MOLECULAR APPROACHES IN NATURAL RESOURCE CONSERVATION AND MANAGEMENT

Recent advances in molecular genetics and genomics have been embraced by many scientists in natural resource conservation. Today, several major conservation and management journals are using the “genetics” editors of this book to deal solely with the influx of manuscripts that employ molecular data. The editors have attempted to synthesize some of the major uses of molecular markers in natural resource management in a book targeted not only at scientists but also at individuals actively making conservation and management decisions. To that end, the text features contributors who are major figures in molecular ecology and evolution – many having published books of their own. The aim is to direct and distill the thoughts of these outstanding scientists by compiling compelling case histories in molecular ecology as they apply to natural resource management.

J. Andrew DeWoody is Professor of Genetics and University Faculty Scholar at Purdue University. He earned his MS in genetics at Texas A&M University and his PhD in zoology from Texas Tech University. His recent research in genetics, evolution, and ecology has been funded by organizations including the National Science Foundation, the U.S. Department of Agriculture (USDA) National Research Initiative, the Great Lakes Fishery Trust, and the National Geographic Society. His research is published in more than thirty-five journals, and he has served as Associate Editor for the North American Journal of Fisheries Management, the Journal of Wildlife Management, and Genetica.

John W. Bickham is Professor in the Department of Forestry and Natural Resources (FNR) and Director of the Center for the Environment at Purdue University. He received his MS in biology from the University of Dayton and his PhD in zoology from Texas Tech University. He was on the faculty of Texas A&M University’s Department of Wildlife and Fisheries Sciences for thirty years. He has published more than two hundred articles in scientific journals in evolutionary genetics, including comparative cytogenetics, molecular systematics, molecular ecology, and ecotoxicology.

Charles H. Michler is the Fred M. van Eck Director of the Hardwood Tree Improvement and Regeneration Center at Purdue University and Site Director of the National Science Foundation Industry & University Cooperative Research Program’s Center for Advanced Forest Systems. He earned his MS and PhD in horticulture, physiology, and biochemistry from The Ohio State University. He has published more than eighty-five scholarly works and has edited nine books and proceedings. He is Editor of Plant Breeding Reviews and Associate Editor of the Journal of Forest Research.

Krista M. Nichols is Assistant Professor, Departments of Biological Sciences and Forestry and Natural Resources at Purdue University. She received her MS in fisheries and wildlife from Michigan State University and her PhD in zoology from Washington State University. She was a National Research Council postdoctoral Fellow at the National Marine Fisheries Services, Northwest Fisheries Science Center. Dr. Nichols has published in the fields of ecotoxicology, genetics, and ecology.

Olin E. Rhodes, Jr., is Professor in the FNR and Director of the Interdisciplinary Center for Ecological Sustainability at Purdue University. He received his MS in wildlife biology from Clemson University and his PhD in wildlife ecology from Texas Tech University. He was named a Purdue University Faculty Scholar in 2006. He has published more than 135 scholarly works in ecology and genetics and has recently served as Associate Editor of the Journal of Wildlife Management.

Keith E. Woeste is a research molecular geneticist for the USDA Forest Service Northern Research Station Hardwood Tree Improvement and Regeneration Center and Adjunct Assistant Professor at Purdue University’s FNR. He received an MDiv in theology from the Jesuit School of Theology at Berkeley, an MS in horticulture from the University of California–Davis, and his PhD in genetics from the University of California–Davis.
Molecular Approaches in Natural Resource Conservation and Management

Edited by

J. Andrew DeWoody
Purdue University

John W. Bickham
Purdue University

Charles H. Michler
Purdue University

Krista M. Nichols
Purdue University

Olin E. Rhodes, Jr.
Purdue University

Keith E. Woeste
Purdue University
Contents

Contributors ix

Preface xv

1 Biodiversity discovery and its importance to conservation 1
Rodney L. Honeycutt, David M. Hillis, and John W. Bickham

Box 1: Genetic identification of cryptic species:
An example in Rhogeessa 22
Amy B. Baird

2 Gene flow, biodiversity, and genetically modified crops: Weedy
rice in Thailand 35
Barbara Schaal, Wesley J. Leverich, Sansanee Jamjod, Chanya
Maneechote, Anbreen Bashir, Amena Prommin, Adirek Punyalue,
Athitya Suta, Theerasak Sintukhiew, Anupong Wongtamee, Tonapha
Pusadee, Sunisa Niruntrayakul, and Benjavan Rerkasem

Box 2: Environmental risk assessment of genetically
engineered salmon 37
Robert H. Devlin and Fredrik L. Sundström

3 A community and ecosystem genetics approach to conservation
biology and management 50
Thomas G. Whitham, Catherine A. Gehring, Luke M. Evans, Carri J.
LeRoy, Randy K. Bangert, Jennifer A. Schweitzer, Gerard J. Allan, Robert C.
Barbour, Dylan G. Fischer, Bradley M. Potts, and Joseph K. Bailey

Box 3: Landscape genetics of an American chestnut borer 63
Jeffrey D. Holland

4 Vertebrate sex-determining genes and their potential utility in
conservation, with particular emphasis on fishes 74
J. Andrew DeWoody, Matthew C. Hale, and John C. Avise

Box 4: Sex identification and population size of grizzly
bears by using noninvasive genetic sampling 76
Lisette Waits

5 Historical and contemporary dynamics of adaptive differentiation
in European oaks 101
Antoine Kremer, Valérie Le Corre, Rémý J. Petit, and Alexis Ducouso
<table>
<thead>
<tr>
<th>Box 5: Adaptive shifts in natural populations of high dispersing species</th>
<th>117</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stephen R. Palumbi</td>
<td></td>
</tr>
</tbody>
</table>

6. Association genetics, population genomics, and conservation: Revealing the genes underlying adaptation in natural populations of plants and animals | 123 |
| Krista M. Nichols and David B. Neale |

Box 6: Unraveling counterintuitive evolutionary trends: Coat color in Soay sheep | 139 |
| Jake Gratten, Alastair J. Wilson, Allan F. McRae, Dario Beraldi, Peter M. Visscher, Josephine M. Pemberton, and Jon Slate |

7. Hybridization in threatened and endangered animal taxa: Implications for conservation and management of biodiversity | 169 |
| Kelly R. Zamudio and Richard G. Harrison |

Box 7: Mating opportunities in animal hybrid zones | 171 |
| Marjorie Matocq |

8. Pollen and seed movement in disturbed tropical landscapes | 190 |
| J. L. Hamrick |

Box 8–1: Effective population size | 192 |
| J. L. Hamrick |

Box 8–2: Allelic recharge in populations recovering from bottleneck events | 194 |
| Joseph D. Busch, Jennifer McCreight, and Peter M. Waser |

9. Implications of landscape alteration for the conservation of genetic diversity of endangered species | 212 |
| Paul L. Leberg, Giridhar N. R. Athrey, Kelly R. Barr, Denise L. Lindsay, and Richard F. Lance |

Box 9: Dune restoration introduces genetically distinct American beachgrass, Ammophila breviligulata, into a threatened local population | 214 |
| Julie R. Etterson and Rebecca M. Holmstrom |

10. Integrating evolutionary considerations into recovery planning for Pacific salmon | 239 |
| Robin S. Waples, Michelle M. McClure, Thomas C. Wainwright, Paul McElhany, and Peter W. Lawson |

Box 10: The Kermode bear: A swirl of scientific, management, and ethical values in British Columbia | 259 |
| Kermit Ritland |

11. Using molecular methods to improve the genetic management of captive breeding programs for threatened species | 267 |
| Jamie A. Ivy and Robert C. Lacy |

Box 11: Pedigree reconstruction: An alternative to systematic breeding | 285 |
| Yousry A. El-Kassaby |
Contents

12 Wildlife reintroductions: The conceptual development and application of theory 296
 Olin E. Rhodes, Jr., and Emily K. Latch

 Box 12: Genetic ramifications of restoration of blight-resistant American chestnut 307
 Lisa Worthen, Charles H. Michler, and Keith E. Woeste

13 Evolutionary toxicology 320
 Lee R. Shugart, Chris W. Theodorakis, and John W. Bickham

 Box 13: Microarrays and molecular phenotypes 335
 Stan D. Wullschleger and David J. Weston

Index 363

Color plates follow page 174.
Contributors

Gerard J. Allan
Department of Biological Sciences
Environmental Genetics and Genomics Facility
Northern Arizona University
Flagstaff, AZ

Giridhar N. R. Athrey
Department of Biology
University of Louisiana
Lafayette, LA

John C. Avise
Ecology and Evolutionary Biology
School of Biological Sciences
University of California
Irvine, CA

Joseph K. Bailey
Department of Biological Sciences and the Merriam-Powell Center for Environmental Research
Northern Arizona University
Flagstaff, AZ

Amy B. Baird
National Museum of Natural History – Naturalis
Leiden, The Netherlands

Randy K. Bangert
Biological Sciences
Idaho State University
Pocatello, ID

Robert C. Barbour
Cooperative Research Centre for Sustainable Production Forestry
School of Plant Science
University of Tasmania
Australia

Kelly R. Barr
Department of Biology
University of Louisiana
Lafayette, LA

Anbreen Bashir
Department of Biology
St. Louis University
St. Louis, MO

Dario Beraldi
Wild Evolution Group
Institute of Evolutionary Biology
School of Biological Sciences
University of Edinburgh
Edinburgh, UK

John W. Bickham
Department of Forestry and Natural Resources and Center for the Environment
Purdue University
West Lafayette, IN
Contributors

Joseph D. Busch
Microbial Genetics and Genomics Center
Northern Arizona University
Flagstaff, AZ

Robert H. Devlin
Fisheries and Oceans Canada
West Vancouver, BC
Canada

J. Andrew DeWoody
Departments of Forestry and Natural Resources and Biological Sciences
Purdue University
West Lafayette, IN

Alexis Ducouso
UMR Biodiversité Gènes et Communautés
Institut National de la Recherche Agronomique
Cestas, France

Yousry A. El-Kassaby
Faculty of Forestry
University of British Columbia
Vancouver, BC
Canada

Julie R. Etterson
Department of Biology
University of Minnesota Duluth
Duluth, MN

Luke M. Evans
Department of Biological Sciences
Northern Arizona University
Flagstaff, AZ

Dylan G. Fischer
The Evergreen State College
Olympia, WA

Catherine A. Gehring
Department of Biological Sciences
Northern Arizona University
Flagstaff, AZ

Jake Gratten
Department of Animal and Plant Sciences
University of Sheffield
Sheffield, UK

Matthew C. Hale
Department of Biological Sciences
Purdue University
West Lafayette, IN

J. L. Hamrick
Department of Plant Biology
University of Georgia
Athens, GA

Richard G. Harrison
Department of Ecology and Evolutionary Biology
Cornell University
Ithaca, NY

David M. Hillis
Section of Integrative Biology
University of Texas
Austin, TX

Jeffrey D. Holland
Department of Entomology
Purdue University
West Lafayette, IN

Rebecca M. Holmstrom
Department of Biology
University of Minnesota Duluth
Duluth, MN

Rodney L. Honeycutt
Natural Science Division
Pepperdine University, Seaver College
Malibu, CA
Contributors

Jamie A. Ivy
Department of Collections
San Diego Zoo
San Diego, CA

Sansanee Jamjod
Faculty of Agriculture
Chiang Mai University
Chiang Mai, Thailand

Antoine Kremer
UMR Biodiversité Gènes et Communautés
Institut National de la Recherche Agronomique
Cestas, France

Robert C. Lacy
Department of Conservation Science
Chicago Zoological Society
Brookfield, IL

Richard F. Lance
Environmental Lab
U.S. Army Engineer Research and Development Center
Vicksburg, MS

Emily K. Latch
Department of Biological Sciences
University of Wisconsin–Milwaukee
Milwaukee, WI

Peter W. Lawson
Conservation Biology Division
NOAA Fisheries
Northwest Fisheries Science Center
Newport, OR

Valérie Le Corre
UMR Biologie et Gestion des Adventices
Institut National de la Recherche Agronomique
Dijon, France

Paul L. Leberg
Department of Biology
University of Louisiana
Lafayette, LA

Carri J. LeRoy
The Evergreen State College
Olympia, WA

Wesley J. Leverich
Department of Biology
St. Louis University
St. Louis, MO

Denise L. Lindsay
Environmental Lab
U.S. Army Engineer Research and Development Center
Vicksburg, MS

Chanya Maneechote
Faculty of Agriculture
Chiang Mai University
Chiang Mai, Thailand

Marjorie Matocq
Department of Natural Resources and Environmental Science
University of Nevada
Reno, NV

Michelle M. McClure
Conservation Biology Division
NOAA Fisheries
Northwest Fisheries Science Center
Seattle, WA

Jennifer McCreight
Department of Forestry and Natural Resources
Purdue University
West Lafayette, IN

Paul McElhany
Conservation Biology Division
NOAA Fisheries
Northwest Fisheries Science Center
Seattle, WA
Contributors

Allan F. McRae
Genetic Epidemiology Group
Queensland Institute of Medical Research
Herston, Australia

Charles H. Michler
Department of Forestry and Natural Resources and Hardwood Tree Improvement and Regeneration Center
Purdue University
West Lafayette, IN

David B. Neale
Department of Plant Sciences
University of California at Davis
Davis, CA

Krista M. Nichols
Departments of Forestry and Natural Resources and Biological Sciences
Purdue University
West Lafayette, IN

Sunisa Niruntrayakul
Faculty of Agriculture
Chiang Mai University
Chiang Mai, Thailand

Stephen R. Palumbi
Department of Biology
Hopkins Marine Station
Stanford University
Pacific Grove, CA

Josephine M. Pemberton
Wild Evolution Group
Institute of Evolutionary Biology
School of Biological Sciences
University of Edinburgh
Edinburgh, UK

Rémy J. Petit
UMR Biodiversité Gènes et Communautés
Institut National de la Recherche Agronomique
Cestas, France

Bradley M. Potts
Cooperative Research Centre for Sustainable Production Forestry
School of Plant Science
University of Tasmania
Australia

Amena Prommin
Faculty of Agriculture
Chiang Mai University
Chiang Mai, Thailand

Adirek Punyalue
Faculty of Agriculture
Chiang Mai University
Chiang Mai, Thailand

Tonapha Pusadee
Faculty of Agriculture
Chiang Mai University
Chiang Mai, Thailand

Benjavan Rerkasem
Faculty of Agriculture
Chiang Mai University
Chiang Mai, Thailand

Olin E. Rhodes, Jr.
Department of Forestry and Natural Resources
Purdue University
West Lafayette, IN

Kermit Ritland
Department of Forest Sciences
University of British Columbia
Vancouver, BC
Canada
Barbara Schaal
Department of Biology
Washington University
St. Louis, MO

Jennifer A. Schweitzer
Ecology and Evolutionary Biology
University of Tennessee
Knoxville, TN

Lee R. Shugart
LR Shugart and Associates, Inc.
Oak Ridge, TN

Theerasak Sintukhiew
Faculty of Agriculture
Chiang Mai University
Chiang Mai, Thailand

Jon Slate
Department of Animal and Plant Sciences
University of Sheffield
Sheffield, UK

Fredrik L. Sundström
Fisheries and Oceans Canada
West Vancouver, BC
Canada

Athitya Suta
Faculty of Agriculture
Chiang Mai University
Chiang Mai, Thailand

Chris W. Theodorakis
Biology Department
Southern Illinois University at Edwardsville
Edwardsville, IL

Peter M. Visscher
Queensland Institute of Medical Research
Royal Brisbane Hospital
Queensland, Australia

Thomas C. Wainwright
Fish Ecology Division
NOAA Fisheries
Northwest Fisheries Science Center
Newport, OR

Lisette Waits
Fish and Wildlife Resources
University of Idaho
Moscow, ID

Robin S. Waples
Conservation Biology Division
NOAA Fisheries
Northwest Fisheries Science Center
Seattle, WA

Peter M. Waser
Department of Biological Sciences
Purdue University
West Lafayette, IN

David J. Weston
Environmental Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN

Thomas G. Whitham
Department of Biological Sciences and Merriam-Powell Center for Environmental Research
Northern Arizona University
Flagstaff, AZ

Alastair J. Wilson
Institute of Evolutionary Biology
School of Biological Sciences
University of Edinburgh
Edinburgh, UK

Keith E. Woeste
Department of Forestry and Natural Resources and Hardwood Tree Improvement and Regeneration Center
Purdue University
West Lafayette, IN
Contributors

Anupong Wongtamee
Faculty of Agriculture
Chiang Mai University
Chiang Mai, Thailand

Lisa Worthen
Department of Forestry and Natural Resources
Purdue University
West Lafayette, IN

Stan D. Wullschleger
Environmental Sciences Division
Oak Ridge National Laboratory
Oak Ridge, TN

Kelly R. Zamudio
Department of Ecology and Evolutionary Biology
Cornell University
Ithaca, NY
The world would be a wonderful place if our natural resources (e.g., forests, fish, and wildlife) needed no management and conservation was not a concern. In a world with a global human population approaching 7 billion and where most developed nations overconserve these resources, however, conservation is a concern and management is necessary for sustainable use. Historically, natural resource management strategies were determined by the collection and interpretation of basic field data. Today, as challenges to the sustainability and conservation of our natural resources arise, managers often need data that cannot be acquired using conventional methods. For example, a natural resource manager might want to know the number of successful breeders in a population or if genetic variation was being depleted because of a management practice. Traditional field craft alone cannot directly address such questions, but the answers can be determined with some precision if the field work is coupled with modern molecular genetic techniques.

Molecules can enlighten us about biological attributes that are virtually impossible to observe in the field (Avise 2004). Parentage analysis is one such arena in which genetic data can inform management practices (DeWoody 2005), but there are a host of others. For example, molecular data have revealed deep evolutionary splits in stocks at one time thought to be homogeneous. This finding has concomitant management implications (Hoffman et al. 2006). Similarly, molecules can enlighten us about biologies that are virtually impossible to observe in the field, such as pollen flow (Hamrick, this volume) or the physiology of migration (Nichols et al. 2008).

Recent advances in molecular genetics and genomics have been embraced by many scientists in natural resource conservation. Today, several major conservation and management journals (e.g., Journal of Wildlife Management, North American Journal of Fisheries Management, Plant Breeding Reviews) are now using “genetics” editors to deal solely with the influx of manuscripts that employ molecular data. We have attempted to synthesize some of the major uses of molecular markers in natural resource management in a book targeted not only at scientists but also at individuals actively making conservation and management decisions. To that end, we have identified contributors who are major figures in molecular ecology and evolution; many have published books of their own. Our aim has been to direct and distill the thoughts of these outstanding
scientists by compiling compelling case histories in molecular ecology as they apply to natural resource management.

Clearly, we hope this book will appeal to academics interested in conservation genetics, molecular ecology, and the quantitative genetics of wild organisms. We think this book could be used as an educational tool – as a text for graduate ecology/genetics courses but also, perhaps, in advanced undergraduate courses. Furthermore, we hope this book will be useful to audiences in natural resource management, education, and research by clarifying how genetic approaches can be used to answer resource-related questions.

ABOUT THE EDITORS

Our collective expertise spans from molecular population genetics in the wild to genomics and quantitative genetics of managed or cultured species. We all study the genetics of natural resources, however, and we find that similar issues arise in wildlife, forestry, and fisheries. For example, when the forest geneticists began asking how many sires contributed pollen to a nut-bearing hardwood tree, it turns out that fisheries geneticists had already studied this problem from the perspective of a male fish guarding a nest full of developing embryos, and they had created computer programs to estimate the number of parents contributing gametes to a nest (DeWoody et al. 2000). Another such intersection of research across disciplines lies in the study of genetic processes in small populations; the same conceptual and analytical approaches being used to elucidate the genetic consequences of wildlife reintroductions (Latch & Rhodes 2005) are employed to evaluate genetic diversity in hardwood tree species subjected to severe habitat fragmentation (Victory et al. 2006). Our desire to produce a book stems from our mutual interests in understanding how molecular genetics can be used to inform and improve natural resource management.

In addition to our research interests, we teach several courses that directly pertain to this book. These courses include Conservation Genetics (DeWoody), Molecular Ecology and Evolution (DeWoody), and Evolutionary Quantitative Genetics (Nichols). Furthermore, several of us (DeWoody, Michler, Rhodes) have served as “genetics” editors for conservation and management journals, including Journal of Wildlife Management, North American Journal of Fisheries Management, and Plant Breeding Reviews.

ACKNOWLEDGMENTS

In addition to the authors, most of whom also provided reviews on other chapters and/or boxes, we thank the following individuals for their invaluable feedback: Jean Beaulieu, Tasha Belfiore, John Burke, Dave Coltman, Tariq Ezaz, Ben Fitzpatrick, Anthony Fiumera, Mike Goodisman, Rick Howard, Irby Lovette, Bill Muir, Patty Parker, Devon Pearse, Joe Quattro, Kim Scribner, Ron Sederoff, and Rod Williams. All provided insightful comments that directly strengthened
individual chapters and boxes, and we trust that this book has been enhanced by their efforts.

This volume was largely possible because of the financial and logistical support of the Department of Forestry and Natural Resources at Purdue University. In particular, the department sponsored an October 2008 meeting at Purdue where many of the book contributors congregated for three days of scientific discourse and fellowship before finalizing their respective chapters or boxes.

Our own research programs have been supported by a variety of organizations, including the National Science Foundation (DeWoody, Bickham, Michler, Nichols), the U.S. Department of Agriculture (DeWoody, Michler, Nichols, Rhodes, Woeste), the State of Indiana (DeWoody, Michler, Rhodes), the National Oceanic and Atmospheric Administration (Bickham), the Great Lakes Fishery Trust (DeWoody, Nichols), and the U.S. Forest Service (Michler, Woeste). We thank them all for investing in science.

REFERENCES

4 Vertebrate sex-determining genes and their potential utility in conservation, with particular emphasis on fishes

J. Andrew DeWoody, Matthew C. Hale, and John C. Avise

GENETIC MARKERS IN WILDLIFE CONSERVATION

Individual identification

Often, animals leave clues that can provide some information about their individual identities. These may be conventional fingerprints, which are extremely useful in courts of law but can be physically altered or removed and are restricted to humans. In contrast, deoxyribonucleic acid (DNA) fingerprinting (Avise 2004) is important not only in human forensics and paternity analysis but also in conservation biology and resource management (Table 4–1). When monitoring DNA fingerprints, biologists are capitalizing on the permanent genetic tags by which nature has labeled each individual. In principle, DNA fingerprints (e.g., from leaves, root tips, blood, hair, or feathers) can be traced over space and time, thereby yielding insights into organismal behavior, population structure, and population demography.

Sexing assays and conservation

In concert with individual identification via DNA fingerprinting, molecular sexing has proven valuable in conservation and management (see Box 4 by Lisette Waits). Molecular assays that distinguish males from females can be informative in many ways. For example, the sexes of most dioecious plants are indistinguishable prior to sexual maturity, yet molecular assays have revealed that sex ratios change as seeds develop into reproductively mature plants (Korpelainen 2002; Korpelainen & Kostamo 2008). For vertebrates, most efforts in molecular sexing have focused on mammals and birds in part because of the special interest in these animals, but also because the mode of sex determination

We thank Bob Devlin, Tariq Ezaz, and members of the DeWoody group for their comments on an earlier version of the manuscript. The lake sturgeon research described herein was funded by grants to J. Andrew DeWoody from the Great Lakes Fishery Trust and the Indiana Department of Natural Resources through a State Wildlife Grant (T07R05).
Vertebrate sex-determining genes and their potential utility

Table 4–1. DNA fingerprinting plays a major role in the modern management of our natural resources

<table>
<thead>
<tr>
<th>Organism</th>
<th>Insights</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polar bear (Ursus maritimus)</td>
<td>Long annual migrations, but little gene flow</td>
<td>Paetkau et al. 1995</td>
</tr>
<tr>
<td>Atlantic salmon (Salmo salar)</td>
<td>Geographic origin of fraudulent fish</td>
<td>Primmer et al. 2000</td>
</tr>
<tr>
<td>Painted turtle (Chrysemys picta)</td>
<td>Genetic mark-recapture estimates of population size</td>
<td>Pearse et al. 2001</td>
</tr>
<tr>
<td>Passerine birds</td>
<td>Genetic promiscuity despite social monogamy</td>
<td>Griffith et al. 2002</td>
</tr>
<tr>
<td>Gray (Halichoerus grypus) and harbor (Phoca vitulina) seals</td>
<td>Dietary preferences via scatology Monogamy, turnover, population size</td>
<td>Reed et al. 1997, Rudnick et al. 2005, 2008</td>
</tr>
</tbody>
</table>

is known and conserved within each of these two taxonomic groups. Thus, reliable molecular-sexing assays have been relatively straightforward to develop and also to transfer across species within each group.

To date, DNA-based sexing has been most valuable in the conservation and management of mammals. For instance, Zhan and colleagues (2007) discovered via molecular sexing that dispersal in giant pandas (Ailuropoda melanoleuca) is female-biased, driven largely by female competition for birthing dens. In another mammalian example, Blejwas and coworkers (2006) used DNA from the saliva of attack wounds to determine that male coyotes (Canis latrans) are most often responsible for sheep kills. Finally, Bradley and colleagues (2008) used fecal DNA to assess the demography of gorillas (Gorilla gorilla) at nesting sites and showed that individual age and/or sex determinations based on dung size alone may be misleading.

With regard to such studies in birds, Millar and coworkers (1997) sexed monomorphic individuals of the highly endangered New Zealand black stilt (Himantopus novaezelandiae), thus allowing captive individuals to be paired on the basis of gender. Clout and colleagues (2002) showed by molecular sexing that supplemental feeding of critically endangered kakapos (Strigops habroptilus) in the wild led to male-biased clutches because of the ability of female birds to manipulate the sex ratio of their offspring. Finally, Rudnick and coworkers (2005) coupled DNA fingerprinting with sexing assays to infer genetic parentage, demographic turnover, and variance in chick sex ratios over six years in a population of imperial eagles (Aquila heliaca).

The utility of DNA-based sexing assays among mammals and birds is due largely to the conserved mode of sex determination within each of these taxonomic groups, thus allowing sex assays developed in particular species to be applied with only slight modifications to many taxa. The evolution of sex-determining mechanisms has been addressed by Bull (1983) and several others (e.g., Mank et al. 2006). As we will see, genetic sex determination (GSD) is nearly universal.
BOX 4: SEX IDENTIFICATION AND POPULATION SIZE OF GRIZZLY BEARS BY USING NONINVASIVE GENETIC SAMPLING

Lisette Waits

Problem

Globally, the numbers of large carnivores have declined due to human persecution and loss of habitat. As a result, there are many vulnerable and endangered populations of conservation concern. To manage these populations, researchers need to collect basic data on population size, population trend, and sex ratios. Historically, this type of data was collected by capturing and marking animals. Capture rates are generally low for large carnivores, however, and capture techniques pose a risk for humans and the study organism. The application of molecular tools in the form of noninvasive genetic sampling of hair and fecal samples has provided an alternative approach for counting individual animals and determining sex.

Case Study

Grizzly bears (Ursus arctos horribilis) were listed as threatened under the U.S. Endangered Species Act in 1975, and six recovery zones were identified. The grizzly bear population of the Northern Continental Divide Ecosystem (NCDE) Recovery Zone in northwestern Montana, including Glacier National Park, is particularly important to the long-term viability of grizzly bears in the lower forty-eight states due to its connection to grizzly bear populations in Canada.

In 1998, bear managers launched a large-scale noninvasive genetic sampling effort to estimate the number of bears in a 7,933 km² area in the northern one-third of the NCDE (Boulanger et al. 2008; Kendall et al. 2008). In 1998 and 2000, almost 15,000 hair samples were collected using barbed wire hair traps (with a scent lure attractant) systematically distributed using a 125-unit grid of 8 × 8 km cells and naturally occurring bear rub trees distributed along 1,185 km of trails. Grizzly bear samples were separated from black bear samples by amplifying a section of the mitochondrial DNA control region with a diagnostic length variant. Individual bears were identified by genotyping six microsatellite loci. Sex identification was initially conducted on all unique individuals using the SRY marker and was verified using a size polymorphism in the amelogenin gene. Both methods produce a single PCR fragment for females and two PCR fragments for males. These data were used to estimate population size and sex ratio (Boulanger et al. 2008; Kendall et al. 2008).

Capture probability varied by sex and by sampling method. Males were captured more frequently at rub trees, and females were captured more frequently at hair traps (Box Table 4–1). Sex ratio estimates varied depending on the sampling method, but results from hair trapping were closest to the estimates obtained from a mark-recapture population estimate using the full data set (Box Table 4–1).
Vertebrate sex-determining genes and their potential utility

Box Table 4–1. Minimum (Min) count of male (M) and female (F) grizzly bears, sex ratio, and mark-recapture population estimate determined using DNA analysis of hair samples collected using hair traps and rub trees in the Greater Glacier Ecosystem (from Kendall et al. 2008)

<table>
<thead>
<tr>
<th>Year</th>
<th>Min count hair traps</th>
<th>Min count rub trees</th>
<th>Population estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>M</td>
<td>F:M</td>
</tr>
<tr>
<td>1998</td>
<td>91</td>
<td>56</td>
<td>1.63</td>
</tr>
<tr>
<td>2000</td>
<td>85</td>
<td>70</td>
<td>1.21</td>
</tr>
</tbody>
</table>

Molecular sex identification has become an important tool for the conservation and management of wildlife species. This study demonstrates the value of noninvasive sampling and molecular sex identification to the conservation and management of grizzly bears and highlights the importance of considering potential biases introduced by sampling methods when using noninvasive genetic approaches to estimate sex ratios.

REFERENCES

in mammals and birds but occurs far more sporadically in reptiles, amphibians, and fishes (Table 4–2).

Sex determination is chromosomal (with males being XY and females XX) in most of the 5,000 extant therian mammals. Exceptions include some voles in which both sexes are XX or XO (Just et al. 1995, 2007) and the monotremes (platypus and echidnas) in which sex determination includes five X and five Y chromosomes; the Xs are homologous to the bird Z chromosome (Grützner et al. 2004; Veyrunes et al. 2008). Sex determination is probably chromosomal in most if not all of the 10,000 extant species of birds (Mank & Ellegren 2007), but males are the homogametic sex (ZZ) and females are heterogametic (ZW).

SEX-DETERMINING GENES

Mammals and birds
The molecular mechanism of sex determination is also conserved across most mammals. The mammalian sex-determining gene Sry encodes a transcription factor (SRY) that initiates the male cascade of sexual differentiation (Table 4–3; Sinclair et al. 1990; Ferguson-Smith 2007). Known exceptions (species that do not have the Sry gene or that do not express SRY) include the five monotremes.
Table 4–2. Vertebrate sex-determining mechanisms are diverse

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Sex determination</th>
<th>Examples</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XY</td>
<td></td>
<td>Nearly all therians</td>
<td>Schafer & Goodfellow 1996</td>
</tr>
<tr>
<td>XX</td>
<td></td>
<td>Ellobius lutescens</td>
<td>Just et al. 1995</td>
</tr>
<tr>
<td>XXXX/YY</td>
<td></td>
<td>Monotremes (platypus and echidnas)</td>
<td>Grützer et al. 2004</td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZW</td>
<td></td>
<td>Presumably all</td>
<td>Smith & Sinclair 2004</td>
</tr>
<tr>
<td>Reptiles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XY</td>
<td></td>
<td>Bassiana duperreyyi</td>
<td>Radder et al. 2007</td>
</tr>
<tr>
<td>ZW</td>
<td></td>
<td>Pogona vitticeps</td>
<td>Ezaz et al. 2005</td>
</tr>
<tr>
<td>ESD (TSD)</td>
<td></td>
<td>Amphibolurus muricatus</td>
<td>Warner & Shine 2008</td>
</tr>
<tr>
<td>GSD+ESD</td>
<td></td>
<td>Gekko japonicus</td>
<td>Valenzuela et al. 2003</td>
</tr>
<tr>
<td>Amphibians</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XY</td>
<td></td>
<td>Rana rugosa</td>
<td>Ogata et al. 2008</td>
</tr>
<tr>
<td>ZW</td>
<td></td>
<td>Rana rugosa</td>
<td>Ogata et al. 2008</td>
</tr>
<tr>
<td>XY (with reversals3)</td>
<td></td>
<td>Rana temporaria</td>
<td>Matsuba et al. 2008</td>
</tr>
<tr>
<td>Fishes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XY</td>
<td></td>
<td>Takifugu rubipes</td>
<td>Kikuchi et al. 2007</td>
</tr>
<tr>
<td>ZW</td>
<td></td>
<td>Characidium cf. gomesi</td>
<td>Vicari et al. 2008</td>
</tr>
<tr>
<td>XY</td>
<td></td>
<td>Lutjanus quinquelineatus</td>
<td>Ueno & Takai 2008</td>
</tr>
<tr>
<td>XX/XY</td>
<td></td>
<td>Ancistrus sp. 1 Balbina</td>
<td>Ribeiro de Oliveira et al. 2008</td>
</tr>
<tr>
<td>ZZ</td>
<td></td>
<td>Ancistrus sp. 2 Barcelos</td>
<td>Ribeiro de Oliveira et al. 2008</td>
</tr>
<tr>
<td>Z1Z2W1W2</td>
<td></td>
<td>Oreochromis niloticus</td>
<td>Mair et al. 1991</td>
</tr>
<tr>
<td>GSD+ESD</td>
<td></td>
<td>Menidia menida</td>
<td>Conover & Kynard 1981</td>
</tr>
</tbody>
</table>

1 Environmental factors can also influence sex determination in these species, so they might also be categorized as GSD+ESD.
2 Some populations of R. rugosa have XY sex determination, whereas others are ZW.
3 Reversals may be caused by environmental factors.
4 Sex determined chromosomally but can be subsequently reversed depending on the autosomal gene complement.

(Graves 2002), the mole vole (Ellobius lutescens; Just et al. 2007), and the spiny rat (Tokudaia osimensis; Arakawa et al. 2002).

Molecular sexing assays exploit the presence or absence of Sry as revealed by polymerase chain reaction (PCR) and electrophoresis (e.g., Pomp et al. 1995). They yield definitive results, at least in principle, because Sry normally determines maleness. Furthermore, recombination typically is suppressed near the master sex-determining gene, so Sry is nearly always in strong linkage disequilibrium with nearby loci that also may be sound indicators of gender. For example, length differences between zinc finger genes (Zfx and Zfy), often in conjunction with Sry, can be used to determine mammalian sex (Pomp et al. 1995; Cathey et al. 1998). For loci more distant from Sry, the categorical error rate in molecular sexing should increase proportionally with the recombination rate (i.e., vary as a function of the history of recombination).

Table 4–3. Some of the primary gene products involved in mammalian sex determination

<table>
<thead>
<tr>
<th>Gene</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRY</td>
<td>Primary testis-determining factor</td>
</tr>
<tr>
<td>SOX9</td>
<td>Main target of SRY</td>
</tr>
<tr>
<td>DAX1</td>
<td>Antagonist to SRY</td>
</tr>
<tr>
<td>AMH</td>
<td>Activated by SOX9</td>
</tr>
<tr>
<td>WNT4, WNT7</td>
<td>Required by AMH</td>
</tr>
<tr>
<td>DMR1</td>
<td>Required by Sertoli and germ cells</td>
</tr>
<tr>
<td>ATRX</td>
<td>Required for testis development</td>
</tr>
<tr>
<td>LHX9, M33</td>
<td>Required for gonad development</td>
</tr>
<tr>
<td>TDA1,2,3</td>
<td>Promote ovarian development</td>
</tr>
</tbody>
</table>

Many vertebrates share the same cascade of genes for sexual differentiation, but the primary switch that initiates the cascade (e.g., SRY in mammals) varies. Modified from Ferguson-Smith (2007).
Vertebrate sex-determining genes and their potential utility

Figure 4-1: A sex-determining assay based on the avian Chd gene. This test can be used to sex most nonratite birds (Griffiths et al. 1998). Such broad assays are of great general utility, as evidenced by the more than 800 citations to Griffiths et al. (1998) in the last decade. Reprinted from Griffiths et al. 1998.

In birds, it has long been unclear how genes on the Z or W chromosome cause sexual differentiation (Ferguson-Smith 2007). Some evidence suggested that Z-linked genes such as Dmrt1 may masculinize chicks, but there is also evidence for feminization by W genes like Asw and/or Fet1 (Smith & Sinclair 2004). Recently, Smith and colleagues (2009) proposed that a Z-linked DMRT1 gene is the master sex-determinant in the chicken (Gallus gallus), such that two doses of the DMRT1 protein produces roosters (ZZ) and one dose gives rise to hens (ZW). It seems very likely that DMRT1 is indeed the master sex-determining gene in chickens, but there is still a possibility that DRMT1 is a downstream subordinate of a yet-undiscovered master switch (Kuroiwa, 2009; Smith et al. 2009).

Regardless of whether DMRT1 is the master sex-determining gene, Chd (the avian chromo-helicase-DNA-binding gene) seems to be tightly linked to the master control gene in most birds and thus can be used to differentiate the sexes. When amplified via PCR, distinct amplicons emerge for males and females because the introns differ in size between the Z and W chromosomes (Fig. 4-1). Various recent conservation studies on birds have used this or similar sexing assays (Clout et al. 2002; Rudnick et al. 2005; Jarvi & Farias 2006).

Reptiles and amphibians

As we will see, sex determination is more complicated in reptiles and amphibians than in mammals and birds. That said, some species have systems of chromosomal sex determination (XY or ZW) that are similar to those seen in mammals or birds. For instance, snake sex is determined by ZW chromosomes that, depending on the species, may be morphologically similar to or quite differentiated from the autosomes (Matsubara et al. 2006). The Australian central bearded dragon (Pogona vitticeps) also has a ZW chromosome system (Ezaz et al. 2005). Unlike mammals, in which sex is determined by the dominance of Sry, sex in P. vitticeps is determined by the dosage of gene(s) on the Z chromosome (one dose gives rise to a ZW female, two doses produce a ZZ male) (Quinn et al. 2007).

Many reptiles have environmental sex determination (ESD) rather than GSD (Shine 1999). ESD is thought to occur in all crocodilians, many turtles, and some
lizards. ESD in reptiles is often manifested as temperature-dependent sex determination (TSD) whereby eggs incubated at high temperatures yield mostly females and those incubated at low temperatures produce mostly males (Bull 1981; Valenzuela & Lance 2004). Conversely, in many turtles, high incubation temperatures tend to produce females and low incubation temperatures bias toward males. Sex determination is not always straightforward, however (Valenzuela et al. 2003). For example, genotypic male (ZZ) lizards reared at high temperatures reverse to phenotypic females, so in some cases, ESD in effect overrides what normally is GSD (Quinn et al. 2007).

The evolution of GSD from TSD has been studied in Testudines (Janzen & Krenz 2004; Valenzuela et al. 2006). The loss of TSD in GSD species is thought to be caused by downstream genes that override the signal from the TSD switch and thus prevent phenotypic response to temperature (Valenzuela 2008). Temperature-sensitive genes in Chrysemys picta (painted turtle) include the Wilms’ tumor-suppressor gene Wt1 and the steroidogenic factor 1 gene Sf1 (Valenzuela 2008). In mammals, Wt1 encodes a transcription factor necessary for the maintenance of Sertoli cells and the development of testes, and Sf1 is a nuclear receptor that controls the expression of Wt1 (Goa et al. 2006). In the GSD species Apalone mutica (smooth softshell turtle), both Dax1 (which targets downstream Sf1) and Wt1 are differentially expressed according to temperature, but this temperature sensitivity does not seem to skew the sex ratio (Valenzuela 2008). The broader role (if any) of Sf1 in reptilian sex determination needs further investigation.

Among amphibians, GSD is the rule. Although extreme temperatures can skew sex ratios, they seldom seem to do so in nature (Nakamura 2009; see also Valenzuela et al. 2003). Anthropogenic agents including exogenous steroids (Hayes 1998; Nakamura 2009) and some herbicides (Hayes et al. 2002, 2010) can also induce alterations (including intersexuality) in many amphibians, but here we will restrict our discussion to natural means of sex determination.

Amphibians generally lack morphologically distinguishable sex chromosomes, but sex reversal and breeding experiments indicate that the mechanism of GSD in various species may be XY, ZW, or OO/OW (Eggert 2004; Ezaz et al. 2006). This evolutionary plasticity sometimes is reflected within a single species. For instance, some local populations of the Japanese wrinkled frog Rana rugosa are XY (heterogametic males) whereas others are ZW (heterogametic females) (Ogata et al. 2008). Presumably, mutations in the primary sex-determining gene could cause phenotypic sex reversals in frogs. A similar situation occurs in medaka (Oryzias latipes), a fish normally displaying an XY system of sex determination but in which XX males and XY females occur infrequently (Shinomiya et al. 2004; Otake et al. 2008).

The master sex-determining gene in amphibians has proven elusive, but several genes involved in sexual differentiation have been cloned. These genes include Sf1, Dmrt1, and various Sox genes (reviewed in Nakamura 2009), all of which appear to be downstream loci controlled by a master switch. In the African clawed frog Xenopus laevis, the master switch may be the DM-W gene (Yoshimoto et al. 2008). Because the mode of GSD is evolutionarily labile in amphibians, it is likely that – as in fishes – different master genes have evolved in different lineages.
Vertebrate sex-determining genes and their potential utility

Table 4–4. Sex-determining systems across more than twenty taxonomic orders of teleost fishes

<table>
<thead>
<tr>
<th>Order</th>
<th>GSD</th>
<th>Hemaphroditism</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>XY</td>
<td>ZW</td>
</tr>
<tr>
<td>Anguilliformes</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Atheriniformes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aulopiformes</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Beloniformes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryciformes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characiformes</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Clupeiformes</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Cypriniformes</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cyprinodontiformes</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gasterosteiformes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnotiformes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myctophiformes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osteoglossiformes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perciformes</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pleuronectiformes</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Salmoniformes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scorpaeniformes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siluriformes</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Stephanoberyciformes</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Stomiliformes</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Synbranchiformes</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Tetraodontiformes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeiformes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After Mank et al. (2006); some of these orders, most notably Perciformes, are polyphyletic.

SEX DETERMINATION IN FISHES

Sex determination in fishes is complicated, and interested readers are urged to consult Devlin and Nagahama (2002) for more detail than can be provided here. Their 173-page monograph covers gonad development, differentiation, sex-determining systems, environmental effects (EE), and marker development. Sex-determination modes in fishes include male-heterogametic (XY-like) and female-heterogametic (ZW-like) systems, various forms of hermaphroditism (protandry, protogyny, and simultaneous hermaphroditism; Avise & Mank 2010), unisexuality (in which clonal or hemiclonal taxa consist solely of females; Avise 2008), and various forms of ESD (Table 4–4). Alternative mechanisms often are found even in closely related fish taxa (e.g., confamilial species, congeners, and sometimes even conspecifics), thus indicating a high level of evolutionary lability in how sex is determined (Mank et al. 2006; Mank & Avise 2009). Here, we briefly summarize several of these mechanisms.

ESD as determined by behavior

In many fishes, sex determination is environmental (Penman & Piferrer 2008). For example, individuals in species that are sequentially hermaphroditic may switch sex in response to changes in the behavior or social status of conspecifics.
The change of sex can be from female to male (protogynous) or from male to female (protandrous), and the process of sex reversal often involves complete reorganization of the gonads, hormones, and behaviors (Devlin & Nagahama 2002). Such phenotypic changes can be completed in a few days or may take several years, depending on the species (Hattori 1991; Godwin 1994). In fishes that exhibit this mode of ESD, the social structure normally consists of many individuals of one sex that are submissive to one or a few members of the opposite sex. When the dominant individual departs or dies, the individual that ranks highest in the new hierarchy may switch sex and fill the vacated role. Most species that exhibit behaviorally induced ESD live in small social groups or relatively confined spaces (e.g., reef fishes).

Behaviorally induced ESD is exhibited by some gobies (family Gobiidae), in which both protogyny and protandry occur. In protogynous species, the removal of a dominant male can induce sex reversal of the largest female, but that individual retains both ovarian and testicular tissues and can revert back to a female state if the social settings again change (e.g., if a larger male immigrates from a nearby population; Sunobe & Nakazono 1993). Some gobies possess both ovarian and testicular tissues simultaneously. In the “female phase,” the ovaries are well developed and functional whereas the testes are shrunken and inactivated; the reverse applies to individuals in the “male phase” (Kobayashi et al. 2005). In aquarium experiments involving pairs of female Okinawa rubble gobies (Trimma okinawae), the larger female always changed to a functional male within five days; when males were paired, the smaller male changed to a functional female within ten days (Kobayashi et al. 2005).

Wrasses provide another example of behaviorally induced ESD. In Thalassoma bifasciatum, all individuals first develop a rudimentary female gonad that subsequently differentiates into ovaries or testes. Fish that differentiate as males remain male for life and are called primary males (Warner & Swearer 1991). Fish that differentiate as females either remain female or subsequently become male; the latter are known as secondary males. The gonads of primary males show no evidence of ovarian tissue, whereas those of secondary males do (Munday et al. 2006). Similarly, in the bluestreak cleaner wrasse (Labroides dimidiatus), sexual differentiation is under behavioral control. Bluestreak cleaner wrasses are protogynous; each social group consists of about six to eight individuals, including one adult male plus females and juveniles. If the male dies, the dominant female changes sex. Coral reef fish seem particularly prone to behavior-induced ESD (Munday et al. 2006).

ESD as determined by temperature

In homeothermic mammals and birds, a cascade of genes normally dictates an embryo’s sex. Fish, by contrast, are poikilothermic, so their embryos are exposed to a wide range of environmental conditions, including temperature. TSD has been studied closely in reptiles, where a temperature change as little as 2°C can alter the sex ratio in a clutch from 100% female to 100% male (Bull & Vogt 1979). These effects arise in part through the increased production of aromatase and subsequent estradiol synthesis at elevated temperatures (Crews 1996). Estradiol secretion in the common carp can range 20-fold over a 5°C change in temperature.
Temperature also affects steroid production in trout and carp (Manning & Kimme 1985). TSD appears to be widespread in fishes, having been documented provisionally in at least nine taxonomic families (Devlin & Nagahama 2002). Valenzuela and colleagues (2003) argue, however, that some of these purported cases may not be true TSD but rather instances of GSD with EE.

One such well-documented case involves the Atlantic silverside (Menidia menidia). In some populations, early-season offspring (which are reared in lower temperatures) are mostly female, whereas late-season offspring (reared in warmer temperatures) are mostly male (Conover & Kynard 1981). Presumably, embryos exposed to colder environments have the additional time that is needed to develop ovarian tissues (Conover 1984). TSD is not uniform across the range of M. menidia, however. For example, fish in some Canadian waters do not respond to fluctuations in temperature, whereas populations from South Carolina do (Lagomarsino & Conover 1993). Sex determination in M. menidia also appears to have a genetic component because progeny from different females respond differently to the same temperature fluctuations and different sires seem to have a strong effect on the sensitivity of their offspring to temperature (Conover & Kynard 1981).

In another such case, sex determination in various tilapias normally has a genetic basis (involving either XY or ZW chromosomal systems depending on the species), yet temperature can influence sex ratios as well. In the Nile tilapia (Oreochromis niloticus), for example, high temperature induces masculinization that can override genetic influences (in an XY system) on sexual development (Baras et al. 2001). In Mozambique tilapia (O. mossambicus), crosses between sex-reversed males (genotype XX) and normal females (also XX) should produce 100% female progeny, but approximately 90% of embryos reared at low temperatures develop as males (Mair et al. 1990). Temperature also influences sex ratio in O. aureus (Desperz & Melard 1998). The differences between the sex chromosomes in tilapias are minor and may reflect the recent evolution of heteromorphic sex chromosomes from a TSD ancestor. Baras and coworkers (2001) suggested that remnant temperature sensitivity might be retained if it provides a selective advantage, such as a greater capacity for dispersal via males.

Sex determination can range from pure GSD to GSD+EE to pure TSD (Valenzuela et al. 2003; Penman & Piferrer 2008), so it can be difficult to categorize sex-determining mechanisms using published data from fishes. For example, some species (e.g., Poeciliopsis lucida and Ictalurus punctatus) have heteromorphic sex chromosomes – often considered a defining feature of GSD – but temperature nevertheless seems to influence progeny sex ratios in at least some cases (Schultz 1993; Patino et al. 1996). Overall, sex determination in fishes is extremely complex and evolutionarily labile.

Genetic sex determination

Despite the prevalence of ESD in fishes, many species exhibit strict GSD (Penman & Piferrer 2008). Furthermore, several genes involved in sex determination have been uncovered in various fish species (Table 4–5). Unfortunately, several primary piscine genetic models – the zebrafish (Danio rerio) and two pufferfish (Takifugu rubripes and Tetraodon nigroviridis) – lack known sex chromosomes and sex-determining markers (although see Cui et al. 2006).
Table 4–5. Loci involved in sex determination of fishes

<table>
<thead>
<tr>
<th>Species</th>
<th>Locus/Gene</th>
<th>Comments</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasterosteus aculeatus (stickleback)</td>
<td>LG19</td>
<td>XX–XY system, master gene near Idh</td>
<td>Peichel et al. 2004</td>
</tr>
<tr>
<td>Oreochromis spp. (tilapia)</td>
<td>LG23; Amh</td>
<td>Master gene?</td>
<td>Shirak et al. 2006</td>
</tr>
<tr>
<td>Oreochromis spp. (tilapia)</td>
<td>LG23; Dmrt2</td>
<td>Master gene?</td>
<td>Shirak et al. 2006</td>
</tr>
<tr>
<td>Oreochromis spp. (tilapia)</td>
<td>SOX14</td>
<td>Minor effect gene</td>
<td>Cnaani et al. 2007</td>
</tr>
<tr>
<td>Oreochromis aureus (tilapia)</td>
<td>LG1 and LG3</td>
<td>Both loci sex associated</td>
<td>Cnaani et al. 2008</td>
</tr>
<tr>
<td>Oreochromis karongae (tilapia)</td>
<td>LG3</td>
<td>WZ-ZZ system</td>
<td>Cnaani et al. 2008</td>
</tr>
<tr>
<td>Oreochromis mossambicus (tilapia)</td>
<td>LG1 and LG3</td>
<td>Both loci sex associated</td>
<td>Cnaani et al. 2008</td>
</tr>
<tr>
<td>Oreochromis niloticus (tilapia)</td>
<td>LG1</td>
<td>XX–XY system</td>
<td>Cnaani et al. 2008</td>
</tr>
<tr>
<td>Oryzias dancena (medaka)</td>
<td>LG10</td>
<td>XY system, but master gene is not DMY</td>
<td>Takehana et al. 2007a</td>
</tr>
<tr>
<td>Oryzias hubbsi (medaka)</td>
<td>LG5</td>
<td>ZW system, unlike O. latipes and O. dancena</td>
<td>Takehana et al. 2007b</td>
</tr>
<tr>
<td>Oryzias latipes (medaka)</td>
<td>DMY (dmrt1bY)</td>
<td>Master gene, derived from DMRT1</td>
<td>Matsuda et al. 2002</td>
</tr>
<tr>
<td>Takifugu rubripes (pufferfish)</td>
<td>LG19</td>
<td>amhrII or inhbb master genes?</td>
<td>Kikuchi et al. 2007</td>
</tr>
<tr>
<td>Tilapia mariae (tilapia)</td>
<td>LG3</td>
<td>WZ-ZZ system</td>
<td>Cnaani et al. 2008</td>
</tr>
<tr>
<td>Tilapia zillii (tilapia)</td>
<td>LG1</td>
<td>XX–XY system</td>
<td>Cnaani et al. 2008</td>
</tr>
<tr>
<td>Xiphophorus maculatus (platyfish)</td>
<td>LG24</td>
<td>X, Y, Z system</td>
<td>Volff et al. 2007</td>
</tr>
</tbody>
</table>

Where known, the candidate master gene is indicated.

The best-characterized example of a sex-determining gene in fish involves the medaka (*Oryzias latipes*). In that species, a protein variously designated as DMRT1bY or DMY – encoded by a gene (*DMY/DMRT1bY*) housed on the sex-determining portion of the Y chromosome – is expressed specifically in Sertoli cells of the testis (Matsuda et al. 2002; Nanda et al. 2002). The gene shows 90% nucleotide sequence similarity to DMRT1, which is autosomal but is not itself a master sex-determining gene (Brunner et al. 2001). In mammals and birds, a comparable gene is expressed differentially in males and females. It produces a protein with a DNA-binding domain – also called the DM domain – that is involved in testis determination and differentiation (Volff et al. 2003). Similarly, in the invertebrates *Caenorhabditis elegans* and *Drosophila melanogaster*, homologous DM domain proteins are integral components of the male sex-determining cascade (Raymond et al. 1998). Clearly, proteins with DM domains play an evolutionarily conserved role in the testis-forming pathway in a wide variety of animals.

The medaka was the first nonmammalian vertebrate in which the primary sex-determining gene has been characterized (Volff & Schartl 2002; Matsuda 2005; Volff et al. 2007). *DMY/DMRT1bY* is not the master sex-determining gene in all fishes, however. The duplication that gave rise to the nascent *DMY/DMRT1bY* gene was recent (~10 million years ago; Kondo et al. 2004) as *DMY/DMRT1bY* is absent in more distantly related members of the genus (Kondo et al. 2004), and the sex-determining region in medaka corresponds to an autosomal linkage group (LG) in *Oryzias dancena* (Takehana et al. 2007a). In the Asian swamp eel (*Monopterus albus*), some of the variants of four alternatively spliced transcripts of DMRT1 are expressed more in one sex than the other (Huang et al. 2005).
Alternative splicing and differential expression of DM domain proteins also have been reported in the zebrafish (Guo et al. 2005), honeycomb grouper (Alam et al. 2008), Nile tilapia (Wang & Tsai 2006), channel catfish (Liu et al. 2007), and lake sturgeon (Hale et al. 2010). In all cases, DMRT1 (or its alternative transcripts) is expressed in both sexes but substantially more so in males than in females. These results again suggest a key role for this gene in testis differentiation. On its initial discovery, DMRT1 was believed to be the master sex-determining gene in both birds and fish, analogous to SRY in mammals. Current thought is that although DMRT1 may not be the master switch in all fishes, it probably plays a key role in the sex-determining pathway (Volff et al. 2003; Ferguson-Smith 2007).

Many other fish species exhibit GSD. For example, the platyfish (Xiphophorus maculatus) has three sex chromosomes; males can be either XY or YY, and females can be XX, XW, or YW. One model to explain this pattern proposes that male-determining genes are present on all three chromosomes, but only the Y chromosome allele is active (and perhaps the YW females arise because the W chromosome carries a suppressor for the master sex-determining gene on the Y chromosome) (Kallman 1984). A different model proposes that sex determination depends on gene dosage; a male-determining gene is present in different copy numbers on the Y (two copies), X (one copy), and W (no copies) chromosomes (Volff & Shartl 2001). The higher the copy number, the higher the gene dosage, which in turn leads to the male phenotype (Volff et al. 2007). The sex chromosomes in platyfish are barely distinguishable from each other or from autosomes, and recombination occurs along most of their length. The sex-determining region has been located, but no sex-determining genes have been documented to date (Volff & Shartl 2001; Schultheis et al. 2006).

Some other fishes with GSD have simpler sex-determining systems. For example, the three-spined stickleback (Gasterosteus aculeatus) is male heterogametic (Peichel et al. 2004), with the sex chromosomes being cytogenetically indistinguishable from autosomes, and is thus probably young evolutionarily. As expected, recombination rates are reduced on the sex chromosomes, particularly in the region suspected to contain the master sex-determination gene. Various salmonids including rainbow trout (Oncorhynchus mykiss), arctic char (Salvelinus alpines), brown trout (Salmo trutta), and Atlantic salmon (Salmo salar) also are XY male heterogametic (Woram et al. 2003). Mapping studies have shown that the sex-determining region of the sex chromosomes is short and is located on different LGs in each salmonid species (in contrast to the extensive synteny exhibited across most of their genomes). These data suggest that novel Y chromosomes have evolved in each species (Phillips et al. 2001; Woram et al. 2003). Despite extensive efforts, a master sex-determining gene has not yet been discovered in either the sticklebacks or the salmonids (although see Griffiths et al. 2000 for the description of a stickleback sexing marker).

Sex determination in tilapia has been studied in detail. Both genetic and linkage maps are available for Oreochromis niloticus, among others (Katagiri et al. 2005; Cnaani et al. 2008). As previously mentioned, O. niloticus has an XY system with influences also from autosomal loci and rearing temperature (Mair et al. 1991; Griffin et al. 2002). Sex chromosomes are indistinguishable, and YY males are viable, suggesting recent and limited divergence between the X and Y chromosomes (Cnaani et al. 2008). Mapping studies have localized the
sex-determining region to LG1, an area with reduced recombination in males. Thirteen candidate genes known to be involved in the sex-determining pathway in other species were mapped, but none occurred in LG1 (Lee & Kocher 2007), so the master sex-determining gene remains unknown. GSD in two other tilapias (T. mariae and O. karongae) entails female heterogamety. Markers on LG3 appear to be associated with gender in that specific alleles at several loci are seen only in the maternal line, suggesting the presence of female heterogamety (Cnaani et al. 2008). These results indicate that at least two major loci are involved in sex determination in tilapiine fish.

In some fish species, sex determination is “autosomal” and occurs in the absence of well-differentiated sex chromosomes (Mank et al. 2006). The number and identity of genes involved are unknown. Polygenic sex determination, however, is thought to be evolutionarily unstable and easily invaded by single-locus sex determination (Rice 1986). Thus, autosomal mechanisms of sex determination seem unlikely to persist over evolutionary timescales, and this may explain their relative scarcity in fishes compared to GSD involving differentiated sex chromosomes.

Each particular sex chromosome characterized to date in extant fish lineages seems evolutionarily young (perhaps arising no more than approximately 10 million years ago; Kondo et al. 2004; Peichel et al. 2004), especially compared to the ancient X and Y chromosomal systems (and the Sry gene) of mammals. Furthermore, fishes with GSD have evolved a region of suppressed recombination around the sex-determining region, a direct result of heteromorphic sex-chromosome evolution (Charlesworth et al. 2005). The suppression of recombination permits the joint inheritance of genes that are advantageous for one sex. It also avoids the transfer of genes from one sex chromosome to the other, which could have detrimental effects (Bull 1983; Rice 1987). Another consequence of the suppression of recombination is the genetic degeneration of the hemizygous chromosome (Charlesworth et al. 2005). For homeothermic vertebrates, this degeneration is demonstrated by the Y chromosome of mammals and the W chromosome of birds, which are both much smaller and contain far fewer genes than their X and Z counterparts. The small size and reduced gene content of the heteromorphic sex chromosome mean that YY and WW genotypes are lethal in mammals and birds (a situation that contrasts with the viability and often fertility of such genotypes in fishes).

In summary, an emerging theme with regard to GSD fishes is a repeated, independent evolution of sex chromosomes in different lineages, most likely accompanied or followed by the emergence of different sex-determining genes (Mank et al. 2006; Volff et al. 2007). This greatly complicates the scientific search for master sex-determining loci in this largest vertebrate class.

ISOLATION OF SEXING MARKERS FOR FISH MANAGEMENT

We envision many potential uses of sexing assays in fish conservation and management. A few of these uses have already been achieved, mostly in salmonids. For example, molecular sexing assays have latent utility in aquaculture. Devlin and
Vertebrate sex-determining genes and their potential utility

colleagues have developed a culture methodology, based on a molecular sexing
assay, for the production of monosex salmon populations. After removing immu-
ture juvenile XY males from the population, females produce substantially more
roe than do mixed-sex cultures (Devlin et al. 1994; Henry et al. 2004). Monosex
cultures are not only of interest to salmon culturists but probably also to caviar
producers who would prefer to rear only females if the fish somehow could be
sexed during early-life-history stages (e.g., from fin clips). Likewise, tilapia mature
and breed before they reach marketable size, so aquaculturists often wish to rear
monosex cultures so that fish expend less energy on reproduction (Lee et al. 2004).

Molecular sexing markers could also inform studies of population structure,
which can differ between the sexes because of sex-biased dispersal (e.g., in cichlids
and brook trout; Knight et al. 1999; Hutchings & Gerber 2002). Such markers also
could facilitate estimates of the operational sex ratio (OSR). [The OSR influences
effective population size \((N_e)\) so that as the ratio of \(N_f:N_m\) departs from unity,
\(N_e\) decreases according to the expression: \(N_e = (4N_{ef}N_{em})/(N_{ef} + N_{em})\).] In many
fishes, spawning aggregations are markedly male-biased, so \(N_e\) may be much
smaller than expected if sex ratios were near unity. For instance, in red drum
(\textit{Sciaenops ocellatus}), \(N_e\) is only 1/1,000 of the adult census size (Turner et al.
2002) and, in theory, this could be partly due to the OSR.

There are few empirical examples that illustrate the potential utility of fish-
sexing markers better than the OSR. In some Pacific salmonids, the OSR is skewed
toward males. Biologists wondered if this skewing was because of sex rever-
sals or differential survivorship between the sexes. This question has since been
answered in large part because of the fortuitous discovery of a Y-linked pseudogene
(GH-Ψ) that contains a restriction site not found in the functional gene (Du
et al. 1993). The presence of GH-Ψ was used to evaluate sex-specific survivorship
in chinook salmon (\textit{Oncorhynchus tshawytscha}) and in coho salmon (\textit{O. kisutch}).
In both species, freshwater survivorship was similar between juvenile males and
females, but male survivorship was substantially greater than female survivorship
in the marine realm (Spidle et al. 1998; Olsen et al. 2006). This is a fundamental
biological insight that was realized only when biologists applied molecular sexing
assays to juvenile salmon that could not be phenotypically sexed. Unfortunately,
the phylogenetic distribution of GH-Ψ appears to be constrained to a few Pacific
salmonids (Devlin et al. 2001), and thus its utility is limited.

Biased OSRs might be due to differential survivorship, but they might also be
due to sex reversals (Olsen et al. 2006). For example, the sex ratio in a young
GSD species might be near 1:1, but if one sex predominates among adults, then
we must consider environmental factors, such as contaminants. Williamson &
May (2002) employed a Y-specific sexing marker to determine that sex reversals
are likely in chinook salmon, perhaps due to endocrine-disrupting chemicals.
In contrast, Fernandez and colleagues (2007) found no such evidence for sex
reversals in a different population.

In principle, the molecular identification of sexing markers like GH-Ψ is
straightforward in species with GSD; one need only isolate and exploit the
genomic region found in one sex but not the other. Occasionally, such mark-
ers are identified fortuitously (Du et al. 1993). One example is the discovery
that \textit{Idh} is sex-linked in the three-spined stickleback (Withler et al. 1986; Peichel
et al. 2004). Subsequent efforts with amplified fragment length polymorphisms (AFLPs) produced a PCR-based sexing assay in that species (Griffiths et al. 2000). Sometimes sexing markers can be isolated by subtractive hybridization, whereby male and female portions of the genome are compared and the similar portions are discarded (Devlin et al. 1991; Wallner et al. 2004). In theory, this should reveal the region in linkage disequilibrium with the master sex-determining gene. Alternatively, the candidate gene approach might seem to be an effective means of characterizing novel markers of gender (as in the use of medaka DMY/DMRT1bY as a probe for another fish species). Master sex-determining genes evolve so rapidly in fishes, however, that this approach is likely to work only for closely related taxa.

Next, we focus on yet another possible approach for the isolation of sexing markers: comprehensive transcriptome analyses involving the characterization of genes expressed in the gonads of males and females. We are now using next-generation sequencing technologies to evaluate pools of complementary DNA (cDNA) synthesized from messenger ribonucleic acid (RNA) isolated from fish gonads, in anticipation that comparisons of genes transcribed in testes versus those transcribed in ovaries will help to elucidate the sex-determining cascade in a primitive fish, the lake sturgeon.

CASE STUDY: THE IDENTIFICATION OF SEX-DETERMINING GENES IN LAKE STURGEON

Sturgeons comprise an ancient lineage of benthic fishes characterized by cartilaginous skeletons and bony plates called scutes. The lake sturgeon (Acipenser fulvescens) is a freshwater North American species whose historic distribution ranged from Hudson Bay drainages down through the lower reaches of the Mississippi River, but whose range today is much more restricted (Peterson et al. 2007). Mature individuals are large bottom feeders; specimens can grow to more than 100 kg and more than 2 m in length.

Since the arrival of Europeans, lake sturgeon populations have declined precipitously because of habitat degradation and overfishing (Peterson et al. 2002, 2007). Dams now prevent natural spawning migrations, and pollution has impacted many watersheds. Other sturgeon species are famous for their eggs (caviar), but lake sturgeon also were harvested for isinglass to clarify wine and beer, for fish oil that purportedly was used to fuel steamboats, and for animal (pig) feed. According to the U.S. Fish and Wildlife Service (2008), “In Lake Michigan, commercial harvest was closed in 1929 after the catch declined to only 2,000 pounds compared to 3.8 million pounds harvested in 1879.” Similarly, the Mississippi River harvest declined from 113,000 kg in 1894 to 3,100 kg in 1922 to 0 kg in 1931 (Peterson et al. 2007).

Today, lake sturgeon in Great Lakes watersheds are of significant conservation concern (Jackson et al. 2002; Peterson et al. 2002, 2007). The restoration of lake sturgeon populations is complicated by their biology, including delayed sexual maturity, infrequent spawning, and sexual monomorphism. Lake sturgeon are long-lived, as evidenced by wild centenarians that live to be older than
150 years (Peterson et al. 2007). Males become sexually mature at approximately
twelve to twenty years of age and females at eighteen to thirty years. Males may
spawn every second or third year, but most females probably spawn on a four- to
nine-year cycle (Peterson et al. 2007). Males arrive on the spawning grounds
before females, and a half-dozen or so males flank spawning females and simul-
taneously attempt to fertilize her eggs. There is no parental care, as females depart
soon after spawning and males wait for the next available female.

The sex of a nonbreeding lake sturgeon cannot be determined reliably without
invasive surgical examination or ultrasound (Vecsei et al. 2003). Furthermore,
even for individuals that are sexually mature but nonspawning, current hormonal
assays require anesthetization and a substantial blood sample (Feist et al. 2004).
Thus, a general conservation and management problem is that gender cannot be
determined easily or consistently in most specimens.

Studies on sex reversal and artificial gynogenesis strongly suggest that at least
some sturgeon have GSD (Van Eenennaam et al. 1999; Hett & Ludwig 2005).
Furthermore, cytogenetic analyses indicate that female white sturgeon have two
different sex chromosomes (Z and W) that are similar in appearance, whereas
males have two identical sex chromosomes (Z and Z). Thus, the female genome
has all of the components of the male genome, plus some components that are
found only on the W chromosome (Van Eenennaam et al. 1999). The gene(s)
that differentiate females from males presumably are found somewhere on the
W chromosome. Thus, consistent DNA-based differences should exist in the chro-
omosomal makeup of males and females.

Sturgeon species are polyploid, and chromosome numbers (including \sim \num{250} microchromosomes) range from 120 to approximately 500. Most lake stur-
geon microsatellites are inherited in a tetrasomic (4n) fashion, but some loci
are disomic (2n) and others are octasomic (8n); thus, the overall ploidy level
is unclear (Ludwig et al. 2001). (Our unpublished single-nucleotide polymor-
phism [SNP] data generally support the microsatellite data [Hale et al. forth-
coming].) The DNA content per cell (c-value) is 4.45 pg in lake sturgeon, con-
siderably larger than the 3.50 pg in humans (Gregory et al. 2006). The large
size and apparent complexity of sturgeon genomes have conspired to make the
search for sex-determining genes extremely challenging. As summarized later
and in McCormick and coworkers (2008), we have used a variety of molecular
approaches in attempts to isolate sex-specific markers in lake sturgeon because
breeding studies designed to evaluate the possibility of ESD would be difficult in
this long-lived species with protracted spawning periodicity.

Candidate genes

We first considered genes known to be involved in the sex-determination path-
way of other fishes. We started with the medaka DMY gene, which failed to
amplify in lake sturgeon. We then designed locus-specific primers for the high-
mobility group domain of Sox2, Sox3, Sox4, Sox11, Sox17, Sox19, and Sox21 genes
as Sox genes are often involved in sex determination (Hett & Ludwig 2005). Of
these seven genes, four (Sox2, Sox4, Sox17, and Sox21) amplified in lake sturgeon
but none was sex-specific.
Subtractive hybridization

Representational difference analysis (RDA) is a technique often employed to characterize the differences between two genomes (Lisitsyn et al. 1993) and has been used to clone sex-specific markers in mammals (Perez-Perez & Barragan 1998; Wallner et al. 2004). We performed RDA in lake sturgeon first by using known female DNA as the “tester” and male DNA as the “driver” and then by reversing the sex of the tester and the driver. We cloned DNA fragments using this approach, then sequenced them and designed PCR primers for each putative sex-specific fragment, and then screened them against male and female DNA samples. One hundred fifty-nine clones were sequenced; several genes and many previously uncharacterized DNA sequences were isolated using this procedure, but no clone proved to be sex-specific.

In addition to RDA, we performed subtractive hybridization between male and female lake sturgeon genomes using streptavidin-coated magnetic beads. This procedure was carried out twice using various restriction enzymes; after nine rounds of subtractive hybridization, the enriched fragments were cloned and sequenced. Three hundred sixteen clones, representing approximately thirty unique DNA fragments, were analyzed, but no primer set developed from these clones yielded a sex-specific marker.

Random markers

We also attempted to generate a sex-specific lake sturgeon marker using random primers. Randomly amplified polymorphic DNA (RAPD) fragments were generated using a commercial kit. We first iteratively assessed fifty RAPD primers singly before proceeding to evaluations of primer pairs. This procedure was used first on genomic DNA, then on ovary and testis cDNA samples, and finally on the RDA and subtractive hybridization products. More than 120 unique PCRs were performed and thousands of discrete amplicons were generated. Random primers produced no sex-specific DNA fragments, however.

Alternatives to genomic DNA?

De novo characterization of a sturgeon sexing marker has proven difficult for other research groups as well. Hett and Ludwig (2005) evaluated candidate genes in Atlantic sturgeon (Acipenser sturio), Wurzard and coworkers (2006) used RAPDs, AFLPs, and inter-sample sequence repeat markers in four Acipenser species, and Keyvanshokooh and colleagues (2007) tried RAPDs in beluga sturgeon (Huso huso). All of these attempts relied primarily on genomic DNA, and all failed to identify sex-specific markers. Might such searches be enhanced if they focused on candidate genes expressed in gonads? In principle, a focus on expressed genes (i.e., cDNA) might simplify otherwise fruitless searches for sex-linked markers in these extraordinarily complex sturgeon genomes.

Pyrosequencing of transcriptomes

To narrow our search to expressed genes, we sampled gonads from lake sturgeon collected in Lake Oneida, New York, in June 2007 and May 2008. Based on stocking records and established length-at-age relationships (Jackson et al. 2002),
lake sturgeon collected in 2007 were most likely twelve years old and those in 2008 were thirteen years old. The males expressed milt during handling and were apparently ready to mate, whereas gametes from the two females were not fully developed (Colombo et al. 2007). From these fish, we surgically collected gonad biopsies and froze them immediately in liquid nitrogen for subsequent RNA extraction and cDNA synthesis (Hale et al. 2009, 2010).

These cDNA fragments were sequenced using the Roche 454 platform (Margulies et al. 2005). The Roche 454 platform does not use conventional dideoxy sequencing, but instead uses a massive sequencing-by-synthesis approach in which photons of light are emitted during elongation (i.e., pyrosequencing). Briefly, DNA is fragmented using air pressure, adapters are ligated to both ends of fragments, and single-stranded DNA is attached to microbeads (one unique fragment per bead). All beads with a unique genomic DNA fragment are contained in a single reaction tube but are subsequently separated into hydrophobic bubbles for emulsion PCR (ePCR). Each unique DNA fragment is amplified via ePCR to coat each bead with a single sequencing template. The four nucleotides (ACGT) are sequentially washed over the entire plate for chain extension, and then CCD cameras detect photon emissions from each of \(1.6 \times 10^6\) wells on a plate the size of a microscope slide.

Pyrosequencing generates a vast amount of data. We have generated more than 500,000 sequences from lake sturgeon gonads, and they span some 125 MB (Fig. 4–2; Hale et al. 2010). These lake sturgeon sequences include (among others) genes involved in protein binding, DNA repair, translation, and apoptosis. One major advantage to pyrosequencing is that unlike subtractive hybridization or random priming, useful data are recovered regardless of whether the gene or genes of interest are identified. For example, our 454 surveys of lake sturgeon gonads have identified hundreds of single nucleotide polymorphisms (SNPs) in functional genes as well as in genes that are differentially expressed between the sexes (Hale et al. 2009, 2010). Furthermore, our transcriptome surveys have uncovered a number of reproductive proteins that are apparently expressed on the surface of gametes. A number of these reproductive proteins bear signatures of strong selection, suggesting that genes encoding these proteins may have played a key role in the diversification (speciation) of sturgeons. Finally, our surveys of genes expressed in lake sturgeon gonads suggest that exogenous parasites (schistosomes) and pathogens (trichomonads) apparently infect lake sturgeon. The schistosomes horizontally transferred their genes to the lake sturgeon genome, perhaps through the ingestion of snail hosts, whereas the trichomonad sequences were probably derived from a contemporary infection (Hale et al. 2010).

With regard to the search for candidate sex-determining genes in lake sturgeon, we have used a multipronged approach (Fig. 4–3; Hale et al. 2010). By comparing the sequences of known sex-determining genes in other organisms (e.g., DMY/DMRT1bY, SOX9, Sry) to the lake sturgeon gene sequences, we generated a list of candidate genes that were then evaluated as sexing markers using PCR. We also compared sequences derived from lake sturgeon testes to those derived from ovaries (and vice versa). Those genes expressed in only one sex were considered as candidate sex-determining genes and were again evaluated as sexing markers with PCR. Presumably, this set of genes includes those that are
expressed in one sex but not the other, as should occur if the genes exist in both sexes but are differentially regulated.

The 454 sequence data indicate that at least two lake sturgeon genes (\textit{DMRT1} and \textit{Tra-1}) are differentially expressed between the sexes (Hale et al. 2010). These expression differences are interesting from an evolutionary perspective as they suggest that gene dosage might play a role in lake sturgeon sex determination. Our \textit{DMRT1} data, considered in light of similar data from chickens, medaka, and lizards, further point to \textit{DMRT1} as a key determinant of vertebrate sex (Marshall Graves 2009). It remains to be determined if sex in lake sturgeon is determined simply by gene dosage (e.g., \textit{DMRT1}; Hale et al. 2010), but at this point, it seems likely. Unfortunately, gene expression assays based on dosage have little practical
utility for conservation efforts because they require gonad tissue. We uncovered no evidence for a master gene that determines sex by its presence or absence, but we remain optimistic that the evaluation of gonad transcriptomes will generally prove to be a profitable approach for such endeavors in fishes and in various other animals.

Of course, the possibility still remains that lake sturgeon sex determination is not genetic (Hale et al. 2010). An absence of GSD in this species would be consistent with other recent molecular work (Hett & Ludwig 2005; Wuertz et al. 2006; Keyvanshokooh et al. 2007) but apparently inconsistent with cytogenetic evidence from a related species (Van Eenennaam et al. 1999) and with unpublished observations that lake sturgeon hatcheries produce sex ratios near parity.

Lessons from lake sturgeon

The development of sexing assays in reptiles, amphibians, and fishes is not trivial. First and foremost, one needs to know that sex determination is genetic. For the reasons outlined in this chapter, GSD is suspected in lake sturgeon but not confirmed because of their delayed sexual maturity, tiny homomorphic chromosomes, and polyploidy. Second, we suspect that the development of robust sexing assays might be easier in species with small simple genomes than in polyploids. Finally, the rapid evolution of fish sex chromosomes and of master sex-determining genes means that candidate loci will typically be useful only if they are assessed in species closely related to the prototype species from which the gene originally was described. Thus, the approaches described herein need to be
refined if the scientific community is to more efficiently identify and characterize various master sex-determining genes among the diversity of fishes.

Prospective

In species with GSD, molecular markers can assign sex to unconventional tissue samples such as hair, feathers, blood, or fin snips. The utility of molecular sexing assays is yet to be realized in fishes because sex-determining genes and chromosomes evolve rapidly in this taxonomic group. When such assays are developed—and, in species with pure GSD, there is no reason to think they will not be developed—they will likely be of greatest interest and utility in long-lived species of management or conservation concern, such as sturgeon, tunas, billfishes, paddlefish, and rockfishes. As the taxonomic distribution of complete genome sequences increases, speeded in part by new technologies such as pyrosequencing, our ability to use comparative genomics to help elucidate mechanisms of sex determination in various vertebrate lineages, including fishes, will be greatly enhanced.

REFERENCES

Lee BY, Kocher TD (2007) Exclusion of Wilm’s tumour (Wt1b) and ovarian cytochrome P450 aromatase (CYP19A1) as candidates for sex determination genes in Nile tilapia (*Oreochromis niloticus*). Animal Genetics, 38, 85–86.

Vertebrate sex-determining genes and their potential utility

Takehana Y, Demiyah D, Naruse K et al. (2007a) Evolution of different Y chromosomes in two medaka species, Oryzias dancena and O. latipes. Genetics, 175, 1335–1340.

Index

acorn barnacle, active differentiation for, 117–119
gene-frequency shifts for, 117–119
Acropora, hybridization among, 182–183
adaptation, genetic. See genetic adaptation
adaptive differentiation
in European white oaks, 101–120
ancient examples of, 102–105, 107
Bulmer effect in, 112–115
components of, 110–111
dynamics of, 109–116
erasure of, migration as influence on, 105–107
gene flow and, 115–116
historical dynamics of, 102–109
LDD in, 105, 107
LND in, 107
minimal genetic markers for, 104–105
pollen flow as influence on, 105–107
provenance tests for, 102
recent examples of, 107–109
for refugial populations, 103–104
as transient, during colonization, 105
among high-dispersing species, 117–119
for acorn barnacle, 117–119
AFLP. See amplified fragment length polymorphism
agriculture
biodiversity and, 35–47
development of, 35–36
allelic recharge, among mammals, 194–196
among banner-tailed kangaroo rats, 194–196
in bottleneck events, 194–195
emigration rates as influence on, 195
allozymes, 330
American chestnut trees, 63–64
mortality factors for, 63
reintroduction efforts for, 63, 307–309
disease resistance and, 308–309
molecular scatology for, 63–64
Ammophila breviligulata, dune restoration and, 213–215
molecular and phenotypic data for, 215
AMOVA analysis, for evolutionary toxicology, 352
amphibians. See also spadefoot toads, hybridization among
cryptic species of, phylogenetics for, 21
extinction rates for, 5–6
sex-determining genes in, 78–79
evolution from TSD, 80
evolutionary plasticity of, 80
GSD and, 80
species discovery rates for, 9
amplified fragment length polymorphism (AFLP), 20
evolutionary toxicology and, in detection methods, 331–332
in fishes, for sex-determining genes, 88
for heritable phenotypes, 56
anthropogenic hybridization, 174–177
arthropods, heritable phenotypes for, 54–55
association genetics, 132–148
in animals, 132–141
body-color polymorphism and, 138
candidate gene approach to, 135, 138
genome-wide, 132–138
natural selection signature tests in, 141
neutrality tests for, 136
QTL studies for, 132–138
methodology for, 125
natural selection in
in animals, 141
in candidate genes, 136
in plants, 146–148
in plants, 141–151
candidate gene approach to, 145–146
in Douglas-firs, 148–151
genome wide, 141–145
natural selection signature tests in, 146–148
neutrality tests for, 147
QTL studies in, 141–145
association mapping, 126
for Douglas-firs, 149–151
Azerbaijan, evolutionary toxicology in, 347–350
bacteria, species discovery rates for, 9
banner-tailed kangaroo rats, allelic recharge among, 194–196
bar coding, 18–20
for DNA, 18–19
mitochondrial markers in, 20
phylogenetic derivation from, 19–20
species identification from, 19
bears. See grizzly bears, sex identification and population sampling for; Kermode bears, conservation strategies for
biodiversity, 2–24
advances in medicine as result of, 2
for PCR, 2
agriculture and, 35–47
allelic recharge and, 194–196
cryptic species and, 24
definition of, 2
discovery of, 1–28
distribution of, 3–4
patterns of, 3
enumeration of, 8–13
status of species discovery and description, 8–11
extinction of species and, 4–8
increased rates of, 5
IUCN listings for, 5–6
mass, 5
patterns of, 4–5
risks of, 5–6
future inventory of, 13–24
phylogenetics in, 13
taxonomy in, 13
gene flow and, 35–47
in plants, 36
for GM crops, 35–47
environmental hazards as result of, 36
gene flow in, 36–41
non-GM crops v., 35
production methods for, 35
“hot spots,” 4
hybridization and, 169–170
importance of, 2–3
indirect benefits of, 2–3
after landscape fragmentation
for endangered species, 212–234
immediate consequences on, 190–191
“living dead” species and, 208
long-term effects of, 192–193
polymorphism and, 190–191
predictions for, 193, 208
short-term effects of, 191–192
spatial genetic structure and, 191
from weedy rice, 45
from gene flow, 47
Biological Dynamics of Forest Fragments Project, 202
biomarkers, evolutionary toxicology and, 322
birds. See also black-capped vireo, landscape fragmentation and; golden-cheeked warbler, landscape fragmentation and extinction rates for, 7–8
heritable phenotypes for, 55
landscape fragmentation as influence on, 217–226
for black-capped vireo, 222–226
for golden-cheeked warbler, 218–222
sex-determining genes in, 77–79
molecular assays for, 79
black-capped vireo, landscape fragmentation and, 222–226
bottleneck events and, 223
case study assessment for, 226
conservation management factors for, 225
gene flow and, 225
genetic variations among, 222–224
Mantel tests for, 224–225
golden-cheeked warbler and, biogenetic comparison with, 219
habitat requirements for, 222, 225–226
body-color polymorphism, 138
among Kermode bears, 260
among Soay sheep, 139–141
bottleneck events, 194–195
black-capped vireo and, 223
wildlife reintroduction during, 312–313
Bulmer effect, 112–115
California tiger salamanders, hybridization of, 180–181
captive breeding programs, for conservation of species, 267–291
coefficient of relatedness for, 270
founding populations in, 273
gene diversity, 270–271
goals of, 267, 272–273
inbreeding coefficient in, 269–270
incomplete pedigrees in, application of concepts to, 271–272
kinship in, 269
mean, 269
molecular methods for, 267–268, 276–291
for allele identification, 288–289
with animal models, 291
for estimating relatedness, 279–284
for gene diversity, 287–288
for genetic management, 289–290
inbreeding and, 287
markers in, 283–284
for organisms living in groups, 284–288
pedigree issues and, resolution of, 276–279
for quantitative genetic analysis, 290–291
for relationship categories identification, 282–284
studies on, 268
for unresolved needs, 289–291
for variation in selection, 290
population growth in, 273–274
population maintenance in, 274–275
successes as result of, 267
terms for, 269–272
chromosomes, sex-determining genes and, 77
in fishes, 85, 86
in reptiles, 79
climate change
 community genetics and, 66–68
 in deserts, 66
 in mountain forests, 66
 prediction models for, 67–68
 conservation and, 66
 hybridization of species as result of, 180
 Pacific salmon recovery planning and, 262
community genetics, 50
 case studies for, 51
 climate change and, 66–68
 in deserts, 66
 in mountain forests, 66
 prediction models for, 67–68
 conservation and management in, 52–53
 population analysis for, 52–53
 three-way interactions in, 52
 for foundation species, 50
 as community drivers, 50
 definition of, 55–56
 dependent communities influenced by, 51–52
 heritable phenotypes in, 56–57
 for GEOs, 61–66
 ecological consequences of, 62, 65–66
 ecosystem phenotypes in, 62
 fitness of, 62
 as foundation species, 61–62
 native species hybridization by, 62
 nontarget phenotypes in, 62
 heritable phenotypes, 53–59
 AFLP molecular markers for, 56
 for arthropods, 54–55
 for birds, 55
 conservation consequences for, 56–59
 in foundation species, 56–57
 for insects, 55
 Mantel tests for, 56
 for microbes, 55
 with species-area relationships, 58–59
 species differentiation from, 57–58
 support for similar genotypes, 56
 management applications for, 68–69
 donor tagging as part of, 69
 for MVIPs, 60–61
 for MVPs, 59–61
 for generalist species, 60
 population size as factor in, 60
 transfer experiments for, 60
 terms for, 51
 variation in, 50
conservation, of species
 for black-capped vireo, management factors for, 225
 with captive breeding programs, 267–291
 coefficient of relatedness in, 270
 founding populations in, 273
gene diversity, 270–271
 goals of, 267, 272–273
 inbreeding coefficient in, 269–270
 incomplete pedigrees in, application of concepts to, 271–272
 kinship in, 269
 molecular methods for, 267–268, 276–291
 population growth in, 273–274
 population maintenance in, 274–275
 successes as result of, 267
 terms for, 269–272
climate change and, 66
 community genetics and, 52–53
 population analysis for, 52–53
 three-way interactions in, 52
 in dune restoration, 214–215
 for Ammophila breviligulata, 214–215
 EDGE scores for, 15
 genetic adaptation for, 123–153
 association genetics and, 132–148
 detection methods for, 125–132
 natural populations in, 125
 population genetics and, 123–124, 129–132
 genetic markers in, 74–77
 DNA fingerprinting, 74, 75
 individual identification in, 74
 sexing assays, with DNA, 74–77
 for golden-cheeked warbler, landscape fragmentation and, 220
 hybridization and, 169–185
 among Acropora, 182–183
 anthropogenic, 174–177
 with applied studies, 184–185
 biodiversity and, 169–170
 case studies for, 173–174, 175
 categorization of, 170
 correlates for, 176
 disease resilience as result of, 183
 ecological correlates of, 177
 extinction and, 169
 habitat specialization as correlate for, 180–181
 mating issues, for original species, 171–172
 natural, 174–177
 predictors of, 178–181
 selective removal of nonendangered species and, 179
 among spadefoot toads, 183
 species fitness as result of, 169
 zone dynamics for, 177, 181–182
 hybridization and applied studies for, 184–185
 for Kermode bear, 259–261
 landscape fragmentation as influence on, literature survey of, 229–230
 for Pacific salmon, 244–262
 abundance and productivity assessments in, 248–250
 climate change as influence on, 262
conservation, of species (cont.)
ESU viability and, 240, 254–257, 258
future applications of, 257–262
integration strategies for, 241
methodologies for, 247–248
molecular approaches to, 262
population identification in, 246–248
population viability and, 248–254
Recovery Domains in, 244–245
risk factor integration in, 252–254
spatial structure and diversity assessments in, 251–252
terms for, 240
TRTs in, 244
VSP and, 246, 254, 257, 258
with pedigree reconstruction, 285–286
phylogenetics and, 13–17
delimiting species and, 14–15
PSC and, 14
pollen and seed movement and, with landscape fragmentation, 206–207
management strategies for, 207
promotion of, from hybridization, 182–184
with wildlife reintroduction, 296–314
development of, 296
founding event phase of, 303–305
genetic consequences of, 299–303
population establishment phase of, 305–310
population growth phase of, 310–313
population theory and, 297–298, 299
variation predictions for, 298
conspecific sperm precedence (CSP), 181–182
crustaceans. See rusty crayfish, hybridization among, zone dynamics as factor in CSP. See conspecific sperm precedence
Darwin, Charles, 1
darwinian study by, 1
DDT. See dichlorodiphenyltrichloroethane
dehydroribonucleic acid (DNA)
bar coding for, 18–19
evolutionary toxicology as influence on, evidence of, 321
adduct studies in, 324–325
in anonymous markers, 331–332
detection methods for, 331–337
marker selection criteria for, 336–337
in MHC, 333
with microarrays, 334
in organelles, 332–333
with sequencing, 333–334
in SNPs, 333–334
fingerprinting from, in conservation management, 74, 75
RAPD and, 90
sexing assays with, 74–77
deserts, climate change in, community genetics and, 66
conservation of, species (cont.)
drought-adaptive genotypes in, 66
dichlorodiphenyltrichloroethane (DDT), 327
Dinizia excelsa, pollen movement for, 202–203
discovery of species. See species discovery, rates of
disease resistance
in American chestnut trees, 308–309
in GM crops, 36
“distinct population segments” (DPS), 243–244
DNA. See deoxyribonucleic acid
DNA adduct studies, 324–325
measurement methods in, 325
phases of, 324–325
Douglas-firs, association genetics in, 148–151
mapping studies for, 149–151
population genomics in, 149
QTL mapping for, 149
DPS. See “distinct population segments”
dune restoration, 214–215
Ammophila breviligulata and, 214–215
molecular and phenotypic data for, 215
E. cyclocarpum, pollen movement for, 204–206
mean parameters for, 205
study sites for, 204–205
ecosystem genetics, 50
case studies for, 51
climatic change and, 66–68
in deserts, 66
in mountain forests, 66
prediction models for, 67–68
conservation and management in, 52–53
population analysis for, 52–53
three-way interactions in, 52
for foundation species, 50
as community drivers, 50
definition of, 55–56
dependent communities influenced by, 51–52
heritable phenotypes in, 56–57
for GEOs, 61–62, 66
ecological consequences of, 62, 65–66
ecosystem phenotypes in, 62
fitness of, 62
as foundation species, 61–62
native species hybridization by, 62
nontarget phenotypes in, 62
heritable phenotypes, 53–59
AFLP molecular markers for, 56
for arthropods, 54–55
for birds, 55
conservation consequences for, 56–59
in foundation species, 56–57
for insects, 55
Mantel tests for, 56
for microbes, 55
with species-area relationships, 58–59
species differentiation from, 57–58
support for similar genotypes, 56
management applications for, 68–69
donor tagging as part of, 69
for MVIPs, 60–61
for MVPs, 59–61
for generalist species, 60
population size as factor in, 60
transfer experiments for, 60
variation in, 50
ED. See evolutionary distinctiveness
EDGE score. See evolutionary distinct and globally endangered score
EE. See environmental effects (EE), on sex-determining genes in fishes
EMBL. See European Molecular Biology Laboratory
emigration rates, allelic recharge among mammals and, 195
Endangered Species Act (ESA)
Pacific salmon under, 239, 244–246
delisting of, 255
population identification for, 246–248
Recovery Domains in, 244–245
strategy mandates for, 245–246
protection criteria for, 243–244
DPS in, 243–244
endangered species, landscape
tFragmentation as influence on, 212–234. See also black-capped vireo, landscape fragmentation and; golden-cheeked warbler, landscape fragmentation and; Pacific salmon among birds, 217–226
for black-capped vireo, 222–226
for golden-cheeked warbler, 218–222
Genetic consequences of, 212–213
Literature survey of, 226–233
for conservation status, 229–230
for genetic responses to fragmentation, 228–229
For habitat structure, 232–233
For species vagility, 230–232
Population fragmentation among, 213–216
in structurally complex habitats, 217
Vagility of, 217
Environmental effects (EE), on sex-determining genes in fishes, 81
Environmental sex determination (ESD), 79–80
Behavior as influence on, in fishes, 81–82
Social structure as factor in, 82
In fishes, 81–83
Behavior as influence on, 81–82
In protogynous species, 82
Temperature as influence on, 82–83
TSD and, 83
ESA. See Endangered Species Act
ESD. See environmental sex determination
ESU. See evolutionarily significant unit
eukaryotes, phylogenetics of, 18–20
With bar coding, 18–20
With mitochondrial markers, 20
Species identification from, 19
European Molecular Biology Laboratory (EMBL), 19
European white oaks
Adaptive differentiation in, 101–120
Ancient examples of, 102–105, 107
Bulmer effect in, 112–115
Components of, 110–111
Contemporary dynamics of, 109–116
dynamics of, 112–115
Erasure of, migration as influence on, 105–107
gene flow and, 115–116
Historical dynamics of, 102–109
LDD in, 105, 107
LND in, 107
Minimal genetic markers for, 104–105
Pollen flow as influence on, 105–107
Provenance tests for, 102
Recent examples of, 107–109
For refugial populations, 103–104
As transient, during colonization, 105
Genetic differentiation among, 106, 109
Evolutionarily significant unit (ESU), 15
Categorization of, 15–16
Criteria for, 15
NOAA guidelines for, 244
Pacific salmon as, in recovery planning, 240, 254–257, 258
Risk integration for, 256–257
Phylogeographic concordance for, 15
Evolutionary distinct and globally endangered (EDGE) score, 16
For conservation of species, 15
ED criteria for, 16
Evolutionary distinctiveness (ED), 16
Evolutionary toxicology, 320–355
Case studies for, 347–352
In Azerbaijan, 347–350
In Pigeon River region, 351–352
Causality assessment for, 337–347
By biological gradient, 344
By consistency of association, 337–347
With experimental evidence, 344–346
By specificity of association, 340–342
By strength of association, 338–339
By time order, 342–344
From DDT, 327
Definition of, 320
With microsatellites, 330–331
Detection methods, 329–347
With AFLP, 331–332
With allozymes, 330
Through DNA, 331–337
For genotoxicants, 329–330
Genetic ecotoxicology, 322–325
DNA adduct studies in, 324–325
Future applications for, 325
Historical background of, 322–324
Index

evolutionary toxicology (cont.)
genetic systems influenced by, 321–329
allele frequency in, 328–329
AMOVA analysis for, 352
assignment tests for, 354
Bayesian analysis for, 353–354
in biomarkers, 322
coeval analysis for, 352–353
within DNA, 321
history of, 321–322
MLE analysis for, 353
multivariate analysis for, 352
population-level consequences in,
325–329
reproduction effects, 321
response categories for, 327–328
statistical assessment methods for,
352–354
transgenerational inheritance in, 327
mutations from, 320–321, 329
within DNA, 321
history of, 321–322
MLE analysis for, 353
workshops and symposia for, 323

Index

Ewens-Watterson neutrality test, 130
extinction, of species, 1
biodiversity and, 4–8
hybridization and, 169
increased rates of, 5
for amphibians, 5–6
for birds, 7–8
for fishes, 8
for mammals, 6–7
for reptiles, 8
IUCN listings for, 5–6
Rhogesia tumida, 22–23
risks of, 5–6
Tree of Life and, 1

female-heterogametic systems, in fishes, 81
fishes. See also lake sturgeon, sex-
determining genes in; Pacific salmon
ESD in, 81–83
behavior as influence on, 81–82
in protogynous species, 82
temperature as influence on, 82–83
TSD and, 83
extinction rates for, 8
generically engineered, 38, 47
case study for, 37–39
QTLs for, 37–38
GSD in, 83–86
sex-determining genes in, 81–94
with AFLPs, 88
as autosomal, 86
chromosomal influences on, 85, 86
EE as influence on, 81
ESD and, 81–83
female-heterogametic systems and, 81
GSD and, 83–86
hermaphroditism and, 81
isolation of markers for, 86–88
in lake sturgeon, 88–94
loci for, 84
male-heterogametic systems and, 81
in monosex cultures, 86–87
for population structure studies, 87
transcriptome analysis for, 88
unisexuality and, 81
TSD and, 83
forests. See American chestnut trees; pollen
and seed movement, with landscape
fragmentation
foundation species
community genetics for, 50
as community drivers, 50
definition of, 55–56
dependent communities influenced by,
51–52
heritable phenotypes in, 56–57
GEOs as, 61–62
heritable phenotypes in, 56–57
gene(s), sex-determining, in vertebrates, 74
genetic markers, in conservation, 74–77
gene flow
adaptive differentiation and, 115–116
biodiversity and, 35–47
in plants, 36
among black-capped vireo, 225
definition of, 36
in GM crops, 36–41
aggressive weed formation from, 41
community-wide changes from, 40–41
plant fitness as factor for, 40
population genetics as factor for, 39–40
selective advantages from, 40
studies on, 39
from pollen and seed movement, with
landscape fragmentation, 203
for weedy rice, 43, 46
genetic evidence of, 44
genetic adaptation, 123–153. See also
association genetics
association genetics, 132–148
in animals, 132–141
methodology for, 125
in plants, 141–151
detection methods for, 125–132
association mapping, 126
candidate gene approaches in, 126–127
gene-wide association approaches in,
127–129
with LD, 126, 127–128
population genetic approaches in,
129–132
quantitative approaches in, 126
natural populations in, 125
definitions of, 125
QTL methodologies for, 125, 128–129
population genetics and, 123–124,
129–132
hitchhiking mapping in, 129–131
LD in, 124, 126
neutrality tests for, 131–132
in nonmodel organisms, 130–131
outlier analysis in, 129–131
for species conservation and management, 151–153
genetic ecotoxicology, 322–325
DNA adduct studies in, 324–325
future applications for, 325
historical background of, 322–324
genetic sex determination (GSD)
in amphibians, 80
evolution from TSD, 80
in fishes, 83–86
chromosomal influence on, 85
in lake sturgeon, 89
genetically engineered organisms (GEOs),
community genetics for, 61–66
ecological consequences of, 62, 65–66
ecosystem phenotypes in, 62
fitness of, 62
as foundation species, 61–62
native species hybridization by, 62
nontarget phenotypes in, 62
genetically modified (GM) crops, 35–36
biodiversity and, 35–36
environmental hazards as result of, 36
disease resistance as, 36
to nontarget organisms, 36
transgene movements as, 36
gene flow in, 36–41
aggressive weed formation from, 41
community-wide changes from, 40–41
plant fitness as factor for, 40
population genetics as factor for, 39–40
selective advantages from, 40
studies on, 39
non-GM crops v., 35
production methods for, 35
genetics. See also association genetics;
community genetics; ecosystem
genetics; genetic adaptation; genetic
sex determination; population
per...
Hudson-Kreitman-Aguade test, 131
hybridization, in endangered taxa, 169–185
 among Acropora, 182–183
anthropogenic, 174–177
applied studies for, 184–185
biodiversity and, 169–170
case studies for, 173–174, 175
missing data for, 178
categorization of, 170
correlates for, 176
habitat specialization as, 180–181
disease resilience as result of, 183
ecological correlates of, 177
extinction and, 169
habitat specialization as correlate for, 180–181
 for California tiger salamanders, 180–181
climate change as influence on, 180
mating issues
 for original species, 171–172
 for rusty crayfish, 171–172
natural, 174–177
predictors of, 178–181
demography as, 178–179
habitat modification as, 178
population size as, 179
promotion of conservation as result of, 182–184
 with applied studies, 184–185
selective removal of nonendangered species and, 179
among spadefoot toads, 183
species fitness as result of, 169
zone dynamics for, 177, 181–182
CSP and, 181–182
for rusty crayfish, 171–172
HYVs. See high-yielding varieties
insects
 heritable phenotypes for, 55
 species evaluation of, shortcomings for, 9
International Union for Conservation of Nature (IUCN)
species life span listings, 5–6
threatened species compilation, 7
IUCN. See International Union for Conservation of Nature
Kermode bears, conservation strategies for, 259–261
color polymorphism among, 260
logging as factor in, 260–261
 genetic consequences from, 261
lake sturgeon, sex-determining genes in, 88–94
candidates genes, 89
GSD and, 89
random markers in, 90
 alternatives to, 90
 with RAPD, 90
RDA for, 90
sexual maturity for, 89
subtractive hybridization for, 90
transcriptome pyrosequencing for, 90–93
landscape fragmentation
 allelic recharge and, among mammals, 194–196
 for banner-tailed kangaroo rats, 194–196
 in bottleneck events, 194–195
 emigration rates as influence on, 195
biodiversity and
 for endangered species, 212–234
 immediate consequences on, 190–191
 long-term effects of, 192–193
 polymorphism and, 190–191
 predictions for, 193
 short-term effects of, 191–192
 spatial genetic structure and, 191
endangered species and, 212–234
 among birds, 217–226
 genetic consequences of, 212–213
 literature survey of, 226–233
 population fragmentation among, 213–216
 in structurally complex habitats, 217
vagility of, 217
pollen and seed movement and, 190–208
biodiversity after, 190–191
case studies for, 201–206
conservation and, 206–207
estimates of, 193–200
genetic flow with, 203
 genetic relatedness and, 201
 seed dispersal, 200–201
 among tropical plant species, 197
LD. See linkage disequilibrium
LDD. See long-distance dispersal
linkage disequilibrium (LD)
in genetic adaptation, 124, 126, 127–128
QTL mapping v., 127–128
“living dead” species, 208
LND. See Local Neighborhood Diffusion
Local Neighborhood Diffusion (LND), 107
long-distance dispersal (LDD), 105, 107
major histocompatibility complex (MHC), 333
male-heterogametic systems, in fishes, 81
mammals. See also banner-tailed kangaroo rats, allelic recharge among; grizzly bears, sex identification and population sampling for; Kermode bears, conservation strategies for; Soay sheep, body-color polymorphism among
allelic recharge among, 194–196
 among banner-tailed kangaroo rats, 194–196
 in bottleneck events, 194–195
 emigration rates as influence on, 195
association genetics in, 132–141
body-color polymorphism and, 138
candidate gene approach to, 135, 138
genome-wide, 132–138
natural selection signature tests in, 141
neutrality tests for, 136
QTL studies for, 132–138
cryptic species of, phylogenetics for, 24
extinction rates for, 6–7
Rhogoessa tumida, 22–23
sex-determining genes in, 77–79
exceptions for, 77–78
molecular assays for, 78
primary products in, 78
sex identification and population sampling for, 76–77
among grizzly bears, 76–77
species discovery rates for, 9
management unit (MU), 15
Mantel tests, 56
for black-capped vireo, for genetic variation, 224–225
for golden-cheeked warbler, for genetic variation, 221–222
McDonald-Kreitman test, 131
MHC. See major histocompatibility complex microbes
heritable phenotypes for, 55
species discovery rates for, 9, 25
microsatellites, 330–331
minimum viable interacting populations (MVIPs), community genetics for, 60–61
minimum viable populations (MVPs), community genetics for, 59–61
for generalist species, 60
population size as factor in, 60
transfer experiments for, 60
mitochondrial markers, 20
MLSA. See multilocus sequence analysis
molecular taxonomy, 17–18
of eukaryotes, 18–20
with bar coding, 18–20
with mitochondrial markers, 20
species identification from, 19
of prokaryotes, 17–18
distance-based approaches to, 17
MLSA for, 18
sequencing for, 18
species recognition in, 18
mountain forests, climate change in, community genetics and, 66
MU. See management unit
multilocus sequence analysis (MLSA), 18
mutations, from evolutionary toxicology, 320–321, 329
MVIPs. See minimum viable interacting populations
MVPs. See minimum viable populations
National Science Foundation, 1
natural hybridization, 174–177
natural selection, in association genetics in animals, 141
among candidate genes, 145–146
in plants, 146–148
naturalists. See Darwin, Charles; Wallace, Alfred Russel
neutrality tests, for population genetics, 131–132
in animals, 136
Ewens-Watterson test, 130
Hudson-Kreitman-Aguade test, 131
limitations of, 131
McDonald-Kreitman test, 131
in plants, 147
NOAA. See National Oceanic and Atmospheric Administration
outlier analysis, in population genetics, 129–131
Ewens-Watterson neutrality test and, 130
testing parameters in, 130
Pacific salmon, 239–262
ecological role of, 239
under ESA, 239, 244–246
delisting of, 255
Recovery Domains in, 244–245
strategy mandates for, 245–246
evolution history as factor in, 241–243
diversity patterns in, 242
dynamic adaptations in, 243
replaceable populations within, 243
transplant limitations in, 242–243
federal protection for, 243–244
under ESA, 244–246
recovery planning for, 244–262
abundance and productivity assessments in, 248–250
climate change as influence on, 262
ESU viability and, 240, 254–257, 258
future applications of, 257–262
integration strategies for, 241
methodologies for, 247–248
molecular approaches to, 262
population identification in, 246–248
population viability and, 248–254
Recovery Domains in, 244–245
risk factor integration in, 252–254
spatial structure and diversity assessments in, 251–252
terms for, 240
TRTs in, 244
VSP and, 246, 254, 257, 258
Palo Verde National Park, pollen movement in, 204–205
PCR. See polymerase chain reaction
PD. See phylogenetic diversity
pedigree reconstruction, 285–286
for western larch, 285–286
Index

phylogenetic diversity (PD), 16–17
biodiversity “hot spots” and, 16–17
phylogenetic species concept (PSC), 14
delimiting species and, 14–15
phylogenetics
bar coding and, 19–20
biodiversity and, 13
conservation of species and, 13–17
delimiting species and, 14–15
EDGE scores for, 16
PSC, 14
for cryptic species, 20–24
from AFLP, 20
amphibians, 21
mammals, 24
sorting of, 21–24
databases for, 27–28
systematic development of, 27
ESU and, 15
categorization of, 15–16
criteria for, 15
phylogeographic concordance for, 15
of eukaryotes, 18–20
with bar coding, 18–20
with mitochondrial markers, 20
species identification from, 19
lineage divergence and, 16
MU and, 15
PD and, 16–17
of prokaryotes, 17–18
distance-based approaches to, 17
MLSA for, 18
sequencing for, 18
species recognition for, 18
species discovery rates with, 26
phylogeographic concordance, 15
Pigeon River region, evolutionary toxicology in, 351–352
plants, biodiversity of. See also American chestnut trees; Douglas-firs, association genetics in; European white oaks; pollen and seed movement, with landscape fragmentation; weedy rice
association genetics and, 141–151
candidate gene approach to, 145–146 in Douglas-firs, 148–151
geno wide, 141–145
natural selection signature tests in, 146–148
neutrality tests for, 147
QTL studies in, 141–145
gene flow and, 36
in GM crops, 36–41
for weedy rice, 43, 46
in GM crops, 35–41
environmental hazards as result of, 36
gene flow in, 36–41
non-GM crops v., 35
production methods for, 35
as “hot spots,” 4
pedigree reconstruction for, 285–286
for western larch, 285–286
weeds, 41
for weedy rice, 41–45
biodiversity effects of, 45
first observations of, 42
fitness of, 43–44, 45–46
gene flow for, 43, 46
HYVs for, 41–42
molecular markers for, 47
morphology of, 42
origin of, 41
population spread of, 44–45
wild, 42
wildlife reintroduction of, 307–309
for American chestnut tree, 307–309
pollen and seed movement, with landscape fragmentation, 190–208
biodiversity after immediate consequences on, 190–191
“living dead” species and, 208
long-term effects of, 192–193
polymorphism and, 190–191
predictions for, 193, 208
short-term effects of, 191–192
spatial genetic structure and, 191
case studies for, 201–206
Dinizia excelsa, 202–203
E. cyclocarpum, 204–206
flow rates in, 198
Guaiacum sanctum, 206
S. globulifera, 203–204
S. humilis, 202
conservation and, 206–207
management strategies for, 207
estimates of, 193–200
factors as influence on, 193–196
for mean/maximum distances, 201
studies for, 197–200
gene flow with, 203
genetic relatedness and, 201
seed dispersal, 200–201
new populations as result of, 200–201
among tropical plant species, 197
pollen flow, 105–107
pollutants. See evolutionary toxicology
polymerase chain reaction (PCR), 2
polymorphism. See also body-color polymorphism
landscape fragmentation and, as influence on, 190–191
population genetics, 123–124, 129–132
hitchhiking mapping in, 129–131
LD in, 124, 126
neutrality tests for, 131–132, 136
Ewens-Watterson test, 130
Hudson-Kreitman-Aguade test, 131
limitations of, 131
McDonald-Kreitman test, 131
in nonmodel organisms, 130–131
outlier analysis in, 129–131
testing parameters in, 130
population theory, wildlife reintroduction and, 297–298
prokaryotes, phylogenetics of, 17–18
distance-based approaches to, 17
MLSA for, 18
sequencing for, 18
species recognition in, 18
provenance tests, 102
PSC. See phylogenetic species concept
QTLs. See quantitative trait loci
quantitative genetics, 123
quantitative trait loci (QTLs)
in association genetics
in animals, 132–138
for Douglas-firs, 149
in plants, 141–145
for genetic adaptations, 125, 128–129
for genetically engineered salmon, 37–38
LD mapping v., 127–128
randomly applied polymorphic DNA (RAPD), in lake sturgeon, 90
alternatives to, 90
RAPD. See randomly applied polymorphic DNA
RDA. See representational difference analysis
Recovery Domains, 244–245
representational difference analysis (RDA), 90
reptiles. See also California tiger salamanders, hybridization of
extinction rates for, 8
sex-determining genes in, 79–80
chromosomal influence on, 79
ESD and, 79–80
TSD and, 80
resistance to disease. See disease resistance
restriction fragment length polymorphisms (RFLP), 331–332
RFLP. See restriction fragment length polymorphisms
Rhogeesa tumida, 22–23
DNA sequencing for, 22
genetic variation within, 22–23
rice. See weedy rice
rusty crayfish, hybridization among, zone dynamics as factor in, 171–172
S. globulifera, pollen movement for, 203–204
S. humilis, pollen movement for, 202
flow rates, 198
SARST. See serial analysis of ribosomal sequence tags
SBH. See sequencing by hybridization
seed movement. See pollen and seed movement, with landscape fragmentation
sequencing by hybridization (SBH), 26
serial analysis of ribosomal sequence tags (SARST), 26
sex-determining genes, 77–94
in amphibians, 79–80
evolution from TSD, 80
evolutionary plasticity of, 80
GSD and, 80
in birds, 77–79
molecular assays for, 79
chromosomes and, 77
in fishes, 81–94
with AFLPs, 88
as autosomal, 86
chromosomal influences on, 85, 86
EE as influence on, 81
ESD and, 81–83
female-heterogametic systems and, 81
hermaphroditism and, 81
isolation of markers for, 86–88
in lake sturgeon, 88–94
loci for, 84
male-heterogametic systems and, 81
in monosex cultures, 86–87
for population structure studies, 87
transcriptome analysis for, 88
TSD and, 83
unisexuality and, 81
genetic markers in
assays as, with DNA, 74–77
DNA fingerprinting, 74
individual identification in, 74
in mammals, 77–79
exceptions for, 77–78
molecular assays for, 78
primary products in, 78
in reptiles, 79–80
ESD and, 79–80
TSD and, 80
in vertebrates, 74
in amphibians, 79–80
in birds, 77–79
diversity of, 78
in fishes, 81–94
in mammals, 77–79
in reptiles, 79–80
single nucleotide polymorphisms (SNPs), 333–334
SNPs. See single nucleotide polymorphisms
Soay sheep, body-color polymorphism among, 139–141
with animal model approach, 140
genotypic fitness and, 140
spadefoot toads, hybridization among, 183
species discovery, rates of, 8–11
for amphibians, 9
for bacteria and microbes, 9, 25
for cryptic species, 20–24
from AFLP, 20
amphibians, 21
mammals, 24
sorting of, 21–24
Index

species discovery, rates of (cont.)
 enhancement of, 24–27
 for microbes, 25
 with phylogenetics, 26
 with SARST, 26
 with SBH, 26
 from T-RFLP, 25
 from taxonomic databases, 25
 limitation factors for, 11–13
 inventory assessment, rates of, 12–13
 regional inventories, lack of, 12
 taxonomic experts, shortage of, 12
 for mammals, 9

T-RFLP. See terminal restriction fragment length polymorphism
taxonomy
 biodiversity and, 13
 molecular, 17–18
 of eukaryotes, 18–20
 of prokaryotes, 17–18
 Technical Recovery Teams (TRTs), 244
 temperature-dependent sex determination (TSD), 80
 in fishes, 83
terminal restriction fragment length polymorphism (T-RFLP), 25
toxicogenomics, 335–336
transgenerational inheritance, 327
Tree of Life, 1
tropical landscapes. See also pollen and seed movement, with landscape fragmentation
 pollen and seed movement in, 197
TRTs. See Technical Recovery Teams
TSD. See temperature-dependent sex determination
unisexuality, in fishes, 81
vertebrates. See also amphibians; birds; fishes; mammals; reptiles
 sex-determining genes in, 74
 in amphibians, 79–80
 in birds, 77–79
 diversity of, 78
 in fishes, 81–94
 in mammals, 77–79
 in reptiles, 79–80
 viable salmonid population (VSP), 246, 254, 257, 258
VSP. See viable salmonid population

Wallace, Alfred Russel, 1
geological study by, 1

weeds
 from GM crops, aggressive formation of, 41
 rice as, 41–45
 weedy rice, 41–45
 biodiversity effects of, 45
 from gene flow, 47
 cross-fertilization of, 43
 first observations of, 42
 fitness of, 43–44, 45–46
 gene flow for, 43, 46
 biodiversity influenced by, 47
 genetic evidence of, 44
 HYVs for, 41–42
 molecular markers for, 47
 morphology of, 42
 origin of, 41
 population spread of, 44–45
 wild, 42
 western larch, pedigree reconstruction for, 285–286
 wild rice, 42
 wildlife reintroduction, 296–314
 development of, 296
 early limitations in, 297
 for forest species, 307–309
 American chestnut tree, 63, 307–309
 disease resistance and, 308–309
 founding event phase of, 303–305
 age structures in, 305
 capture techniques during, 303–304
 population size in, 304
 sex composition during, 304–305
 genetic consequences of, 299–303
 to gene flow, 301
 genetic drift as, 299
 from interdependent sampling events, 301–302
 lack of genetic diversity as, 299–301
 from sampling period, 303–313
 population establishment phase of, 305–310
 environmental factors in, 306–309
 mating tactic as factor during, 309–310
 social structure as factor during, 310
 population growth phase of, 310–313
 behavioral constraints in, 312
 biological constraints in, 311
 during bottleneck event, 312–313
 environmental constraints in, 311
 spatial constraints in, 312
 temporal components in, 313
 population theory and, 297–298, 299
 variation predictions for, 298