Cytonuclear Introgressive Swamping and Species Turnover of Bass After an Introduction

J. C. Avise, P. C. Pierce, M. J. Van Den Avyle, M. H. Smith, W. S. Nelson, and M. A. Asmussen

Species-specific RFLP markers from mitochondrial DNA (mtDNA) were identified and employed in conjunction with previously reported data for nuclear allozyme markers to examine the genetic consequences of an artificial introduction of spotted bass (Micropterus punctulatus) into a north Georgia reservoir originally occupied by native smallmouth bass (M. dolomieu). The cytonuclear genetic data indicate that within 10–15 years following the unauthorized introduction, a reversal in these species' abundances has occurred and that more than 99% of the population sample analyzed here consists of spotted bass or products of interspecific hybridization. This demographic shift, perhaps ecologically or environmentally mediated, has been accompanied by introgressive swamping; more than 95% of the remaining smallmouth bass nuclear and cytoplasmic alleles are present in individuals of hybrid ancestry. Dilocus cytonuclear disequilibria were significantly different from zero, with patterns indicative of an excess of homospecific genetic combinations (relative to expectations from single-locus allelic frequencies) and a disproportionate contribution of smallmouth bass mothers to the hybrid gene pool. Results document dramatic genetic and demographic changes following the human-mediated introduction of a nonnative species.

This article is a follow-up to a previous report by Pierce (1995) that evaluated hybridization between black basses (Centrarchid; Micropterus) in several reservoirs of the southeastern United States following artificial introductions outside the species' native ranges. Special attention is focused here on a Micropterus population in a northeast Georgia reservoir, Lake Chatuge, where allozyme assays by Pierce (1995) confirmed suspicions from morphological evidence that extensive introgressive hybridization has taken place between introduced spotted bass (M. punctulatus) and native smallmouth bass (M. dolomieu). Lake Chatuge is a man-made reservoir in the upper reaches of the Tennessee River drainage, within the historical range of M. dolomieu. Initially, Lake Chatuge supported an active sport fishery for smallmouth bass, but unauthorized introductions of unknown numbers of M. punctulatus in the late 1970s initiated a faunal changeover involving a dramatic decline in smallmouth abundance and replacement by spotted bass and probable hybrids. The spotted bass that were introduced (most likely by members of a bass-fishing club) are thought to have been taken from Lake Lanier, in the Chattahoochee River drainage of north-central Georgia (Weaver R, Georgia Department of Natural Resources, personal communication).

Here we add mitochondrial DNA (mtDNA) to the genetic analysis of the Lake Chatuge population by identifying and screening species-diagnostic markers for this maternally transmitted molecule. In conjunction with the nuclear markers previously identified by Pierce (1995), this cytoplasmic information was obtained to yield further insights into the magnitudes and patterns of introgression, including the possibility of gender-based asymmetries in the hybridization process. Although other genetically confirmed reports of introgressive hybridization between black basses exist (Koppelman 1994; Morizot et al. 1991; Philipp et al. 1983; Whitmore 1983; Whitmore and Butler 1982; Whitmore and Hellier 1988), none has explored the unique perspectives that a cytonuclear genetic analysis can provide.

Materials and Methods

Collections
To identify potential species-diagnostic mtDNA markers, spotted bass were as-

From the Department of Genetics, University of Georgia, Athens, GA 30602 (Avise, Nelson, and Asmussen), the Georgia Cooperative Fish and Wildlife Research Unit (Pierce) and the National Biological Service (Van Den Avyle), Daniel B. Warnell School of Forest Resources, University of Georgia, Athens, Georgia, and the Savannah River Ecology Laboratory, Aiken, South Carolina (Smith). We wish to thank the personnel of the Georgia Department of Natural Resources for cooperation and assistance and Micky Clemmons of the North Carolina Wildlife Resources Commission for background information. Work was supported by National Science Foundation grants to J.C.A. and MAA, by the Daniel B. Warnell School of Forest Resources to P.C.P., and by contract DE-AC09-76SR00819 between the University of Georgia and the U.S. Department of Energy. Address correspondence to J. C. Avise at the address above.

Journal of Heredity 1997;88:14-20; 0022-1503/97/$5.00
sayed from Lake Lanier, Georgia, in the
Chattahoochee River basin (N = 9), and
from Carters Lake, Georgia, in the Ala-
abama River basin (N = 15). At both lo-
cales, the Alabama subspecies of spotted
bass is native and no smallmouth bass
have been reported (Pierce 1995; Robbins
and MacCrimmon 1974). Lake Lanier is
also the presumed source of the introd-
uction of spotted bass into Lake Chatuge.
Smallmouth bass were assayed from Dale
Hollow Reservoir, Tennessee, in the Ten-
nessee River basin (N = 10). Although
both smallmouth and the northern spotted
bass are native to this locale, the in-
dividuals sampled to identify smallmouth
mtDNA markers appeared to be genetical-
ly “pure,” as gauged both from morpho-
logical appearance and by fixed allozyme
differences from spotted bass as assessed
in larger collection of fish (N = 52) from
that reservoir (Pierce 1995).
Largemouth bass (M. salmoides) also oc-
cur in Lake Chatuge. Thus, for the sake
of completeness, potential mtDNA markers
for this species were identified from a re-
ference sample taken from Lake Oconee,
Georgia, in the Altamaha River basin (N = 18). As judged by restriction fragment
length polymorphism (RFLP) digests of
these samples, largemouth bass mtDNA is
readily distinguishable from that of both
smallmouth and spotted bass. However,
no mtDNA genotypes characteristic of
largemouth bass were uncovered in the
smallmouth/spotted bass collections from
the Lake Chatuge collection considered in
this report, so this species will not be
treated further here.
On October 20, 1994, 251 fish displaying
phenotypes of the spotted/smallmouth/
hybrid complex were sampled from Lake
Chatuge, of which 246 individuals subse-
quently were assayed successfully for
mtDNA (and allozyme) markers. Fish were
collected by electroshocking from several
boats patrolling scattered shoreline loca-
tions around the lake, with no particular
effort to “target” particular Micropterus
species. Thus, barring possible inadver-
tent sampling biases (e.g., via habitat or
depth), the pooled collection can be con-
sidered a random sample of spotted and
smallmouth bass and their hybrids.

Laboratory Assays
Mitochondrial DNA was isolated in closed-
circular form from liver and heart tissues
via CsCl density gradient purification as
described by Lansman et al. (1981). Pur-
fied mtDNA was digested with restriction
enzymes (following manufacturers’ rec-
ommendations), radioactively end-labeled
with 32P nucleotides, and electrophoresed
through 1.0–1.6% agarose gels. Develop-
ment of autoradiographs revealed digest-
ion profiles for 11 restriction enzymes in
the initial population screenings (Avall,
BglII, DraI, HincII, HindIII, KpnI, KspI,
NdeI, PvuII, and SpeI). Digestion patterns
for most of the enzymes were species di-
agnostic in these samples, and four of the
most readily scored systems (Avall, DraI,
HincII, and SpeI) were subsequently as-
sayed as markers of maternal ancestry for
186 individuals from Lake Chatuge.
Another 60 of the Lake Chatuge speci-
mens were too small to recover sufficient
amounts of intact circular mtDNA for stan-
dard RFLP analyses, so other methods had
to be employed. A 2.0 kb fragment con-
taining the control region and adjacent ar-
 eas from CsCl-purified mtDNA was ampli-
 fied from nine bass outside Lake Chatuge
(three from each of the three Micropterus
species) using the primers Pro-L and 12
poly-merase (Promega). From each sample, 10
µl of amplified DNA was digested without
further purification and visualized using
EtBr in agarose gels. Thirty-two restriction
enzymes were used to screen for polymor-
phisms, and three of these (DraI, HincII,
and MspI) revealed potential species-spe-
cific digestion profiles. This specificity
was confirmed by using the same in vitro
assay procedure on the same 2.0 kb frag-
ment in 20 additional individuals from
each of the bass species, and by digesting
with the three enzymes mentioned above.
Then, to determine the species of origin
for the mtDNA of the 60 smaller fish from
Lake Chatuge, total DNA was isolated from
each specimen using a phenol-chloroform
method described in Karl et al. (1992), fol-
lowed by amplification and digestion with
the three diagnostic restriction enzymes.

Results
As judged by mtDNA digestion profiles in
the reference spotted and smallmouth bass
samples taken outside Lake Chatuge, the two
cpecies can be readily distin-
guished with these cytoplasmic markers
(notwithstanding evident within-species
variation; Figure 1). Among the 11 endo-
nucleasest employed in the initial screens,
all except HindIII showed diagnostic spe-
cies differences, often involving more than
a single restriction site change (although
no attempt was made to formally map re-
striction sites or to further characterize
the mtDNA differences).
Digestion profiles for the four species-di-
agnostic restriction enzymes employed to
assay the majority of the bass samples from
Lake Chatuge are shown in Figure 1. These
patterns were invariably consistent in
diagnosis of species origin—for exam-
ple, if the profile in the Avall digest indi-
cated spotted bass mtDNA origin for an
individual, so too did the digestion pro-
files for the other three endonucleases.
Furthermore, profiles for each of the four
enzymes differed between spotted and
smallmouth bass by multiple restriction
site changes. Thus, the possibility of mis-
classification of species origin for an
mtDNA genotype in the Lake Chatuge bass
was negligible.

Single-locus Nuclear by Mitochondrial
Associations
Numerous fish displaying cytonuclear ge-
notypes other than those expected in pure
spotted bass or smallmouth bass were
present in the Lake Chatuge collection
(Table 1). Nonetheless, alleles and geno-
typic disequilibria were highly significant-
different from zero in all cases, indicat-
ing strong nonrandom cytonuclear asso-
ciations (Table 2). These associations are
in the direction of an excess of homospe-
cific cytonuclear combinations relative to
random-assortment expectations (posi-
tive values for D and D, and negative val-
ues for D2), and a disproportionately high
representation of smallmouth bass mtDNA
in the heterozygous class of genotypes at
each nuclear locus (negative values for
D2).

The magnitudes and patterns of cyto-
nuclear association are remarkably consis-
Figure 1. mtDNA digestion profiles of four species-diagnostic restriction enzymes (in our collections) employed to survey the majority of individuals from Lake Chatuge. In each gel, lanes a-e are spotted bass profiles, lane f is the smallmouth bass profile, and the rightmost lane is a 1 kb molecular weight standard (the arrows point to the 1.6 kb band). Note from the AvaII and DraII digests (compare lanes a and b against c-e) that considerable intraspecific mtDNA polymorphism was present among spotted bass, as was also true for smallmouth bass for some of the enzymes employed (not shown).

Table 1. Cytonuclear genotypic counts for the 246 specimens of black bass sampled from Lake Chatuge

<table>
<thead>
<tr>
<th></th>
<th>AA</th>
<th>AB</th>
<th>BB</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malate dehydrogenase-B (MDH-B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>198</td>
<td>25</td>
<td>1</td>
<td>224</td>
</tr>
<tr>
<td>m</td>
<td>183</td>
<td>36</td>
<td>4</td>
<td>222</td>
</tr>
<tr>
<td>Total</td>
<td>201</td>
<td>40</td>
<td>5</td>
<td>246</td>
</tr>
<tr>
<td>Phosphoglucomutase-A (PGM-A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>209</td>
<td>15</td>
<td>0</td>
<td>224</td>
</tr>
<tr>
<td>m</td>
<td>194</td>
<td>25</td>
<td>4</td>
<td>223</td>
</tr>
<tr>
<td>Total</td>
<td>214</td>
<td>28</td>
<td>4</td>
<td>246</td>
</tr>
<tr>
<td>Esterase-2 (EST-Z)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>208</td>
<td>13</td>
<td>3</td>
<td>224</td>
</tr>
<tr>
<td>m</td>
<td>194</td>
<td>22</td>
<td>2</td>
<td>222</td>
</tr>
<tr>
<td>Total</td>
<td>213</td>
<td>25</td>
<td>8</td>
<td>246</td>
</tr>
</tbody>
</table>

At each nuclear locus, A and B refer to marker alleles from spotted bass and smallmouth bass, respectively. For mtDNA, the respective haplotypes from these two species are denoted M and m. In parentheses are expected counts for the cytonuclear genotypes calculated from the marginal frequencies, assuming random associations.

This strongly suggests that the processes responsible were genomically pervasive, rather than idiosyncratic to particular genes, and eliminates potential locus-specific effects such as strong selection directed at particular alleles. In principle, candidates for such genomically pervasive forces include population admixture with positive assortative (homospecific) mating, continued recruitment of pure parental species into the hybrid population, and selection against hybridity per se.

By procedures described in the next section, genetically pure spotted and smallmouth bass individuals can provisionally be distinguished from hybrids through examination of multilocus marker genotypes. Removal of such individuals from Table 1 reveals the cytonuclear patterns within the class of fishes of presumed hybrid ancestry (Table 3). This culling procedure severely reduced sample sizes and thereby diminished the power of the statistical tests, but nonetheless, several of the cytonuclear disequilibria in hybrids remained significant, and the directions of the departures from random-association expectations were identical to those registered in the total data set of Table 1. Thus the tendencies were for excesses of homospecific cytonuclear combinations in hybrids, and for a disproportionate representation of smallmouth bass mtDNA among the heterozygotes at nuclear loci.

Multilocus Cytonuclear Associations

In our approach, an individual was provisionally considered to be a pure spotted or smallmouth bass if homozygous for the appropriate alleles at all three nuclear marker loci, an F1 hybrid if heterozygous at all marker genes, a backcross (generation unspecified) to one or the other parental species if homozygous for the appropriate alleles at one or more loci and heterozygous at others, and a later-generation nonbackcross hybrid if alternately homozygous at these marker loci for alleles from the two parental species. Two caveats should be mentioned. First, the allozyme markers are not strictly fixed for alternate alleles in the two species, but only nearly so (Pierce 1995). However, this difficulty is unlikely to be important in the current study because among the sampled reference populations the highest (and only) frequency of a "wrong" allele in a "pure" species sample was 0.014 (for the
Table 2. Application of cytonuclear disequilibrium statistics to the allozyme by mtDNA data presented in Tables 1 and 3 for the Lake Chatuge collections of black bassa

<table>
<thead>
<tr>
<th>Category</th>
<th>Total collection (N = 246)</th>
<th>sMDH-B</th>
<th>PGMA</th>
<th>EST-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>0.057</td>
<td>0.038</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>Normalizedd</td>
<td>0.066</td>
<td>0.062</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>Standard error</td>
<td>0.009</td>
<td>0.016</td>
<td>0.017</td>
</tr>
<tr>
<td>Individuals of hybrid genotype (N = 67)</td>
<td>Estimate</td>
<td>0.044</td>
<td>0.062</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>Normalizedd</td>
<td>0.059</td>
<td>0.058</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>Standard error</td>
<td>0.001</td>
<td>0.004</td>
<td>0.008</td>
</tr>
</tbody>
</table>

a Estimates in boldface are highly significant (P < .01), whereas those underlined are significant at P < .05 (statistical test procedures from Asmussen and Basten 1994).

b Relative to the maximum disequilibrium possible with the observed sign (Asmussen and Basten 1995).

d 95.5% (21 of 22) of the smallmouth bass mtDNA haplotypes in the Lake Chatuge sample were present in hybrids, rather than in pure smallmouth bass. A nearly identical proportion of smallmouth bass nuclear alleles, 96.0% (121 of 126), was also carried by individuals of hybrid ancestry.

“smallmouth-bass” allele at sMDH-B in spotted bass from Carters Lake; 2N = 74 (Pierce 1995). The second caveat is potentially more important. With only three diagnostic nuclear markers available, the probabilities of misclassification of an individual are nontrivial, but can also be specified precisely in some cases (by procedures detailed in Lamb and Avise 1987). For example, under the rules of Mendelian inheritance for three independent nuclear loci displaying fixed allelic differences, a true first-generation backcross individual might be mistaken as an F1 hybrid with probability (0.5)2 = 0.125, or alternatively (and with the same probability) as a pure member of the parental species to which it was backcrossed.

Table 3. Cytomolecular genotypic counts for the 67 specimens of black bass with nanoparicural (i.e., hybrid) multilocus genotypes sampled from Lake Chatuge

<table>
<thead>
<tr>
<th>mtDNA</th>
<th>AA</th>
<th>AB</th>
<th>BB</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esterase-2 (EST-2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>20</td>
<td>25</td>
<td>1</td>
<td>46</td>
</tr>
<tr>
<td>(15.8)</td>
<td>(27.4)</td>
<td>(2.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>(7.7)</td>
<td>(12.5)</td>
<td>(1.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>40</td>
<td>4</td>
<td>67</td>
</tr>
<tr>
<td>Phosphoglucomutase-A (PGMA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>(24.7)</td>
<td>(19.2)</td>
<td>(2.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>5</td>
<td>13</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>(11.2)</td>
<td>(8.8)</td>
<td>(9.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>50</td>
<td>5</td>
<td>67</td>
</tr>
<tr>
<td>Malate dehydrogenase-B (sMDH-B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>(24.0)</td>
<td>(17.2)</td>
<td>(2.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>(4.8)</td>
<td>(3.4)</td>
<td>(1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>45</td>
<td>3</td>
<td>52</td>
</tr>
</tbody>
</table>

At each nuclear locus, A and B refer to marker alleles from spotted bass and smallmouth bass, respectively. For mtDNA, the respective haplotypes from these two species are denoted M and m. In parentheses are expected counts for the cytonuclear genotypes calculated from the marginal frequencies, assuming random associations.

Discussion

Hubbs and Bailey (1940) appear to have been the first to identify natural hybrids between Micropterus species, but they concluded that hybridization in the genus was "extremely rare." Nonetheless, Micropterus hybrids can be produced in the laboratory (Wheat et al. 1971; Whitt et al. 1971), and several instances of introgressive hybridization in nature have been documented (Koppelman 1994; Whitmore and Bellier 1988), often following introductions of one bass species into the range of another (Moritz et al. 1991; Pierce 1995; Whitmore 1983). Here we have employed cytonuclear genetic markers to document the extent and gender-based pattern of introgressive hybridization following a transplantation of M. punctulatus into a reservoir containing native M. dolomieu.
The addition of mtDNA data to the allozyme information has furthered an understanding of the smallmouth/spotted bass population in Lake Chatuge. First, it adds to the genetic evidence for a profound faunal turnover following the introduction of nonnative spotted bass into Lake Chatuge some 10–15 years ago. The cytoplasmic markers are entirely consistent with those from the nucleus in documenting that the formerly abundant smallmouth bass population has declined dramatically over this period and been replaced by spotted bass and spotted/smallmouth hybrids, which together now account for more than 99% of the sampled specimens. The reasons for this species shift remain unknown, but the fact that the abrupt changes in absolute abundance of the two basses were temporally coincident (see census data for the period 1986–1989 in Pierce [1995]) suggests either that behavioral interactions between the two, and/or ecological or environmental changes that affected both simultaneously, may have been responsible. The precise nature of any such factors, however, remains entirely conjectural in the absence of detailed field studies of habitat requirements and such cytonuclear associations could in principle be promoted by continued migration of pure parental species into the lake, homospecific assortative mating, and/or selection against hybrids. The first explanation is unlikely, because Lake Chatuge is effectively a closed body of water to bass immigration (though it might be possible for smallmouth bass to migrate from upstream reaches of the Hiawassee River). The possibility of selection against hybrids, although generally consistent with available genetic data, is difficult to critically evaluate against formal models because of the rapidly changing genetic composition of the Lake Chatuge population and its obvious nonequilibrium nature. Interestingly, however, these trends in multiocur association are also displayed by the class of individuals of hybrid ancestry (Table 3). Cruzan and Arnold [1993] interpreted such associations in a hybrid population of Iris plants as evidence for selection and assortative mating involving genotypes most similar to those of the pure parental species. Finally, the cytonuclear data indicate a disproportionate representation of smallmouth bass mtDNA (and hence of smallmouth maternal lineages) in certain classes of Lake Chatuge hybrids. An inferred gender-based directionality to hybridization is evidenced most clearly by the predominance of smallmouth bass mtDNA in F₁ hybrids (six of seven individuals) and by the exclusive appearance of smallmouth mtDNA in our sample of backcross hybrids to smallmouth bass. However, among the progeny of inferred backcrosses to spotted bass, more than 80% (41 of 49 individuals) displayed spotted bass mtDNA, which may indicate the presence of later-generation backcross hybrids. As shown in Figure 2, the proportion of offspring carrying spotted bass mtDNA in this class of backcrosses should theoretically double in each successive backcross generation, provided that the reciprocal crosses with respect to gender are equally frequent. Thus, under this scenario, first-, second-, and third-generation backcross classes to spotted bass should display mtDNA in frequencies of about 50%, 75%, and 87.5%, respectively. Such backcross generations are likely in Lake Chatuge, given the age of the introduction and black bass generation lengths (about 2–5 years). In accounting for the high frequency of spotted bass mtDNA observed in these backcross hybrids in Lake Chatuge, it should be remembered that the probable inclusion of early generation backcross

Figure 2. Diagrammatic representation of the increase in the population frequencies of spotted bass mtDNA haplotypes expected in successive generations of unidirectional backcrossing to spotted bass, assuming that all F₁s have smallmouth mothers and that hybrid fish of both genders participate equally in the formation of each backcross generation. Solid and open symbols indicate individuals carrying spotted bass and smallmouth bass mtDNA, respectively. After the parental generation, large gender symbols represent the fish of hybrid ancestry in the cross and smaller symbols always indicate pure spotted bass.
hybrids in the collections might well be offset by the presence of later generation backcross progeny that would have been difficult to distinguish from pure spotted bass based on the three nuclear marker loci employed.

In cytonuclear genetic examinations of natural hybridization involving other species of Centrarchidae, Avise and Saunders (1984) noted a strong tendency for locally rare (as opposed to common) species to provide the female parent in interspecific crosses. This same pattern appears to hold at the present time for the spotted/smoothmouth complex in Lake Chatuge, where spotted bass greatly predominate, yet most F₁s have smoothmouth bass mothers. It is less clear, however, that this gender-based asymmetry of hybridization was always true in Lake Chatuge, because even if most F₁s historically had smoothmouth bass mothers (as is tentatively suggested by the backcross data), this species did not become numerically rare until about 1989 (Pierce 1995).

In summary, although hybridization between smoothmouth bass and spotted bass had been suspected by fishery biologists working in Lake Chatuge, neither the magnitude nor pattern of introgression could have been fully anticipated from casual morphological inspections alone. Thus, the cytonuclear examinations have added considerable detail to the description of genetic assimilation and species turnover in this reservoir.

Implications for Fisheries Management and Conservation Following the arrival of a nonnative species, declines in native species’ abundance through introgressive swamping, ecological competition, or both are general sources of concern in conservation biology. Several cases have been documented in which native taxa appear threatened by introgressive hybridization in addition to ecological competition from human-introduced or otherwise range-expanded congeners (e.g., Allendorf and Waples 1996; Brochmann 1984; Cade 1983; Echelle and Connor 1988; Ellstrand 1992; Rieseberg and Swensen 1996; Wayne 1996; Woodruff and Gould 1987). Because of concerns about extinction at the species level, most such case studies have monitored responses in rare or localized epidemics to foreign introductions.

The black basses of Lake Chatuge provide another example in which the introduction of a nonnative species has been followed by a severe decline in abundance of a native congener and extensive introgressive hybridization. However, both spotted bass and smoothmouth bass remain abundant elsewhere, are geographically widespread, and have allopatric strongholds in coastal drainages of the southeastern United States and in the Great Lakes region, respectively. Thus any immediate conservation concerns for the basses arising from the current analysis are primarily local rather than species threatening. Fishery biologists and their constituents must decide whether the replacement of smoothmouth bass by spotted bass and hybrids in Lake Chatuge has been desirable or injurious to the sport fishery (see Addendum). Rather, the broader significance of this study lies in the object lesson it provides with regard to human-mediated introductions, which the data demonstrate can have rapid, dramatic, and sometimes unanticipated genetic and demographic consequences for the species involved.

Addendum

In January 1995, an inquiry was made to the North Carolina Wildlife Resources Commission concerning a possible state record "spotted bass" that had been caught in Lake Chatuge in December 1994. The bass weighed 8 pounds, 14 ounces, and would have eclipsed the prior state record for that species by almost 3 pounds. However, visual inspection of the fish showed it to be intermediate in coloration and meristic characters between spotted and smoothmouth bass (Clemmons M, personal communication). Tissues subsequently sent to our laboratory for molecular genetic examination revealed the specimen to be heterozygous at all three species-diagnostic allozyme loci employed in the current study and to possess spotted bass mtDNA. Thus the individual was most likely an F₁ hybrid between a spotted bass female and smoothmouth bass male. On the basis of this combined morphologic and genetic evidence, official certification was denied this specimen as a state record for spotted bass.

Interestingly, the prior three North Carolina state records for "spotted bass," posted in 1991, 1992, and 1992, respectively, all came from Lake Chatuge (and all from the Shooting Creek arm of the lake). None of these fish has been examined genetically.

References

Received January 26, 1996
Accepted May 24, 1996
Corresponding Editor: Rodney Honeycutt