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Abstract

Both descriptive and normative arguments claim that the discount rate to be applied to public projects should be
elicited from individual intertemporal preferences. We present a methodology to analyze data from experimental
surveys on intertemporal preferences. Focusing on the exponential and the hyperbolic discounting models, we
model the experimental data published by Thaler (1981) by means of different specifications. Standard measures
of goodness of prediction are then applied to fitted data to select among alternative specifications. We first
present our approach by applying it to simulated data. We then present a procedure for statistical estimation
of the sample discount rate, testing four specifications.
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Evaluation of public projects and policies relies on some criterion of economic effi-
ciency, either in the form of cost-benefit analysis, or, when it seems more suitable, of
cost efficiency analysis. Both tests require that the option with higher net value should
be selected. Unfortunately, computation of costs and benefits is often problematic: one
reason is that many public projects involve costs and benefits that belong to different
outcome domains. This problem is typical of projects that deal with risks to the envi-
ronment or public health: for example, financial benefits may be achieved by incurring
environmental costs, or health benefits are achieved by losses in financial terms. In these
circumstances the usual strategy is to translate all costs and benefits into a single domain,
normally the monetary domain, so that projects can be effectively compared. Several
techniques are currently available to implement this “translation” procedure: the most
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widely used are the hedonic pricing and the contingent valuation methods. The former
can be used when it is possible to refer to some parallel market prices for the good to be
evaluated: for example, insurance prices for outcomes in the health domain, or residen-
tial housing prices for outcomes in the environmental domain. When it is not possible
to refer to any existing market, analysts apply the contingent valuation method: it is a
procedure that requires the direct elicitation of the value that individuals attach to the
public good of interest. This procedure is analogous to the elicitation of preferences used
in decision analysis and experimental economics to investigate the patterns of behavioral
decision making: its reliability rests in large part on the accuracy of the experimental
setting (cf. Arrow et al., 1993).

Besides the level of costs and benefits, timing of implementation and duration of
the effects of the projects are another important element of the decision. For example,
suppose that project A and project B give rise to the same costs and benefits: the only
difference is that benefits produced by project A are available before those produced by
project B. Then project A would be preferred. Conversely, if, ceteris paribus, costs of
project A are to be borne before the (same amount of) costs of project B, then project B
would be preferred. Even after all costs and benefits arising from a specific project are
expressed in the same monetary terms, it is still necessary to use another conversion
procedure to reduce cash flows spanning different time periods. This procedure is called
discounting: the way it actually operates depends on behavioral assumptions that will be
explored more thoroughly in the next section. Here we only observe that the standard
discounting procedure implies application of the same discount rate, usually the official
rate of discount, for different variable dimensions, for gains or losses, and for the short
or the long run.

The validity of a single discount rate is questioned from a descriptive point of view, see
for example Albrecht and Weber (1997). The rationale behind using the official rate of
discount is that, assuming perfect capital markets, everyone should behave the same way
at the margin. Firms and individuals should borrow and lend until their marginal rate of
substitution (MRS) between present and future consumption is equal to the interest rate.
If a consumer failed to act as the theory predicts, there would be some way to rearrange
his consumption plan to make him better off. For example, if his MRS is higher than
the interest rate, the individual would find it attractive to trade some future consumption
with present consumption—while the opposite holds if his MRS is lower. So, the market
interest rate should reflect perfectly the intertemporal preferences of individuals. Yet,
as pointed out by Lind (1990), we can observe that individuals trade at very different
interest rates: for example, people may at the same time save at some interest rate, and
charge consumption on credit cards at a much higher interest rate. The reason may not
just be a matter of transaction costs (easy access to one’s own funds is obviously the
basic motivation for using credit cards) which invalidate the assumption of perfect capital
markets, but it can also depend on the individuals’ desire to maintain separate budgets,
as a means of control on their spending.! A typical example may be the limited amount
that people may decide to carry with them when going to the horse races. If “people
adopt rules and divide assets into separate budgets to facilitate actions that require self-
control, then it also follows that individuals do not necessarily change levels of present
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and future consumption to equalize their marginal rates of substitution with the marginal
rate (i.e., the interest rate) at which they can transform present into future income”
(Lind, cit., p. S20). “Therefore, market rates that determine consumers’ potential rates of
transformation may tell us nothing about people’s rates of time preference” (ibidem). Lind
suggests use of the consumer’s rate of time preference, that may be context dependent,
rather than use of the official rate of discount in the capital market. This position is
also supported by Arrow et al. (1996), who argue that discount rates should be based on
how individuals trade off present to future consumption, and admit that discount rates
can change with the time horizon to reflect the judgment and behavior of individuals.
Given uncertainties in identifying the correct rate of discount, they also suggest that it
is appropriate to use a range of discount rates, and that this range should be applied
to all analyses on (similar) public projects. Just as present preferences for non-market
goods are elicited with experimental methods, the same can be done for intertemporal
preferences: so again, experimental methods may help to define a range of discount rates
in the relevant setting.

Furthermore, application of the discounting technique to projects that produce effects
in non-monetary domains has led some authors to claim even a normative shortcoming
of the standard discounting procedure, when public projects have a high impact on health
or the environment. According to this view, discounting should depend on the problem
that is being analyzed: different circumstances would require not only different discount
rates, but also different procedures. For example, the standard discounting technique
implies that flows in the distant future are so heavily discounted that even huge amounts
result in a negligible discounted present value. This would unduly penalize (promote)
those projects that present extremely high benefits (costs) that are delayed into the distant
future. Keeler and Cretin (1983) discuss policy implications of use of different discount
rates for different monetary or non-monetary outcomes. Descriptive experiments have
shown differing temporal preferences across monetary and non-monetary domains of
health (Chapman, 1996), and air and ocean shore water quality (Guyse, Keller, and Eppel,
2002), and for different time horizons for protective investments (Kunreuther et al. 1998).
These descriptive findings and the normative argument against a single discount rate have
led to the proposal of an alternative to the traditional (“exponential”) discounting model,
the hyperbolic discounting model. Both models will be briefly reviewed in Section 1.

In Section 2 we present a methodology to analyze data from experimental surveys
on intertemporal preferences. Using a published dataset, we examine exponential and
hyperbolic discounting models fit exactly to different certainty equivalent judgments
from aggregated data. Section 3 contains two measures for selecting the best performing
model, 1) the square root of the mean square error and 2) Theil’s U index. In Section 4
we generate a simulated dataset from the discount rates elicited by applying the expo-
nential and hyperbolic models in Section 2. In Section 5 we examine the predictive
accuracy of the two models for the simulation dataset. In Section 6 we test different
econometric specifications to estimate the sample discount rate, and select the model
with the best predictive accuracy. We find the best-fitting model to be the hyperbolic dis-
counting model with an additive normally distributed error term. Section 7 concludes the

paper.
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1. Discounting models

Most discounting models are based on the behavioral assumptions that people prefer to
experience pleasurable experiences as soon as possible, and to delay painful experiences.
While the first hypothesis, impatience when faced with pleasurable experiences, seems
fairly robust to empirical observation and experimental tests, the second one, procrastina-
tion in the face of pain, is more controversial. In fact, it can often be observed that people
may prefer to get rid sooner of some unpleasant experience, rather than wait (it may be
argued that in so doing, they are avoiding the unpleasant experience of anticipating the
future unpleasant experience.)

We will see in the following that different sets of behavioral assumptions generate
different types of discounting models. We will refer to the general approach taken by
Fishburn and Rubinstein (1982) in examining the effect of the time of realization of
an outcome on the relative desirability of the outcome. They study the implications of
various axioms for a (weak) preference relation. They start from a simple axiomatic
structure: given a non-degenerate real interval X (the set of outcomes); and either a set
T of successive non-negative integers, or an interval 7 of non-negative numbers (the set
of time points), they consider the topological space X x T (the dimensions of outcomes
and time). Consider the axioms:

Al. > is a weak order on X x T;

A2, If x > y then (x,t) > (v, t);

A3 {(x,0): (x, 1) = (v, 5)}, and {(x, 1): (x,1) < (y, )} are closed in the product topol-
ogyon X xT.

Ad. Ifs<tthenx>0— (x,5) > (x,1);x=0— (x,5) ~(x,1); x <0 — (x,5) <

(x, ).

The first three axioms ensure continuity, monotonicity, and ordering of outcomes in
the space X x T'; the fourth is the behavioral assumption of impatience for positive
outcomes, and procrastination for negative outcomes. Fishburn and Rubinstein show that
this axiomatic structure implies the existence of a real valued function u on X x T that is
monotonic in x and #; continuous, and increasing in x; continuous in ¢ if ¢ is continuous;
decreasing (constant, increasing) in 7 if x is greater (equal, less) than zero.

Fishburn and Rubinstein do not present a specific functional form associated with the
general set of axioms Al-A4. A representation function is instead provided when an
axiom of stationarity is added to the previous set of axioms:

AS. If (x, )R(y, t + d) then (x, s)R(y, s + d).
This stationarity axiom states that a delay of time d is treated the same regardless of

when it occurs (at time ¢ or s). The model implied by this axiomatic structure assumes
the form

El. o'f(x),
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known as the exponential discounting model when f is linear on x. So receiving U.S. $10
with a 7-period delay would be equivalent to (1/1 + )" $10 today, where & is the discount
rate. The function f need not necessarily be linear, though. Fishburn and Rubinstein
show that the representation holds with f concave as well, as when f is a risk averse
von Neumann-Morgenstern utility function. While the exponential discounting model
(discounting monetary value or utility) is usually presumed to be the best normative
discounting model, it has been found to fail to adequately describe people’s preference
behavior. In particular, people tend to violate the stationarity axiom AS, considering a
time delay d more significant if it occurs earlier rather than later (Prelec and Loewenstein,
1991). People may prefer to get $100 today rather than $115 in one year, but prefer $115
in 5 years over $100 in 4 years. Note that there is a “common” one-year time delay in
each case. The dynamic consistency required under the stationarity axiom would require
the preference relationship order to remain constant in both the short-term and the long-
term case. However, people act as if the one-year delay now would be too long to
wait, but the one-year delay in four years would be acceptable. This so-called “common
difference effect” prompts various approaches to relax the stationarity axiom to get a
more descriptively valid model. Additional anomalies (see Loewenstein and Thaler, 1989
and Loewenstein and Prelec, 1992) showing behavior not consistent with the exponential
model include the “magnitude effect” (e.g., Kirby and Marakovic (1996) found discount
rates decrease as amounts increased, see also Kirby and Herrnstein (1995)) and “gain-
loss asymmetry” in which implicit discount rates for monetary gains are higher than
those for losses.

As an alternative to the stationarity axiom, Harvey (1986) proposed the “stretching
axiom” to provide a solution to the problem of the excessive discounting of distant
future flows implied by the exponential discounting model. It states that the ordering
of outcomes in two periods depends on the relative difference (the ratio) between two
periods:

AG6. If (x,s)R(y, t), then (x,d - s)R(y, d - 1),

where the ratio of the length of time s to 7 is the same as the ratio of the time periods
when each is multiplied or “stretched” by d. The set of axioms A1-A4 plus the axiom A6
supports the following representation, known as the hyperbolic model, first axiomatized
by Harvey (1986):

E2. [1/(1+0)"]f (%),

where vy > 0 is a parameter that represents individuals’ intertemporal preferences.
Albrecht and Weber (1995) discuss hyperbolic discounting models. Herrnstein’s (1997)
“matching law” refers to the observation of responses (originally for animal’s discounting
behavior) consistent with hyperbolic discount rates. Loewenstein and Prelec (1992) pre-
sented a model to capture such choice patterns that used a hyperbolic discount function.
Kirby and Marakovic (1995, 1996) fit hyperbolic and exponential discounting models
to human subjects’ data. Ainslie (1991) discussed the potential for “rational” economic
behavior to result from the hyperbolic discounting model.
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2. Test of the models

We now present a methodology to analyze experimental data from surveys on intertempo-
ral preferences. Since this demonstration is to be considered as illustrative of the method,
we chose to apply it to the dataset published by Thaler (1981).

The standard approach used in decision theory to analyze this type of data has been
to apply some statistical test (usually non-parametric, but also some parametric models
have been applied, see Benzion et al. (1989), to test the validity of specific assumptions
of different models). Instead, the approach we will use here is more general, in that it
considers different models as estimators of the data drawn from the elicitation procedure
of the experiment. In the review presented in the preceding section we have examined
two main discounting models: the exponential model and the hyperbolic model. In the
present application we analyze the performance of these two models, assuming f(x) is
linear in the monetary outcome.

There are different procedures to elicit individuals’ intertemporal preferences. A choice
procedure requires the decision maker to choose between an amount to be received
(or paid) now, and another specified amount to be received (paid) some specified time
later. Another procedure, called the matching method, requires the individual to assess
the amount that would make her indifferent between getting some given amount now,
and getting that amount at some specified later time period. Drawing from results in
the contingent valuation literature, we can infer that the former procedure is the easiest
for the respondent, but it is also less informative. While the matching method produces
precise data points, the choice method only generates a dichotomous ordering type of
data, and requires more observations for an efficient statistical analysis.

Also, the amounts may be stocks, to be received or paid at a point in time, or flows,
to be received or paid along a time stream. The latter setting has been analyzed by
Loewenstein and Prelec (1993), who argue that preferences over sequences of outcomes
may also be affected by the distribution of the outcomes along the time dimension,
in addition to the absolute level of the amounts to be received or paid.> A descriptively
valid analysis of preferences over sequences of outcomes would require more complex
behavioral assumptions than those we considered in the preceding section. To simplify
the analysis, in this paper we only consider intertemporal preferences over stocks, rather
than flows of outcomes.

The data published by Thaler (1981) are medians of amounts elicited using the match-
ing method: therefore, we have data point observations, that we can use for our illustrative
purpose. We have four subsamples, each of them was presented with a given amount now
to be matched with some amount in three months, one year, and three years for a total of
nine matching points for each subsample. The dataset is represented in Table 1: the left
column contains the M, present amounts proposed to each subsample. The other columns
contain the (median) amounts expressed by respondents when asked the outcome M, that
would have made them indifferent between getting a given M, now, or getting M, later.
For example, scenario A required subjects to consider amounts to be gained now and
state an indifferent amount to be received in three months (Mj), one year (M,,), and
three years (M,g), respectively. The first three subsamples were presented with gains,
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Table 1. Median amounts matching monetary gain/loss M, now with delayed amount M, (from Thaler, 1981)

Amount now, M, Matching amount, M,, delayed by ¢ months

Scenario A Now 3 months 12 months 36 months
Gains 15 30 60 100
250 300 350 500
3000 3500 4000 6000

Scenario B Now 6 months 12 months 60 months
Gains 75 100 200 500
250 300 500 1000
1200 1500 2400 5000

Scenario C Now 1 month 12 months 120 months
Gains 15 20 50 100
250 300 400 1000
3000 3100 4000 10000

Scenario D Now 3 months 12 months 36 months
Losses —15 —16 —20 —28
—100 —102 —118 —155
—250 —251 -270 -310

i.e., amounts to be received, now or later; the last group was instead presented with a
loss, i.e., a payment to be sustained now or later.

If the individual is indifferent between M|, and M,, the discounted present value of M,
must be equal to M,,. Assuming that a particular model (exponential or hyperbolic) holds,
it is then possible to calculate the implicit discount rate. For example, suppose individuals
are indifferent between $15 now and $30 in three months. We want to discount the $30
back to the present $15 (or, equivalently, start with the $15 and compound the implicit
interest “earned” over the next 3 months to end up with $30.) The implicit monthly rate
of discount for the exponential model is the 6 that solves the following equation:

$15 = $30/(1 + 8)%, ie., § = 0.260.

The implicit discount rate for the hyperbolic model is instead the vy that solves the
following equation:

$15 =$30/(1 +3)”, i.e., y =0.500.

Thaler observed that the implicit monthly discount rates calculated from the expo-
nential discounting model from the elicited matching values present a pattern far from
uniform: generally they decrease as the time length and the amount levels increase. When
instead the hyperbolic discounting model is applied to the same data, we do not observe
a clear pattern. Table 2 shows the implicit (monthly) discount rates inferred from each
model.

A quick look at the implicit rates of discount reported in Tables 2(a) and (b) would
lead us to think that the hypothesis of a unique discount rate, to be applied to all projects,
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Table 2. Implicit (monthly) discount rates from Thaler’s data
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(a) 6 (exponential)

0 months 1 month 3 months 6 months 12 months 36 months 60 months 120 months
Scenario A
Gains $15 .260 .063 .053
$250 122 .028 .024
$3000 .054 .019 .019
Scenario B
Gains $75 .101 .063 .077
$250 .085 .059 .059
$1200 .032 .023 .024
Scenario C
Gains $15 .101 .063 011
$250 .106 .040 .024
$3000 .016 .012 .010
Scenario D
Losses —$15 .022 .007 .001
—$100 .024 .014 .006
—$250 .017 .012 .006
(b) 7y (hyperbolic)
Scenario A
Gains $15 .500 132 11
$250 .540 131 112
$3000 525 192 192
Scenario B
Gains $75 .148 .094 115
$250 382 270 270
$1200 461 337 .347
Scenario C
Gains $15 415 263 .047
$250 469 183 112
$3000 .396 .289 251
Scenario D
Losses —$15 .047 014 .003
—$100 112 .065 .030
—$250 173 121 .060

independently of their time horizon, and the level of the outcomes involved, should be
rejected. This is in fact the conclusion reported by Thaler. A number of techniques
for statistical analysis can be used to test the hypothesis in a more rigorous manner.
A standard practice is to apply an analysis of variance to the implicit discount rates.
The method we propose here is to investigate if the values obtained from a particular
model are a good predictor of the actual values. We want to test the hypothesis that the
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discount rate is independent of the time horizon and the outcome levels of the project.
If the values obtained by applying some constant discount rate to the present values M,
(by using that rate as if compounding interest over time on the base amount M) can
be considered an acceptable prediction of the actual values M,, the hypothesis can be
accepted. If a constant discount rate yields an acceptable model, then this parameter value
could be used in practical settings for guiding decision making or describing people’s
preferences.

In the following, we first show an application to simulated data, and then we will
apply the method to values obtained through Maximum Likelihood estimation. In the
simulation exercise, we multiply the 36 values M,, by the implicit discount rates obtained
from the elicited matching values: we obtain 36 vectors of simulated matching values,
“predicted” by a specific discounting model (exponential or hyperbolic) given a specific
constant discount rate. The model that gives the best prediction would be selected. Of
course, best prediction does not mean good prediction: it may well be that even the
best is so bad that we will anyway wish to reject the hypothesis of a constant rate of
discount, at least under the exponential or the hyperbolic model, i.e., the two discounting
models under analysis. Nevertheless, in practice, it may be necessary to specify a constant
discount rate for analysis due to regulatory or administrative requirements, which our
method will do. In the next section we will briefly describe the statistical criteria we will
apply in our analysis.

3. Model selection

In regression models, goodness of prediction is generally assessed in terms of distance
between the actual a; and the predicted p; values, and the model is chosen that mini-
mizes the distance, or loss function (see Gourieroux and Monfort, 1995). The most fre-
quently used criterion for goodness of prediction is based on the quadratic loss function
L(p; — a;) = (p; — a,;)?, i.e., the square of the Euclidean norm. The criterion involves
minimization of the Mean Square Error:

1 n
MSE = ~ 3 (p, — a,)%.
nio

i.e., the average of the squared differences between predicted and actual values. Its root,
the RMSE, is often preferred because its value level is the same as that of the data. This
measure penalizes large departures of the predicted from the actual value; it has optimal
statistical properties in that it minimizes the sum of (squared) bias and variance of the
predictor.

A problem of a criterion such as the minimization of the MSE (or, equivalently,
the RMSE) is that, while it is easy to compare the predictive performance of different
models, it may be more difficult to judge if the selected predictor is indeed satisfactory.
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To help judgment about the accuracy of prediction, Theil (1966) proposed an index, that
is bounded from below at zero, which in the following we will refer to as the U-Theil:

. MSE
U-Theil = [ ————.
Y ai/n

Values close to zero indicate a good predictive accuracy, while large values indicate a
bad performance, so the interpretation of the results is relatively easier.

We will apply the RMSE and the U-Theil index criteria to the values generated by
the two discounting models, to select the discounting model that best predicts the actual
experimental data considered in the analysis. We will consider two generating mecha-
nisms: first, we will adopt a simulation approach, that we present in the next section;
after, we estimate different statistical models linked to the two alternative discounting
functions under analysis.

4. The simulation procedure

We generate a new dataset from the discount rates elicited by applying the exponential
and the hyperbolic model to the data. The procedure consists of applying each rate of
discount in Table 2(a) and (b) to the whole series of 36 proposed M, values which
match present amounts M,: this produces a vector of 36 elements of simulated matching
values for each of the 36 discount rates. (Thus this simulation uses M, monetary values
in the present ranging from —$250 to $3000 in U.S. dollars and time delays ¢ ranging
from 3 to 120 months, and applies 36 discount rates generated from 36 distinct M,
and ¢ combinations.) The set of simulated data for each model is therefore a 36 x 36
matrix. Tables 3(a) and 3(b) report the mean and standard deviation of the simulated
values produced by each model. For example, in the upper left-hand corner of Table
3(a), Thaler’s subjects gave an actual median response of $30 for a three month delay to
match $15 now. When the 36 discount rates 6 from Table 2(a) are each used to predict
the actual amount, by the exponential formula:

1 3
$15 = (l-l—_ﬁ) prediction,

the mean prediction was $18 and the standard deviation was $4. These measures are
obviously too rough to provide an indication of the goodness of either model: the statis-
tics refer to the data generated through a wide range of discount rates, and even a perfect
prediction with one of the discount rates would be unrevealed by these data. Yet, it is
worth observing that the hyperbolic model in Table 3(b) gives on average simulated
values closer to the real ones, and especially that it avoids the problem of “explosive”
results obtained by the exponential model, especially when the procedure involves long
time periods.
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Table 3a. Mean and standard deviation of simulated amounts: exponential model
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Now Actual values and mean and standard deviation of predicted values
3 months 12 months 36 months
Scenario A
Gains Actual Predicted Actual Predicted Actual Predicted
15 30 18 (4) 60 45 (84) 100 15201 (78975)
250 300 297 (71) 350 755 (1401) 500 253357 (1316250)
300 3500 3559 (855) 4000 9066 (16818) 6000 3040292 (1579499)
6 months 12 months 60 months
Scenario B
Gains Actual Predicted Actual Predicted Actual Predicted
75 100 111 (69) 200 227 (420) 500 67631271 ( — +o0*)
250 300 372 (229) 500 755 (1401) 1000 — 400 ( — +o0)
1200 1500 1783 (1098) 2400 3626 (6727) 5000 — +oo( = 400)
1 month 12 months 120 months
Scenario C
Gains Actual Predicted Actual Predicted Actual Predicted
15 20 16 (1) 50 45 (84) 100 — oo ( = 4o0)
250 300 263 (18) 400 755 (1401) 1000 — +oo( — 400)
3000 3100 3161 (215) 4000 9066 (16818) 10000 — +oo( = 400)
3 months 12 months 36 months
Scenario D
Losses Actual Predicted Actual Predicted Actual Predicted
—$15 —16 —18 (4) -20 —45 (84) —28 —15201 (78975)
—$100 —102 —118 (28) —118 —302 (560) —155 —101343 (526500)
—$250 —251 —297 (71) —270 —755 (1401) =310 —253358 (131250)

Note: Values in parentheses are standard deviations.
*Values greater than 107 are indicated as approaching infinity.

5. Predictive accuracy of models for the simulated dataset

The hypothesis to be checked is that there exists a unique discounting model (i.e., a
specific mathematical discounting procedure applied to a specific discount rate) that can
predict reasonably well the data. The statistics on the RMSE and the U-Theil index are
reported in Table 4.

It can be observed that the exponential model is much riskier than the hyperbolic:
due to the exponential functional form, an incorrectly high discount rate may produce
“explosively” high predicted values.> The hyperbolic model (which does not generate
predicted values as high as the exponential model does) in general outperforms the
exponential, since all the statistics have lower values. However, one particular exponential
specification might turn out to perform well, as shown in Table 5 that reports the best
specifications, in terms of RMSE and U-Theil, for each model. Even though the best
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Table 3b. Mean and standard deviation of simulated amounts: hyperbolic model

Actual values and mean and standard deviation of predicted values

3 months 12 months 36 months
Scenario A
Gains Actual Predicted Actual Predicted Actual Predicted
15 30 21 (5) 60 29 (13) 100 39 (25)
250 300 347 (81) 350 478 (214) 500 656 (425)
300 3500 4169 (969) 4000 5740 (2571) 6000 7873 (5094)
6 months 12 months 60 months
Scenario B
Gains Actual Predicted Actual Predicted Actual Predicted
75 100 120 (40) 200 144 (64) 500 231 (172)
250 300 402 (134) 500 478 (214) 1000 771 (573)
1200 1500 1932 (644) 2400 2296 (1029) 5000 3701 (2751)
1 month 12 months 120 months
Scenario C
Gains Actual Predicted Actual Predicted Actual Predicted
15 20 18 (2) 50 29 (13) 100 58 (51)
250 300 293 (33) 400 478 (214) 1000 972 (851)
3000 3100 3515 (398) 4000 5740 (2571) 10000 11670 (10206)
3 months 12 months 36 months
Scenario D
Losses Actual Predicted Actual Predicted Actual Predicted
—$15 —16 =21 (5) -20 —29 (13) —-28 -39 (25)
—$100 —102 —138 (32) —118 —191 (86) —155 —262 (170)
—$250 —251 —347 (81) —270 —478 (214) -310 —656 (425)

Note: Values in parentheses are standard deviations.

specification is the hyperbolic, with a discount rate y = 0.251, also the exponential with
discount rate 6 = 0.010 predicts the data quite well.

Our method shows how to find the discounting model which best fits the data, without
explicitly assuming error in a person’s judgments. A stochastic component is required if
we want to estimate the discounting model that generates better predictions. We consider
this issue in the next section.

Table 4. Summary statistics on measures

Minimum Maximum Median Mean Std. dev.

Exponential RMSE 610 — +oo® 10043 — 400 — 400

model U-Theil 0.243 — +o00 4.004 — +o00 — 400
Hyperbolic RMSE 577 6078 1060 1639 1408

model U-Theil 0.230 2.423 0.423 0.653 0.561

"Values greater than 107 are indicated as approaching infinity.
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Table 5. Criteria on selected specifications

Model specification Discount rates RMSE U-Theil
Exponential 6 =0.010 610 0.243
Hyperbolic v =0.251 577 0.230

6. Estimation of discount rates assuming an error term

Analogously to the experimental procedures to assess non-market values, that involve
the estimation of the sample valuation from elicited individual values (which may be
distorted due to judgment errors), a sample discount rate could be estimated from the
elicited individual rates. In order to obtain a (parametric) estimate of the discount rate
from our sample observations, we should first specify a statistical model with an error
term. For each given value M,, we assume that the matching value M, is functionally
related to M|, according to some model

MO = f(Mt; 0)’

where 0 is a vector of parameters related to the discounting functional form and the error
term. Specification of the functional form of both the deterministic and the stochastic
component produces an econometric model for individual intertemporal preferences.

When individual socio-economic characteristics are available, the functional form f
may be specified in order to include these characteristics as explanatory variables. In our
example we do not include any regressors in the model; furthermore, we maintain the
usual assumption of linearity of the valuation function that can be easily relaxed just by
applying an appropriate transformation to the amounts M. We will make two hypotheses
on the functional form of the discounting model, specifying the function in terms of the
exponential model or the hyperbolic model. Two alternative hypotheses will be tested
also for the error term:

(a) the error term is additive, and is distributed as a Normal distribution, with mean zero
and variance o2;

(b) the error term is multiplicative, and is distributed as a Lognormal distribution, so
that its logarithm is normal, with mean zero and variance .

These hypotheses give rise to four different specifications: if the discounting model is
exponential, and the error term is normal, we have the following:
M, = M,
T+

If the discounting model to be applied is the hyperbolic, the specification is:

+ &,, (exponential normal specification). (1)

t

= —(1 P ~+ &,, (hyperbolic normal specification). )

M,
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If the error term is multiplicative lognormal, the exponential model has the following
form:

M

1

My=—"—.
T +oy ©

which can be transformed as follows:

M
In ﬁ[ =t-In(1+ ;) + Ine,, (exponential lognormal specification). 3)
0

For the hyperbolic model, the corresponding specification form is:

M

1

My=—"—.
T+ ©

and by taking logarithms the model can be linearized as follows:

Mt . . .
In T v, - In(1 + 1) + In g, (hyperbolic lognormal specification). 4)
0

All models are estimated through Maximum Likelihood procedures. The parameter
estimates and log-likelihood for the four specifications are shown in Table 6. The terms 6,
and 6, refer, respectively, to the discount function and the standard deviation parameters
relevant to each of the four specifications. In the case of the hyperbolic models, and
the normal exponential speciﬁcation the estimated parameter corresponds exactly to the
parameter of interest 7y,, 74 and 81, while in the lognormal exponential specification,
the estimated parameter is Of = In(1 + ) ;), and the parameter 6 of interest is easily
obtained after a transformation.

Even though we are especially interested in the predictive accuracy of the estimates, it
may be advisable to check the approximation of the alternative specifications to the “true
model,” in terms of information criteria. A log-likelihood based model selection criterion
commonly used in the non-nested models setting is the Akaike criterion, that for models
with the same number of parameters simply reduces to a generalized likelihood ratio.
Due to the transformation of the dependent variable, the lognormal models cannot be

Table 6. Log-likelihood and parameter estimates

Exponential normal Hyperbolic normal Exponential lognormal Hyperbolic lognormal
—259.562 —251.725 —24.616 —19.238
0, 0.0143 0.2235 0.0169 0.2597
(0.0013) (0.0111) (0.0019) (0.0238)
0, 327.381 263.337 0.4794 0.4129
(38.582) (31.035) (0.0565) (0.0487)

Note: Values in parentheses are standard errors.
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Table 7. RMSE and U-Theil on estimated specifications

Model specification Discount rates RMSE U-Theil
Exponential normal 0=0.014 1183 0.472
Hyperbolic normal vy =0.223 545 0.217
Exponential lognormal 0 =0.017 2166 0.863
Hyperbolic lognormal v = 0.260 2031 0.810

compared in this setting to the normal models, but the two discounting models can be
compared under either specification (see Burnham and Anderson, 1998). As it can be
observed from the values of the likelihood functions reported in Table 6, the Akaike
criterion for goodness of fit chooses the hyperbolic over the exponential discounting
function under both the normal and the lognormal specification.

Turning now to the analysis of the accuracy of predictions, we report in Table 7 the
RMSE and U-Theil values for the estimated models. It is quite clear from the values of
the RMSE that the Normal specifications dominate the lognormal, and this leads us to
discard the hypothesis of a lognormal error term. The hyperbolic normal model shows
the best predictive accuracy, with a low RMSE and a U-Theil close to zero. However,
also the exponential Normal model performs relatively well, and it may be advisable to
analyze further the predictive accuracy of the two Normal models.

So far, we have applied our selection criteria to the original data set. This means
that the same data are used to fit and to assess the models: this may create a problem of
“overfitting,” i.e. the parameter estimates of the selected model may be strictly dependent
on the particular data set employed, and the measure of the predictive error may be
biased. In order to control for overfitting, we apply a “leave-one-out” cross-validation
procedure, which is suitable for small data sets (see Efron and Tibshirani, 1993, p. 240).
The procedure consists of estimating the model leaving one observation out, and using
the parameter estimates to predict the value of the missing observation. The process is
repeated n times (the number of the observations in the sample), and the predicted values
are used to produce an estimate of the Mean Square Error. The cross-validated RMSE
and U-Theil for the Exponential and Hyperbolic Normal models are reported in Table 8.
As seen in the table, the overfitting problem is quite serious for the exponential model,
while the hyperbolic estimates seem fairly stable. All these results lead us to accept, for
Thaler’s data, the hyperbolic model with a normally distributed additive error term and
the (unique) discount rate y = 0.223.

Table 8. Cross-validated RMSE and U-Theil on normal specifications

Model specification = Cross-validated RMSE  Cross-validated U-Theil

Exponential normal 5627 2.243
Hyperbolic normal 656 0.261
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7. Conclusions

A method for characterizing intertemporal preferences by selecting the discounting model
which best fits data on people’s preferences is presented. Such an approach can be use-
ful when analyzing experimental data or in policy making when a discounting model is
needed to characterize residents’ temporal discounting preferences. In practice, it may
be necessary to specify a constant discount rate in economic analyses which must con-
sider people’s intertemporal preferences due to regulatory or administrative requirements.
Standard measures of goodness of prediction are applied to fitted data to select among
alternative specifications of discounting models. We limited our analysis to the exponen-
tial and the hyperbolic discounting models. We first presented our approach by applying
it to simulated data, that we obtain by manipulating a matrix of experimental data on
intertemporal preferences published by Thaler (1981). We then proceeded to estimate
the sample discount rate, testing four different specifications: exponential or hyperbolic
discount models, modeled with a normal or lognormal distribution of the error term. We
found that the hyperbolic discounting model with an additive normal error term provided
the best fit. Furthermore, in contrast to Thaler’s conclusions, we found that its predic-
tive accuracy is good enough to warrant acceptance of the hypothesis that the data are
expressed by a unique discount rate: i.e., the hyperbolic discount rate y = 0.223. As
Camerer (1998) notes, the economics profession has been slow to accept the hyperbolic
discounting model. Our method provides an approach for determining when it is most
appropriate.

The estimation procedure we adopted can be easily extended to other functional forms,
allowing for non-linearity of the valuation function, socio-economic individual charac-
teristics included as regressors, and different specifications for the discounting model.

Our aim in this paper was to present a method to determine a single best-fitting dis-
count rate, using either an exponential or hyperbolic model, which can best capture
multiple preference judgments. In policy decision making, using a model (such as expo-
nential discounting) which does not match people’s preferences can lead to sub-optimal
decisions. However, use of more flexible models (such as hyperbolic discounting or dif-
ferent discount rates for different attributes, amounts, or delays) can lead to “irrational”
outcomes. Care must be taken to weigh the benefits of more accurately representing peo-
ple’s preferences with potential disadvantages of logical violations of desirable properties,
such as a constant discount rate or the stationarity axiom of exponential discounting
models.
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Notes

1. A person’s willingness to accept different interest rates for saving (a gain) and for credit card charges
(a loss) may reflect the gain/loss asymmetry effect in time discounting.

2. In a related line of research involving sequences of choices, Rachlin and Siegel (1994) found subjects mak-
ing repeated choices between probabilistic and near-certain monetary rewards tended to be less risk-averse
the shorter the intertrial interval. Subjects were also less risk-averse when the choice-outcome sequences
were clustered in threes than when each choice-outcome sequence was separated from its neighbors by
equal intertrial intervals.

3. In fact, people often fail to realize the power of compound interest to make them rich, so they fail to save
while young and let their interest compound exponentially. This is another example of people’s preferences
and perceptions not being consistent with the exponential discounting model.
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