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Abstract 

This article compares the performance of the expected utility (EU) and lottery-dependent expected utility 
(LDEU) models in predicting the actual choices of experimental subjects among risky options. In the process, 
we present two approaches for calibrating the LDEU model for an individual decision maker. The results 
indicate that while LDEU exhibits a higher potential for correctly predicting choice, the version of the model 
calibrated by indifference judgments does not outperform EU. We suggest a functional form for the parametric 
functions that defines the LDEU model, and discuss ways in which this function can be incorporated into 
choice-based assessment approaches to improve predictions. 

Experiments involving choice under risk have consistently demonstrated that subjects 
exhibit patterns of preference that violate principles of von Neumann-Morgenstern 
(1947) expected utility (EU) theory. To accommodate these inconsistencies, a number of 
more general models of risky decision making have been proposed. Weber and Camerer 
(1987) reviewed several of these alternative models, including prospect theory (Kahne- 
man and Tversky, 1979), weighted utility theory (Chew and MaeCrimrnon, 1979a, 1979b), 
and generalized utility theory (Machina, 1982). 

Generalized utility models serve several potential purposes, and the need for model 
specificity is determined in part by how a model is to be used. If the objective is to 
characterize the general behavior of decision makers who conform with the assumptions 
of a model (to be used, e.g., in theoretical models of consumer behavior or economic 
agents), the model need only be specific enough to provide the behavioral patterns of 
interest. On the other hand, if the objective is to represent the preferences of an individual 
decision maker (to be used, e.g., to predict an individual's choice among several options), 
then the model must be precise enough for a preference function to be assessed. 
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previous draft. This research was supported in part by the Business Associates Fund at the Fuqua School of 
Business, Duke University. 
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Becker and Sarin (1987) recently introduced a generalized utility model that allows the 
utility of an outcome to vary with the lottery in which it is contained. Unlike some other 
models, this lottery-dependent expected utility (LDEU) model is specific enough to be 
precisely assessed, and thus can be used to both characterize and predict preferences. 
This article reports the results of an experiment designed to test the ability of the LDEU 
model to predict the actual choices of subjects among risky options. 

Models of decision making under risk can be experimentally investigated in several 
ways. First, alternative models can be compared and evaluated by examining the proper- 
ties of preference implied by the structure of the models; an example is provided by 
Camerer (1989), who examined several generalized utility models by comparing implied 
properties with the actual choice patterns exhibited by experimental subjects. Similarly, 
tests of the descriptive validity of the EU model have focused primarily on its structural 
inability to model specific patterns of preference. Predictive accuracy is a second criterion 
by which models may be evaluated, appropriate for the objective of representing an 
individual's preferences. Currim and Sarin (1989) provided an example of this approach, 
comparing the predictive accuracies of the prospect and EU models by assessing both for 
each experimental subject and comparing actual choices with those predicted by the 
models. In this article we adopt the latter approach, evaluating the predictive accuracy of 
the LDEU model using EU as a standard for comparison. 

The article is organized as follows. The expected utility and lottery-dependent expected 
utility models are described in section 1. The exponential form proposed by Becker and 
Sarin (1987) as an operation version of the LDEU model is the focus of this study. The 
potential of EU and LDEU to predict actual choices is examined in section 2. The 
predictive capacity of each model was determined by conducting an exhaustive search 
among possible utility values for each outcome to identify the model that best conformed 
with the actual choices of each subject. Since this search becomes impractical for choice 
situations involving many outcomes, subjects' EU and LDEU models were assessed using 
indifference information. Section 3 presents approaches for calibrating the LDEU model 
from probability equivalence and certainty equivalence judgments. Predictions from the 
assessed models were then compared with the actual choices of subjects over two sets of 
choice scenarios, one involving dependent lotteries designed to illustrate several of the 
choice paradoxes reported in the literature, and another involving nonparadoxical, un- 
related lotteries. The experimental results for the assessed models are reported in section 
4. While the assessed LDEU model often predicted patterns of preference inconsistent 
with expected utility, neither model approached its predictive capacity as determined 
from the search process. Focusing on those subjects for whom LDEU most accurately 
predicted choices, we examined the parametric function h(x) that defines an LDEU 
model and found that this function is well approximated by a cubic form. Section 5 
presents this function and discusses alternative assessment approaches in which this form 
is exploited. The predictive capacity of the LDEU model with h(x) constrained to this 
cubic form was found to be nearly as high as the unconstrained model. Section 6 concludes 
with a summary and suggestions for further research. 
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1. The models 

Consider risky optionF consisting of Iz discrete outcomes. Letxi denote the ith outcome of 
F, occurring with probabilitypi. The expected utility of F can then be expressed as 

where EF denotes expectation with respect to F, and u represents a real-valued utility 
function defined over outcomes xi. EU ranks risky options by their respective expected 
utilities, with more-preferred options having higher expected utilities. 

The LDEU model is more general that expected utility, reflecting the dependence of 
the utility of an outcome on the lottery in which the outcome occurs. Let uF(&) = u(x&) 
denote the utility of outcomexi in lottery F, where cF is a constant that depends onF. Then 
the lottery-dependent expected utility of F can be expressed as 

Assumptions about the parameter cF and the form of the utility function are needed to 
make the model operational. The parameter cF is assumed to be linear in probabilities, so 
there exists a real-valued function h(x), specific to a decision maker, such that 

A special case of u(x, cF) adopted throughout this article is the exponential model sug- 
gested by Becker and Sarin: 

u(x, CF) = ifcF f 0, 

x -x0 
u(x, CF) = * x -x0 

wherex* andxo represent the best and worst attainable outcomes, respectively, in the set 
of available lotteries and u(x*, cF) = 1 and u(xa, cF) = 0 for any CF. For the exponential 
model with cF linear in probabilities, if cF = E#z(x)] > 0, then the lottery-dependent 
utility function associated with lottery F is concave, reflecting risk aversion, while cF < 0 
implies a convex LDEU function and risk proneness. Note that if CF is constant for all 
lotteries F, h(x) must also be constant, and the corresponding decision maker will evaluate 
available lotteries using the same exponential utility function. In this case, the exponential 
forms of the EU and LDEU models are equivalent. 
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2. Predictive capacity 

Experiments designed to characterize the properties of a given utility model generally 
consist of sets of risky options, over which the pattern of choices predicted by the model 
can be compared with the pattern of actual choices made by subjects. A model may be 
structurally incapable of representing some pattems of preference that are experimen- 
tally observed, (e.g., the EU model is incapable of predicting the modal response pattern 
in the Allais (1953) paradox) while performing quite well on other, non-paradoxical 
patterns. Conversely, a model capable of representing each of a given set of preference 
patterns may fail to match all choices when a subject exhibits two or more of these patterns 
simultaneously. Therefore, predictive capacity is an important measure of the ability to 
model choice. 

2.1. Experimental design 

Graduate management students at the University of California, Irvine participated vol- 
untarily in an experiment to evaluate the predictive capacities of EU and LDEU. Subjects 
were given a set of 18 hypothetical choice scenarios consisting of pairs of risky investment 
options and asked to indicate the more-preferred alternative in each case. Two sets of 18 
scenarios were used in a between-subject design to compare the models' performance. 
Experimental questionnaires included consistency checks to ensure that subjects were 
providing reliable preference information. One group of subjects was assigned indepen- 
dently generated scenarios, while the other group received a set of dependently con- 
structed scenarios designed to elicit preference patterns inconsistent with expected utility. 
The independent scenarios were expected to be neutral to the models, while the depen- 
dent scenarios were expected to favor LDEU, since LDEU is designed to capture choice 
patterns which EU is structurally incapable of modeling. 

Previous experiments have shown differences in risk-taking behavior in different out- 
come domains. For this reason, scenarios were equally partitioned according to the 
characteristics of the outcomes available in the lotteries. Gain-domain scenarios involved 
lotteries with only nonnegative outcomes, loss-domain scenarios had no positive out- 
comes available, and mixed-domain scenarios spanned both positive and negative out- 
comes. The 18 scenarios were presented to individual subjects in one of three random 
orders. The largest positive outcome was set atx* = $4000 and the largest possible loss at 
x0 = - $4000, with the expected values in each pair of options set equal, except for small 
differences due to rounding of probabilities. The range of monetary outcomes was se- 
lected to represent a significant portion of a graduate student's annual budget. Tables 1 
and 2 present detailed descriptions of the paradoxical and independent scenarios. 

A group of 44 subjects was randomly selected to provide choices over the set of 
independent scenarios. Independent scenarios consisted of pairs of lotteries involving two 
of the seven possible outcomes each, with probabilities ranging from .20 to .80 (to avoid 
possible overweighting of likely or unlikely outcomes). A second group of 54 subjects 
responded to the set of dependent, or paradoxical, scenarios. While the independent 
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Table 1. Paradoxical scenarios 

Scenario Scenario 
(i) classification Option Ai Option Bi 

S1 
(4000, .80; s1, .2) 
(3000, .8; S1, .2) 
(0, .8; S1, .2) 
(0, .96; $1, .04) 
B1 vs. B3 
$7 
(0, .8; S7, .2) 
( - 3000, .8; $7, .2) 
(4000, .8; $7, .2) 

(3000, 1.0) [91%] 
(4000, .8; 3000, .2) [78%1 
(300, 1.0) [39%] 
(3000, .2; 0, .8) [37%] 
(3000, .04; 0, .96) [13%] 
(4000, .15; 3000, .8; 0, 0.5) [13%] 
(-3000, 1.0)[13%] 
(0, .8; - 3000, .2) [72%] 
(-3000,1.0) [33%] 
( -  3000, .2; - 4000, .8) [39%] 

(4000, .75; o, .25) [9%[ 
(4000, .95; 0, .05) [22%] 
(4000, .15; 3000, .8; 0, .05) [61%] 
(4000, .15; 0, .85) [63%] 
(4000, .03; 0, .97) [87%] 
(4000, .75; o, .25) [87%] 
(0, .25; - 4000, .75) [87%] 
(0, .85; - 4000, .15) [28%] 
(0, .05; - 3000, .8; - 4000, .15) [67%] 
(0, .05; -4000, .95)[61%] 
(0, .01; - 4000, .99) [57%] 
(0, .25; - 4000, .75) [28% 1 
(4000, .75; -4000, .25)[15%] 
(4000, .95; - 4000, .05) [17%] 
(4000, .15; 2000, .8; - 4000, .05) [31%] 
(4000, .15; - 4000, .85) [74%] 
(4000, .03; - 4000, .97) [85%] 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 (-4000, .96; $7, .04) (-3000, .04; -4000, .96) [43% 1 
12 B7 vs. B9 (0, .05; - 3000, .8; - 4000, .15) [72%] 
13 S13 (2000, 1.0) [85%] 
14 (4000, .8; S13, .2) (4000, .8; 2000, .2) [83%] 
15 (2000, .8; S13, .2) (2000, 1.0) [69% 1 
16 (-4000, .8;S13, .2) (2000, .2; -4000, .8) [26%] 
17 ( -4000, .96; S13, .04) (2000, .04; - 4000, .96) [15%] 
18 BI3 vs. B15 (4000, .15; 2000, .8; - 4000, .05) [11%] (4000, .75; - 4000, .25) [89%] 

Fifty-four subjects chose either optionAi or option Bi for each scenario i. The percentage of subjects who chose 
each option is given in brackets. 

Table 2. Independent scenarios 

Scenario (i) OptionAi Option Bi 

1 (4000, .5; 3000, .5) [30%] (4000, .75; 2000, .25) [70%] 
2 (4000, .2; 2000, .8) [68%] (3000, .8; 0, .2) [32%] 
3 (3000, .4; 2000, .6) [82%] (4000, .6; 0, .4) [18%] 
4 (3000, .4; 0, .6) [48%] (4000, .3; 0, .7) [52%] 
5 (2000, A; 0, .6) [80%] (4000, .2; 0, .8) [20%] 
6 (3000, .25; 2000, .75) [82%] (3000, .75; 0, .25) [18%] 
7 ( - 4000, .5; - 3000, .5) [57%] ( - 4000, .75; - 2000, .25) [43%] 
8 ( -  4000, .2; - 2000, .8) [39%] ( - 3000, .8; 0, .2) [61%] 
9 ( - 3000, .4; - 2000, ,6) [20%] ( - 4000, .6; 0, .4) [80%] 

10 (-3000, .4; 0, .6) [39%] (-4000, .3; 0, .7) [61%] 
11 ( - 2000, .4; 0, .6) [52%] ( - 4000, .2; 0, .8) [48%] 
12 ( - 3000, .25; - 2000, .75) [30%] ( - 3000, .75; 0, .25) [70%] 
13 (4000, .77; - 3000, .23) [66%] (4000, .8; - 4000, .2) [34%] 
14 (3000, .5; -3000, .5)[30%] (4000, .43; -4000, .57)[70%] 
15 (4000, .66; - 3000, .34) [39%] (3000, .8; - 4000, .2) [61%] 
16 (2000, .28; - 3000, .72) [20%] (4000, .2; - 3000, .8) [80%] 
17 (3000, .5; -4000, .5) [30%] (2000, .5; -3000, .5) [70%] 
18 (2000, .63; - 4000, .37) [61%] (4000, .4; - 3000, .6) [39%] 

Forty-four subjects chose either optionAi or optionBi for each scenario i. The percentage of subjects who chose 
each option is given in brackets. 
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scenarios were generated to provide a good cross section of nonrelated scenarios, the 
paradoxical scenarios were constructed (over the same range of outcomes) to elicit pref- 
erence patterns that illustrate violations of the common ratio, common consequence, and 
betweenness principles. 

2.2. Paradoxical scenarios 

As an example of the structural dependence among pairs of paradoxical scenarios, con- 
sider the following options from scenarios 1 and 4 in table 1. 

Option A 1 Option B 1 
Scenario 1: 100% chance of $3000 vs. 75% chance of $4000 

25% chance of $0 

Scenario 4: 
OptionA4 Option B4 

20% chance of $3000 vs. 15% chance of $4000 
80% chance of $0 85% chance of $0 

Observe that optionsA4 and B 4 consist of an 80% chance of receiving $0 and a 20% 
chance of receiving optionsA1 or B1, respectively. Many subjects prefer optionAl over 
option B1, but prefer the transformed option B4 over the transformed optionA4 (see, e.g., 
Kahneman and Tversky, 1979; Keller, 1985b). This pattern of preference violates the 
substitution (or common ratio) principle of expected utility, which states that if alternative 
A1 is preferred to B1, then the compound alternative [C, p; A1, 1 - p] should also be 
preferred to [C,p; B1, 1 - p] (see Marschak, 1950). Unlike EU, the LDEU model is able 
to simultaneously predict preference for optionsA 1 and B4 (or B1 and A4) by allowing the 
utility of $3000 to vary with the lottery. Thus LDEU might be expected to exhibit superior 
predictive performance for subjects responding to paradoxical scenarios. In the gain 
domain, subjects' responses to scenarios 1, 4, and 5 can be examined to check conform- 
ance with the common ratio principle. Scenarios 7, 10, and 11 in the loss domain and 
Scenarios 13, 16, and 17 in the mixed domain are similarly related. 

Conformance with the common consequence principle can be examined by considering 
the first four scenarios in each outcome domain. The last three of these scenarios are 
related to the first via a common ratio transformation, combining a 20% chance of 
receiving the original (O) scenario with an 80% chance of receiving the high (H), inter- 
mediate (I), or low (L) outcome in the given domain. The four scenarios together form the 
HILO structure of Chew and Waller (1986), with H, I, and L values of ($4000, $3000, and 
$0), ($0, - $3000, and - $4000), and ($4000, $2000, and - $4000) in the gain, loss, and 
mixed domains, respectively. Expected utility requires that a subject preferring the risk- 
averse optionA (risk-prone option B) in the original scenario should also preferA (B) in 
any scenario related by the common consequence construction; further, subjects' re- 
sponses to the set of transformed scenarios should be identical. In contrast, LDEU is 
capable of modeling 14 of the 24 = 16 possible choice patterns (see Becker, 1986). 
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Coombs (1969,1975) and Coombs and Huang (1970) suggested that when the expected 
value of a set of lotteries is held constant, subjects will exhibit different preference 
orderings based on their ideal risk levels. Those subjects who prefer an intermediate level 
of risk are said to exhibit a folded preference ordering. Subjects' responses to scenarios 
(1, 3 and 6), (7, 9 and 12), and (13, 15, and 18) can be examined to investigate the 
prevalence of folded orderings in the gain, loss, and mixed domains, respectively. Each 
triplet of scenarios consists of the three possible paired comparisons between a high 
variance option (a lottery involving only the highest and lowest outcomes in the given 
outcome domain), a zero variance option (a sure payoff of the intermediate outcome), 
and a moderate variance option (constructed as a 20% chance of receiving the high 
variance option and an 80% chance of receiving the zero variance option). According to 
expected utility, the moderate variance option can be neither the most preferred nor the 
least preferred of the three options LDEU is capable of modeling violations of this between- 
ness property, as Becker and Sarin (1989) demonstrated with an example problem. 

2.3. Results 

The choices made by each subject over the 18 (paradoxical or independent) scenarios 
were used to estimate the predictive capacity of the EU and LDEU models. The best EU 
model was found by setting u($4000) = 1 and u( - $4000) = 0 and simultaneouslyvarying 
the values ofu(x) forx = $3000, $2000, $0, - $2000, and - $3000. The combination ofu(x) 
values that yielded the largest number of correct predictions for an individual subject 
represented the best-predicting EU model for that subject. The best-predicting LDEU 
model was similarly obtained byvarying the values ofh(x) forx = $4000, $3000, $2000, $0, 
- $2000, - $3000, and - $4000. 

The EU model was found to be capable of correctly predicting subjects' choices in 
71.91% of the paradoxical and 83.96% of the independently generated scenarios in which 
the model did not predict indifference. Inspection of the best-predicting u(x) values 
associated with individual subjects revealed a dominant pattern of risk aversion in the gain 
domain and risk proneness in the loss domain. Subjects were also more risk-prone in the 
loss domain than risk-averse in the gain domain. 

A search was conducted among possible combinations of the h (x) values to identify the 
best LDEU model for each subject. The value of h(x) was varied by increments of 1 
between 0 and 5 forx = $2000, $3000, and $4000, between - 5  and 0 forx = - $4000, 
- $3000, and - $2000, and between - 2 and 2 for x = $0. The search yielded correct 
predictions for 93.52% of the subjects' responses to the paradoxical scenarios and 91.92% 
of the independent scenarios. Examination of the best-predicting LDEU models also 
revealed a dominant pattern, to be discussed in detail in section 5. 

The results thus indicate that LDEU exhibited a higher potential for predicting choice, 
as evidenced by the additional 19.87% of the paradoxical responses and 8.10% of the 
independent responses matched by the model. However, the search strategy required to 
identify the best LDEU model becomes intractable as the number of possible outcomes 
becomes large. The next section outlines two approaches for assessing the models using 
indifference information. 
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3. Model calibration using indifference judgments 

Each subject's responses to a series of indifference judgments were used to calibrate both 
the EU and LDEU models. Since experimental results can depend on the method by 
which the models were calibrated (see, e.g., Hershey, Kunreuther, and Schoemaker, 
1982), two assessment approaches were adopted to allow a more complete comparison. 
Direct assessment involved elicitingprobability equivalence (PE) indifference judgments to 
determine u(x) and h(x) values for seven monetary outcomes ranging from - $4000 to 
$4000. Curve-fitting assessment involved eliciting certainty equivalence ( CE) indifference 
judgments independently for the gain domain (with outcomes ranging from $0 to $4000) 
and the loss domain (with outcomes from - $4000 to $0). The u(x) and h(x) values of 
interest were then derived from the two-piece exponential utility function that best fit the 
indifference judgments. Therefore, four calibrated models were formulated for each 
subject: EU calibrated by the direct and curve-fitting procedures and LDEU assessed by 
the two methods. 

The two procedures used in this study were chosen to represent opposite ends of the 
spectrum of possible indifference judgment assessment methods. Calibration by proba- 
bility equivalents provides a straightforward means of directly assessing u(x) and h(x) 
values for each model without requiring specification of functional forms. Calibration by 
certainty equivalents requires a different type of indifference judgment that many sub- 
jects find easier to make. However, by allowing subjects to supply certainty equivalents, 
the ability to directly compute u(x) and h(x) values is lost, since the CE values given by 
subjects rarely correspond to the specific monetary outcomes needed to predict choices. 
The curve-fitting approach adopted also allows separate assessment in the gain and loss 
domains (where subjects often exhibit different risk attitudes) and could lead to superior 
predictions if the selected functional forms smooth out random response errors. Table 3 
shows the specific assessment questions used to calibrate the EU and LDEU models. 

Table 3. Assessment questions 

Probability equivalents Certainty equivalents 

To assess u(x) and h(x) for x = $3000 to -$3000: 
(3000, 1.0) ~ (4000,p; -4000, 1 - p )  
(2000, 1.0) ~ (4000,p; -4000, 1 - ) p  
(0, 1.0) ~ (4000,p; -4000, 1 - p) 
(-2000,  1.0) ~ (4000,p; -4000, 1 - p) 
(-3000, 1.0) ~ (4000,p; -4000, 1 - p) 

To assess h($4000) and h(-$4000): 
(4000, .5; -3000, .5) ~ (4000,p; -4000,1 -p)  
(2000, .5; -4000, .5) ~ (4000,p; -4000, 1 - p)  

To assess ug(x) in the gain domain: 
(x, 1.0) ~ (4oo0, .75; o, .25) 
(x, 1.0) ~ (4oo0, .5; o, .5) 
(x, 1.0) ~ (4000, .25; O, .75) 
To assess u # )  in loss domain: 
(x, 1.0) ~ (0, .75; -4000, .25) 
(x, 1.0) ~ (0, .5; -4000, .5) 
(x, 1.0) ~ (0, .25; -4000, .75) 
To link gain and loss domains: 
(x, 1.0) ~ (4000, .25; o, .5; -4000, .25) 
To assess h($4000) and h(-$4000): 
(4000, .5;x, .5) ~ (4000, .75; - 4000, .25) 
(x, .5; - 4000, .5) ~ (4000, .25; - 4000, .75) 

Subjects were asked to supply value p to the probability equivalents questions and value x to the certainty 
equivalents questions that provide indifference between the two options. 
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3.1. Assessment by probability equivalents 

Assessment by probability equivalents required subjects to indicate the indifference prob- 
abilityp that satisfiesA -= (x, 1.0) ~ B = (x*,p;xo, 1 - p )  for a given value ofx. The utility 
of outcome x can then be expressed as 

u(x) = pu(x*)  + (1 - p)u(xo)  = p ,  

since u(x*) = 1 and u(xo) = 0. Probability equivalents for a hypothetical subject are given 
below; the corresponding utilities are graphed as points in figure la. 

Monetary amount x -4000 -3000 -2000 0 2000 3000 4000 
Probability equivalent PE 0 0.5 1.25 .5 .875 .95 1 

1 

0.9 

0,8 

0.7 

0,6 

u(x) o.5 

0.4 

0.3 

i 

0.2 

0.1 

-4  

I 

-3  

I 

-2  

I I 

-1 0 

x (thousands) 

Figure la. Determination of hypothetical subject's h(x) values from probability equivalence information, h(x) 
values are determined as the parameter that specifies the exponential utility function that contains the points 
( - 4 ,  0), (4, 1), and (x,u(x)). 
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The indifference probability can also be used to calculate the lottery-dependent utility 
outcome of x" 

u(x, cA) = 1--e-h(X)'x -x°" = pu(x*,cB) + (1 - p)u(xO, CB) = p, 
1 --e-h(x) 

since u(x*, c8) = 1, u(xo, cB) = 0, and CA = h(x) (assume h(x) ~ 0). As shown in figure la, 
h(x) is set equal to the parameter of the exponential utility function that includes the points 
( - $4000, u( - $4000) = 0), ($4000, u ($4000) = 1 ) and (x, u(x)). The value ofh(x) that satisfies 
this equation can be used to calculate the lottery-dependent utility of any option that 
includes outcome x. Since the experimental scenarios constructed for this study involve 
few outcomes, the process described above is only required to find h(x) values forx = 
$3000, $2000, $0, - $2000, and - $3000. These computed values, along with the final two 
probability indifference judgments in table 3, were then used to determine h (x) values for 
x = $4000 andx = - $4000. 

3.2. Assessment by certainty equivalents 

Assessment by certainty equivalents required subjects to indicate the certain outcome x 
that satisfiesA -= (x, 1.0) ~ B = (x*,p; x0, 1 - p)  for a given value ofp. One utility function 
Ug(X) was estimated by settingx* =-- $4000 andx0 -- $0, fixing Ug(X*) = 1 and Ug(Xo) = O. 
The expected utility of the specified certain outcome in the gain domain is then given, 
as above, by ug(x) = p.  As shown in table 3, three indifference questions were required 
to determine the certain outcomes associated withp = .75, .50, and .25. The estimate 
fig(x) was then derived over the range $0 _< x _< $4000 as the best-fitting exponential 
function from the specified indifference judgments (see Keller, 1985a, for details of 
the fitting process). The utility function derived in this manner for the gain domain is 
completely specified by the best-fitting exponential parameter, cg. 

A separate utility function ue(x) was estimated for the loss domain by settingx* = $0 
andx0 = - $4000, fixing ue(x*) = 1 and ue(xo) = 0. The utility in the loss domain of the 
specified certain loss is then given byue(x) = p. Three indifference questions, correspond- 
ing top = .75, .50, and .25, were constructed for this stage of assessment and the estimated 
fie(x) derived over the range - $4000 < x _< $0 as the best-fitting exponential function, 
with exponential parameter ce, from this set of indifference judgments. 

The next step in the assessment process determines the linked scale for the gain and 
loss exponential functions shown above. This is achieved by eliciting the certainty equiv- 
alent CE that satisfies (CE, 1.0) ~ ($4000, .25; $0, .50; - $4000, .25). Since u($4000) = 1 
and u ( -  $4000) = 0, the expected utility of the outcome CE is given by 

u(cE) = .25 + .50u($0). 
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The appropriate scale is set by determining q = u($0). If CE = $0, then the equation 
above becomes 

q = .25 + .50q ~ q = .50. 

If CE > $0, the utility of this outcome can be derived from the gain-domain utility 
function with the scaling factor q: 

u(CE)  = q + (1 - q)fig(CE). 

Substitution yields the following: 

q + (l  - q)gtg(CE) = .25 + .50q, 

or  

.25 - a g ( c E )  

q - .50-f ig(CE)" 

Since q _> O, the logical limit on ag(CE) is fig(CE) < .25. If CE < $0, a similar process 
yields the following expression for q: 

.25 
q = f i e (CE)-  .50' 

with logical limit fie(CE) > .75. The two-piece exponential utility function defined over 
the range - $4000 _< x _< $4000 then takes the following form: 

q + (1 - q)fig(X), if $0 < x <_ $4000 
u(x) = q, i f x = $ 0  

qfie(X), if -$4000 _< x < $0 

Therefore, the utility function as assessed by the curve-fitting method is completely 
specified by the exponential parameters cg and ce, and the scale factor q, This fitted utility 
function is likely to be smoother than that derived from probability equivalents, as shown 
in figure lb for a hypothetical subject providing the following certainty equivalents. 

(4000,p; O, 1 - p) (O,p; - 4000, 1 - p)  (4000,p; O, .5; - 4000, 1 - p)  
p .75 .5 .25 .75 .5 .25 .25 

CE 2000 1250 500 - 2 5 0  -1000 -2000 150 

The LDEU h(x) values of interest can be derived from the utility function identified 
above. As in the direct approach, h(x) for a given value ofx is set equal to the unique parameter 
of the exponential utility function that includes the points ( -  $4000,u(- $4000) = 0), ($4000, 
u($4000) = 1), and (x, u(x)). This can be expressed as 
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Figure lb. Determinati•n •f hyp•thetica• subject• s h (x ) va•ues fr•m certainty equiva•ence inf•rma••n, h ( 3••• ) 
is determined as the parameter that specifies the exponential utility function that contains the points ( -  4, 0), 
(4, 1), and (3000, u(3000)). 

X--Xo ) 
u(x,h(x)) = 1--e-h(X) x-W~-~ = u(x). 

1 -- e-h(x) 

Once again, this equation can be solved for h(x)  and the associated value later utilized in 
part to determine the lottery-dependent utility of any option that includes outcomex. An 
example is depicted graphically in figure lb. This approach is followed to compute h(x)  
values for outcomes ranging from - $3000 to $3000; these values are then used to deter- 
mine h(x) values forx = $4000 andx = - $4000 using the final two certainty equivalence 
judgments in table 3. 

Note that a one-piece exponential utility function is a special case of the exponential 
LDEU model in which h(x)  is a constant. Since the curve-fitting method described above 
links two exponential functions across the gain and loss domains, the resulting LDEU 
model will only yield a constant h(x)  if both component utility functions are linear. 
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3.3. Experimental design 

All experimental subjects responded to the probability equivalence assessment questions 
after responding to the 18 choice scenarios. Responses to the certainty equivalence 
questions were collected in a similar manner one week later. A total of 117 students 
completed the choice and assessment parts of the experiment. Of these, 19 subjects 
provided certainty equivalents consistent with the logical bounds required by stochastic 
dominance (ug(CE) < .25 and ue(CE) > .75) but in violation of the corresponding logical 
limit on the fitted functions, i.e., violating fig(CE) < .25 or fie(CE) > .75. We were unable 
to recontact these subjects for new responses based on the fitted functions; therefore, they 
were omitted, reducing our sample to 117 - 19 = 98 subjects. 

4. Results on predictive accuracy of assessed models 

The main experimental research question in this section is whether or not the assessed 
LDEU model outperforms the assessed EU model in predicting the actual choices of 
subjects. Table 4 outlines our experimental design and shows that over all treatments, 
LDEU correctly predicted 58.42% of the responses, compared to 61.88% for the EU 
model. (Equal utility calculated for the two options in a scenario was counted as a correct 
prediction.) In addition, the relative performance of the two models depended on neither 
the type of scenario over which choices were predicted nor the assessment method used 
to calibrate the models (shown by the percentage of correct predictions for the EU and 
LDEU models over the set of paradoxical and independent scenarios, and over assess- 
ment by the direct PE and the curve-fitting CE methods). Details on the predictive 
performance of the two models are provided by further analysis. 

Table 4. Experimental design and percentage of correct predictions by assessed models 

Expected utility: 
Percent correctly predicted 

Probability equivalence Certainty equivalence 
method method Average 

Paradoxical scenarios (N = 54) 56.28 67.80 62.04 
Independent scenarios (N = 44) 53.28 70.08 61168 
Total (N = 98) 54.93 68.83 61.88 

Lottery-dependent expected utility: 
Percent correctly predicted 

Probability equivalence Certainty equivalence 
method method Average 

Paradoxical scenarios (N = 54) 
Independent scenarios (N = 44) 
Total (N -- 98) 

58.02 64.09 61.06 
50.88 59.47 55.17 
54.82 62.02 58.42 



128 RICHARD L. DANIELS/L. ROBIN KELLER 

Since pairs of options in each holdout scenario were designed to have approximately 
equal expected value, the utilities of the options in a given pair, as computed by an 
assessed EU or LDEU model, often differed by very little. In these situations, a decision 
maker could adopt the choice of the associated model without suffering a significant 
utility loss. For this reason, it is important to measure performance not only as the 
instances in which a model correctly predicts a subject's choice, but also as the level of 
distinction a model draws between scenario options. The following classification scheme 
refines the definitions of correct and incorrect predictions to incorporate the utility 
difference between options in a scenario. 

C H  -=- 

N H  = - 

C M  = _ 

N H  = _ 

T -  

ClearHit - -an instance in which a model correctly predicts the subject's choice and 

the utility difference between the pair of options is greater than or equal to some 
tolerance level e~. 
NearHi t - -correc t  model prediction; utility difference < or. 
Clear Miss - -  a model incorrectly predicts a subject's choice and the utility differ- 
ence _< et. 
NearMiss- - incorrec t  model prediction; utility difference < e~. 
Tie- -a  model predicts equal utility for both options. 

Distinguishing by the utility difference between options provides a number of dif- 
ferent ways in which a model's predictive performance can be evaluated. The fre- 
quency of accurate predictions, or hit ratio, can be represented by the quantity 

C H + N H +  T 
C H  + N H  + T + N M  + CM" Alternatively, those instances where a model indicates no 

clear preference between options can be ignored to discount for the sensitivity of both 
predictions and choices to small response errors or inconsistencies; the appropriate 

C H  performance measure in this case would be the clear hit ratio, CH--~-CM" Finally, the 

C H +  C M  can be used to measure percentage of clear observations, C H + N H +  T + N M +  C M '  

the tendency of a model to strongly discriminate between scenario options. 
The data in table 5 show how the distribution of clear and near hits and clear and near 

misses varied with a, comparing the performance of the EU and LDEU models in 
predicting the choices of all 98 subjects. By definition, the hit ratio of each model was 
constant (with respect to a), and the percentage of clear observations decreased with 
larger values of tx. The clear hit ratio of the EU model increased modestly with increasing 
~, while the corresponding measure for the LDEU model remain essential unchanged. 

Table 6 provides further detail, comparing the predictive performance of the EU and 
LDEU models over paradoxical and independent scenarios, assessment by probability and 
certainty equivalents, and the domain of option outcomes. The percentage of clear hits and 
misses, near hits and misses, and ties were computed for a tolerance level et = 0.01. The hit 
ratio, clear hit ratio, and percentage of clear observations are also presented to summarize the 
performance of each model. 

Comparing across models, the results indicate that the LDEU model distinguished 
more strongly between scenario options, as seen by the consistently higher percentage of 
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Table 5. Overall model performance 

Percentages for different tolerance levels (ct) 

EU model .001 .005 .010 .030 .050 

Clear Hit 42.16 36.48 31.69 18.57 11.65 
Near Hit 0.96 6.64 11,43 24.55 31,47 
Tic 18.76 18.76 18.76 18.76 18.76 
Near Miss 1.30 7,88 12.47 24.03 30.01 
Clear Miss 36.82 30.24 25.65 14.09 8,11 

Hit ratio 61.88 61.88 61.88 61.88 61.88 

Clear Hit ratio 53.38 54.68 55.27 56.86 58.96 

% Clear observations 78.98 66.72 57.34 32.66 19.76 

LDEU model 

Clear Hit 46.40 41.01 37.33 27.01 20,10 
Near Hit 3.20 8.59 12.27 22.59 29,50 
Tie 8.82 8.82 8.82 8.82 8.82 
Near Miss 2.49 7.23 10.63 19.73 24.74 
Clear Miss 39.09 34.35 30.95 21.85 16.84 

Hit ratio 58.42 58.42 58.42 58.42 58.42 

Clear Hit ratio 54,28 54,42 54,67 55,28 54,41 

% Clear observations 85.49 75.36 68.28 48.86 36.94 

clear observations. However, the generalized model did not appear to exhibit superior 
performance in predicting subjects' choices. This is apparent from the hit and clear hit 
ratios, which were notably higher for the LDEU model only in the mixed domain. While 
there was no significant difference in the hit ratios recorded by EU (62.04%) and LDEU 
(61.06%) over the set of paradoxical scenarios, the EU hit ratio (61.68%) was significantly 
higher than the LDEU hit ratio (55.17%) over the set of independent scenarios (differ- 
ence significant at thep = .0002 level). Essentially identical performance was observed for 
the two models directly assessed by probability equivalents (EU hit ratio = 54.93% versus 
LDEU hit ratio -- 54.82%); however, the EU hit ratio (68.83%) was significantly higher 
than the LDEU hit ratio (62.02%) when the models were calibrated using the curve- 
fitting approach (difference significant at thep = .0001 level). 

On average, the predictive performance of LDEU favored paradoxical over independently 
structured scenarios (difference in hit ratios significant at thep = .0109 level), assessment by 
certainty over probability equivalents (significant at the p = .0443 and p = .0086 level for 
paradoxical and independent subjects, respectively), and options with mixed outcomes 
over those in the gain or loss domains. The model was most accurate on mixed-domain, 
paradoxical scenarios when assessed by certainty equivalents, achieving a hit ratio of 
75.31% and a clear hit ratio of 72.66%. By contrast, EU attained its highest success on 
gain-domain, independent scenarios when assessed by certainty equivalents, attaining an 
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Table 6. Breakdown of experimental results (ct = 0.01) 

Percentage of observations Performance measures 

Clear Near Near Clear Hit Clear Hit % Clear 
Hit Hit Tie Miss Miss Ratio Ratio Observations 

Paradoxical scenarios 
EU 31.53 13.53 16.98 16.05 21.91 62.04 59,00 53.44 

LDEU 37.35 14.71 9.00 11.47 27.47 61.06 57,62 64.82 
Independent scenarios 

EU 31.88 8.84 20.96 8.08 30.24 61.68 51.32 62.12 
LDEU 37.31 9.28 8.58 9.60 35.23 55.17 51,43 72.54 
Probability equivalents 

EU 36.45 9.07 9.41 11.51 33.56 54.93 52.06 70.01 
LDEU 39.85 11.17 3.80 9.86 35.32 54.82 53.01 75.17 
Certainty equivalents 

EU 26.93 13.78 28.12 13.44 17.73 68.83 60.30 44.66 
LDEU 34.81 13.38 13.83 11.39 26.59 62.02 56.69 61.40 
Gain domain 

EU 30.19 13.27 21.00 13.94 21.60 64.46 58.29 51.79 
LDEU 34.86 15.22 9.69 10.04 31.72 58.24 52.36 66.58 
Loss domain 

EU 26.45 11.82 24.40 11.05 26.28 62.67 50.16 52.73 
LDEU 27.13 15.22 10.12 14.20 33.33 52.47 44.87 60.46 
Mixed domain 

EU 38.44 9.18 10.88 12.41 29.09 58.50 56.92 67.53 
LDEU 50.00 7.91 6.63 7.65 27.81 64.54 64.26 77.81 

82.58% hit ratio and a 72.55% clear hit ratio. The difference in hit ratios for EU with the 
two elicitation methods is significant at thep = .0016 andp = .00007 level for paradoxical 
and independent subjects, respectively. 

A detailed examination of the subjects' responses and the assessed models' predictions 
for the paradoxical scenarios demonstrated both the existence of the paradoxical choice 
patterns associated with common ratio, common consequence, and folded ordering sce- 
narios, and the capability of the assessed LDEU model to predict these patterns. Para- 
doxical choices were observed frequently in the data on subjects' preferences, placing 
severe limitations on the predictive ability of the EU model. However, neither EU nor 
LDEU managed to correctly predict the exact choice pattern for a large percentage of the 
subjects over these scenarios. Details of the results are contained in a companion working 
paper available from the authors. The next section provides some suggestions for reducing 
the disparity between the predictive capacity of the lottery-dependent model and its 
performance. 

5. A functional form for h(x) 

The h(x) functions associated with the LDEU models that best fit the actual choices of 
each subject were examined in detail. A consistent pattern among these models emerged 
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in which h(x) values remained essentially constant across the range of x, with the excep- 
tions of the upper and lower endpoints, which tended to take on significantly higher and 
lowerh(x) values, respectively. This predominant h(x) pattern, shown in figure 2, indicates 
a relatively constant risk attitude at moderate outcome levels, with increasing risk aver- 
sion at the upper end and increasing risk proneness at the lower end of the outcome range. 

The h(x) pattern shown in figure 2 can be represented by the following functional form: 

h(x )  = r + s(x  - 03,  

where r, s, and t are constants specific to the individual decision maker. The parameter t 
can be interpreted as an individual's target or reference level of the outcome variable. The 
parameter r then specifies the value ofh(t), indicating the risk attitude for a sure outcome 
of the neutral target amount t. The parameter s sets the scale of h(x) over the range 

- $4000 __< x < $4000 and thus controls the variability ofh(x) values. 
An advantage of the above functional form for h(x) is that only three parameters need 

to be varied in searching for an LDEU model that best predicts a subject's choice pattern. 
Constraining h(x) values to adhere to the cubic form shown above, a best-predicting 
LDEU model can be fitted to subjects' responses to choice scenarios. Table 7, which 
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presents a summary of the predictive performance of the models evaluated in this study 
(ties are omitted in this table), shows that 92.06% of the paradoxical scenarios and 84.44% 
of the independent scenarios are correctly predicted by the cubic model (with the values 
ofr and t varied between - 5 and 5 in increments of 0.25 and s varied between - 0.25 and 
0.25 by 0.025). This indicates that only a moderate reduction in predictive capacity is 
associated with the introduction of the cubic constraint on h(x). 

Two approaches for calibrating the LDEU model that exploit the cubic form of the 
underlying h(x) function are suggested. First, the indifference information provided by 
stlitably chosen probability or certainty equivalence judgments can be fitted to the cubic 
h(x) function given above, and the resulting values of r, s, and t used to generate predic- 
tions over any holdout sample of interest. A second approach would be to construct a 
series of choice scenarios designed to span the entire outcome range and to record a 
decision maker's responses to these scenarios. A search could then be conducted to find 
combinations of r, s, and t that yield h(x) = r + s(x - t) 3 values that best predict the 
response pattern of the subject. The feasible combinations of r, s, and t identified by this 
process then each correspond to one LDEU model that may be appropriate for the 
individual decision maker. By specifying a decision rule for selecting among the feasible 
combinations of r, s, and t, the associated values of h(x)  can be used to predict that 
subject's response to any additional choice scenario of interest. Such a choice-based 
calibration procedure requires further research on the appropriate design of assessment 
choice scenarios and the formulation of decision rules for selecting among the feasible 
values of r, s, and t. Preliminary work in this area indicates that both alternative ap- 
proaches hold promise for substantially improving the predictive performance of the 
LDEU model. 

6. Conclusions and suggestions for further research 

Tversky (1967) hinted at the potential formulation of a lottery-dependent theory: "[One 
could] redefine the consequences so that winning a certain amount in a gamble is re- 
garded as a different consequence from receiving the same amount as a sure-thing," but 

Table 7. A comparison of predictive performance 

Percentage correct 

Paradoxical scenarios Independent scenarios 

Best-predicting models 
EU 71.91 83.96 
LDEU 93.52 91.92 
LDEU (h(x) = r + s(x - 03) 92.06 84.44 

Models assessed by indifference judgments 
EU (Probability Equivalents) 51.83 48.33 
EU (Certainty Equivalents) 57.22 55.78 
LDEU (Probability Equivalents) 55.89 49.61 
LDEU (Certainty Equivalents) 58.67 52.50 
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was not optimistic about the prospects of implementing such a model: "In spite of its 
apparent plausibility, this approach does not yield testable predictions because conse- 
quences cannot be identified independently of gambles. . ,  utility has to be defined not on 
monetary outcomes but on abstract consequences which depend on subjective probabil- 
ities as well." Overcoming this modeling challenge, Becker and Sarin (1987) successfully 
developed a lottery-dependent utility model with a form specific enough to obtain test- 
able predictions. 

In this article, we have implemented a lottery-dependent utility model and compared 
its predictive capacity and predictive performance with expected utility's capacity and 
performance. LDEU was shown to exhibit a higher capacity for predicting the actual 
choices of experimental subjects among risky options. However, when the models were 
calibrated using probability or certainty equivalence indifference judgments, LDEU did 
not significantly outperform EU, and neither model approached its predictive capacity. A 
functional form was presented for the parametric h(x) function that defines an LDEU 
model, and assessment approaches in which this form is exploited were proposed. 

Several research directions have been identified during the course of this work. To find 
a more valid description of preferences under risk, other lottery-dependent models should be 
developed and experimentally tested. Potential extensions include relaxation of the assump- 
tion that requires the exponential parameter CF to be linear in probabilities (e.g., weight- 
ing high probability outcomes disproportionately) and consideration of functional forms 
of utility other than the exponential (e.g., a power function form for u(x, CF)). 

Questions regarding the proper approach for assessing utility models require addi- 
tional attention. The relative lack of success experienced by both the EU and LDEU 
models calibrated in an indifference response mode may stem from the incongruent 
processes involved with making ordinal versus matching judgments (see, e.g., Tversky, 
Sattath, and Slovic, 1988). Further research might first consider the performance of 
expected utility when both the assessment and test questions utilize identical response 
modes. Extending these results to generalized utility models may then provide an accu- 
rate and useful representation of preferences under risk. 
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