Evolution & Learning in Games
Econ 243B

Jean-Paul Carvalho

Lecture 9.
Local Stability
Local Stability

- Where global convergence does not occur (or cannot be proved), we can at least say something about the local stability of the rest points of an evolutionary dynamic.

- We can immediately state some results about local stability under imitative dynamics and in potential games.

- We will then explore the relationship between evolutionary stable states (in a multiple population setting) and locally stable states.

- Finally, we shall examine two methods of analyzing local stability, via:
 - Lyapunov functions,
 - Linearization of dynamics.
Non-Nash Rest Points of Imitative Dynamics

We can now formalize the argument that such rest points of imitative dynamics are not plausible predictions of play.

Theorem 9.1. Let V_F be an imitative dynamic for population game F, and let \hat{x} be a non-Nash rest point of V_F. Then \hat{x} is not Lyapunov stable under V_F, and no interior solution trajectory of V_F converges to \hat{x}.
Recall that imitative dynamics exhibit *monotone percentage growth rates*:

\[G^p_i(x) \geq G^p_j(x) \quad \text{if and only if} \quad F^p_i(x) \geq F^p_j(x), \]

where \(G^p_i(x) \) is the percentage growth rate of strategy \(i \) in population \(p \) in state \(x \).

The result follows from this fact.
Local Stability in Potential Games

- In Lecture 7, we used the fact that the potential function is a strict Lyapunov function for any evolutionary dynamic satisfying PC to prove global convergence (to rest points of V_F).

- This fact is also important to local stability.

- $A \subseteq X$ is a local maximizer set of the potential function f if:

 - A is connected,

 - f is constant on A, and

 - there exists a neighborhood O of A such that $f(x) > f(y)$ for all $x \in A$ and all $y \in O - A$.

Local Stability in Potential Games

For a potential game, a local maximizer set A consists entirely of Nash equilibria.

$A \subseteq NE(F)$ is **isolated** if there is a neighborhood of A that does not contain any Nash equilibria other than A.

Theorem 9.2. Let F be a potential game with potential function f, let V_F be an evolutionary dynamic operating on F, and suppose that $A \subseteq NE(F)$ is a local maximizer set of f.

(i) If V_F satisfies PC, then A is Lyapunov stable under V_F.

(ii) If in addition V_F satisfies NS, and A is isolated, then A is an asymptotically stable set under V_F.
PC and NS are not only sufficient for a local maximizer set to be asymptotically stable, they are also necessary.

Theorem 9.3. Let F be a potential game with potential function f, and let V_F be an evolutionary dynamic that satisfies PC and NS. Suppose that $A \subseteq NE(F)$ is a smoothly connected asymptotically stable set under V_F. Then A is an isolated local maximizer set of f.
Local Stability in Potential Games

The best response dynamic does not satisfy PC because of a lack of smoothness. Nevertheless the following theorem applies.

Theorem 9.4. Let F be a potential game with potential function f, let V_F be the best response dynamic, and let $A \subseteq NE(F)$ be smoothly connected. Then A is an isolated local maximizer set of f if and only if A is asymptotically stable under V_F.
Evolutionarily Stable States

- We have already introduced the notion of evolutionarily stable states (ESS) in a single population setting.

- Suppose \(x \) is an ESS. Consider a fraction \(\varepsilon \) of mutants who switch to \(y \neq x \). Then the average post-entry payoff in the incumbent population is higher than that in the mutant population, for \(\varepsilon \) sufficiently small.

- We showed that this is equivalent to:

Suppose \(x \) is an ESS. Consider a fraction \(\varepsilon \) of mutants who switch to \(y \). Then the average post-entry payoff in the incumbent population is higher than that in the mutant population, for \(y \) sufficiently close to \(x \).
Evolutionarily Stable States

- Thus an ESS is defined with respect to population averages and explicitly it says nothing about dynamics.

- We shall now extend the ESS concept to a multipopulation setting and relate it to the local stability of evolutionary dynamics.
Taylor ESS

Definition. If F is a game played by $p \geq 1$ populations, we call $x \in X$ a Taylor ESS of F if:

There is a neighborhood O of x such that $(y - x)'F(y) < 0$ for all $y \in O - \{x\}$.

This is the same as the statement for single-population games, except F can now be a multipopulation game.

Note that in the multipopulation setting:

$$X = \prod_{p \in P} X^p = \{x = (x^1, ..., x^p) : x^p \in X^p \}.$$
Once again, we have the result:

Theorem 9.5. Suppose that F is Lipschitz continuous. Then x is a Taylor ESS if and only if:

- x is a Nash equilibrium: $(y - x)'F(x) \leq 0$ for all $y \in X$, and
- There is a neighborhood O of x such that for all $y \in O - \{x\}$, $(y - x)'F(x) = 0$ implies that $(y - x)'F(y) < 0$.

For some local stability results we require a strengthening of the Nash equilibrium condition.

In a **quasistrict equilibrium** x, all strategies in use earn the same payoff, a payoff that is strictly greater than that of each unused strategy.

This is a generalization of strict equilibrium, which in addition requires x to be a pure state.

The second part of the Taylor ESS condition is also strengthened, replacing the inequality with a differential version.
Definition. We call x a regular Taylor ESS if and only if:

x is a quasistrict Nash equilibrium: $F^p_i(x) = \bar{F}^p(x) > F^p_j(x)$
when $x^p_i > 0$, $x^p_j = 0$, and

For all $y \in X - \{x\}$, $(y - x)'F(x) = 0$ implies that $(y - x)'DF(x)(y - x) < 0$.

Note: every regular Taylor ESS is a Taylor ESS.
Local Stability via Lyapunov Functions

- Let $Y \subseteq X$. Recall that the function $L : Y \rightarrow \mathbb{R}$ is a Lyapunov function for a differential equation (D) or differential inclusion (DI) if its value changes monotonically along every solution trajectory.

- In Lecture 7, we showed that if one can find a Lyapunov function whose domain is X (i.e. $Y = X$), then one can prove global convergence for various evolutionary dynamics.

- For our purpose here, all we need to prove local stability of state x is to construct a Lyapunov function whose domain contains x (i.e. $Y \subset X$).
Local Stability via Lyapunov Functions

Once again:

Theorem 9.6. (Lyapunov Stability) Let \(A \subseteq X \) be closed and let \(Y \subseteq X \) be a neighborhood of \(A \). Let \(L : Y \to \mathbb{R}_+ \) be Lipschitz continuous with \(L^{-1}(0) = A \). If each solution \(\{x_t\} \) of (D) [or (DI)] satisfies \(\dot{L}(x_t) \leq 0 \) for almost all \(t \geq 0 \), then \(A \) is Lyapunov stable under (D) [or (DI)].

Theorem 9.7. (Asymptotic Stability) Let \(A \subseteq X \) be closed and let \(Y \subseteq X \) be a neighborhood of \(A \). Let \(L : Y \to \mathbb{R}_+ \) be \(C^1 \) with \(L^{-1}(0) = A \). If each solution \(\{x_t\} \) of (D) [or (DI)] satisfies \(\dot{L}(x_t) < 0 \) for all \(x \in Y - A \), then \(A \) is asymptotically stable under (D). If in addition, \(Y = X \), then \(A \) is globally asymptotically stable under (D).

These results are used to prove the following theorems which establish the connection between ESS and local stability.
Local Stability via Lyapunov Functions

Theorem 9.8. Let x^* be a Taylor ESS of F. Then x^* is asymptotically stable under the replicator dynamic for F.

Theorem 9.9. Let x^* be a regular Taylor ESS of F. Then x^* is asymptotically stable under the best response dynamic for F.
Theorem 9.10. Let x^* be a regular Taylor ESS of F. Then for some neighborhood O of x^* and each small enough $\eta > 0$, there is a unique $\text{logit}(\eta)$ equilibrium \tilde{x}^{η} in O, and this equilibrium is asymptotically stable under the $\text{logit}(\eta)$ dynamic. Finally, \tilde{x}^{η} varies continuously in η, and $\lim_{\eta \to 0} \tilde{x}^{\eta} = x^*$.
Linearization of Dynamics

- Another technique for establishing local stability of a rest point is to linearize the dynamic around the rest point.

- This requires the dynamic to be smooth around the rest point, but does not require the guesswork of finding a Lyapunov function.

- If a rest point is found to be stable under the linearized dynamic, then it is **linearly stable**.

- Linearization will also be used to prove that a rest point is unstable, and we shall use this in the next lecture to study nonconvergence of evolutionary dynamics.
Linear Approximation

The linear (first-order Taylor) approximation to a function F around point a is:

$$F(a + h) \approx F(a) + DF(a)h.$$

Let $o(|h|)$ be the remainder, the difference between the two sides:

$$o(|h|) \equiv F(a + h) - F(a) - DF(a)h.$$
Suppose F is a function of one variable. Then:

$$\frac{o(|h|)}{h} = \frac{F(a + h) - F(a)}{h} - F'(a) \rightarrow 0 \text{ as } h \rightarrow 0,$$

by the definition of the derivative $F'(a)$.

The approximation gets better as h gets smaller, but it gets better at an order of magnitude smaller than h.
Let A be an $n \times n$ matrix. A non-zero vector v is an eigenvector of A if it satisfies:

$$Av = \lambda v,$$

for some scalar λ called an eigenvalue of A.

Note that:

$$Av = \lambda v \implies (A - \lambda I)v = 0 \implies |A - \lambda I| = 0.$$

Therefore, an eigenvalue of A is a number λ which when subtracted from each of the diagonal entries of A converts A into a singular matrix.
EXAMPLE: $A = \begin{pmatrix} -1 & 3 \\ 2 & 0 \end{pmatrix}$

$|A - \lambda I| = \lambda^2 + \lambda - 6 = (\lambda + 3)(\lambda - 2)$.

Therefore, A has two eigenvalues $\lambda_1 = -3$ and $\lambda_2 = 2$.

Linearization of Dynamics

- A single-population dynamic \(\dot{x} = V(x) \), which we shall refer to as (D), describes the evolution of the population state through the simplex \(X \).

- Near \(x^* \), the dynamic (D) can typically be well approximated by the linear dynamic:

\[
\dot{z} = DV(x^*)z, \quad (L)
\]

where (L) is a dynamic on the tangent space \(TX \).

- (L) approximates the motion of deviations from \(x^* \) following a small displacement \(z \).
★ Consider the linear mapping which maps each displacement vector \(z \in TX \) into a new tangent vector \(DV(x^*)z \in TX \).

★ The scalar \(\lambda = a + ib \) is an eigenvalue of this map if \(DV(x^*)z = \lambda z \).

★ If all eigenvalues of this map have negative real part, then the rest point \(x^* \) is **linearly stable** under (D).
Linearization of Dynamics

Theorem 9.11. Let x^* be a regular Taylor ESS of F. Then x^* is linearly stable under the replicator dynamic.

Theorem 9.12. Let $x^* \in \text{int}(X)$ be a regular Taylor ESS of F. Then for some neighborhood O of x^* and all $\eta > 0$ less than some threshold $\hat{\eta}$, there is a unique and linearly stable $\logit(\eta)$ equilibrium \tilde{x}^η in O.