, and M.P. Clark, "Ensemble Bayesian model averaging using Markov chain Monte Carlo sampling,"
Environmental Fluid Dynamics, vol 8, pp. 579-595, 2008b.

J.A. Vrugt, C.J.F. ter Braak, C.G.H. Diks, D. Higdon, B.A. Robinson, and J.M. Hyman, "Accelerating Markov chain Monte
Carlo simulation by differential evolution with self-adaptive randomized subspace sampling," International Journal of Non-
linear Sciences and Numerical Simulation, vol. 10, no. 3, pp. 273-290, 2009.

J.A. Vrugt, and C.J.F. ter Braak, "DREAM(D): an adaptive Markov chain Monte Carlo simulation algorithm to solve discrete,
noncontinuous, and combinatorial posterior parameter estimation problems," Hydrology and Earth System Sciences, vol. 15,
pp. 3701-3713, doi:10.5194/hess-15-3701-2011, 2011.

J.A. Vrugt, and M. Sadegh, "Toward diagnostic model calibration and evaluation: Approximate Bayesian computation," Water
Resources Research, vol. 49, doi:10.1002/wrcr.20354, 2013.

J.A. Vrugt, "Multi-criteria Optimization using the AMALGAM software package: Theory, concepts, and MATLAB Implemen-
tation, "Manual, Version 1.0, pp. 1-53, 2015a.

J.A. Vrugt, "FDCFIT: A MATLAB Toolbox of parametric expressions of the flow duration curve," Manual, Version 1.0, pp.
1-35, 2015b.

J.A. Vrugt, "Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB
Implementation," Environmental Modeling & Software, vol. 75, pp. 273-316, 10.1016/j.envsoft.2015.08.013, 2016.

T. Wöhling, and J.A. Vrugt, "Combining multiobjective optimization and Bayesian model averaging to calibrate forecast
ensembles of soil hydraulic models," Water Resources Research, vol. 44, W12432, pp. 1-18, 2008.

M. Ye, P.D. Meyer and S.P. Neumann, "On model selection criteria in multimodel analysis," Water Resources Research, vol.
44, W03428, pp. 1-12, 2008.

X. Zhang, A.T.K. Wan, and G. Zou, "Least squares model combining by Mallows criterion," SSRN working paper, 2008.

69

	Introduction and Scope
	Model Averaging methods
	Equal weights averaging
	Bates-Granger averaging
	Information criterion averaging
	Granger-Ramanathan averaging
	Bayesian model averaging
	Inference of BMA weights and variances
	The BMA conditional distribution

	Mallows model averaging

	The MODELAVG toolbox
	MODELAVG: MATLAB implementation
	First input argument: method
	Second input argument: D
	Third input argument: Y
	Fourth input argument: options
	Output arguments
	Return argument x
	Return argument output

	Evaluation data set: structure val

	Numerical examples
	Case Study 1: The rainfall-runoff transformation
	Case Study 2: 48 hour forecasting of sea level temperature
	Case Study 3: 48 hour forecasting of sea surface pressure

	Recent developments
	Summary
	Acknowledgements
	The Expectation-Maximization algorithm
	The DREAM algorithm
	Download and installation
	Main functions of MODELAVG toolbox
	Screen output
	References

