NMR Topics

Spin Systems • nOe and nOesy • HMBC and HMQC

John DeLorbe
Chemistry Topics
06-28-11

Pavia, D.L.; Lampman, G.M.; Kriz, G.S. Introduction to Spectroscopy
Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Spectrometric Identification of Organic Compounds
Proton NMR - Spin Systems

• Recall → 1.0 ppm = 100 Hz for a 100 MHz magnet
 • Resolution increases as a function of magnet strength

• Defining simple first-order multiplet
 • First-order if $\Delta \nu / J > 8$ (easier to achieve with bigger magnet)

 • $\Delta \nu$ is distance between midpoints of coupled multiplets (in Hz)
 and J is coupling constant (Hz)

 • Follows n+1 rule

 ![Diagram showing multiplets with $\Delta \nu / J$ values from 1.0 to 5.0]

 | $\Delta \nu / J$ |
 |-----------------|
 | 5.0 |
 | 4.0 |
 | 3.0 |
 | 2.0 |
 | 1.0 |

 Chemical shift is no longer central between peaks
Pople Notation

<table>
<thead>
<tr>
<th>$\Delta v/J$</th>
<th>Notation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>AX</td>
<td>Proton sets in spin system are weakly coupled if $\Delta v/J > 8$</td>
</tr>
<tr>
<td>4.0</td>
<td></td>
<td>- Termed AX system</td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td>When $\Delta v/J < 8$ (higher order systems)</td>
</tr>
<tr>
<td>2.0</td>
<td>AB</td>
<td>- Termed AB system</td>
</tr>
<tr>
<td>1.0</td>
<td>AB</td>
<td>When three weakly coupled sets</td>
</tr>
<tr>
<td>0.0</td>
<td>A_2</td>
<td>Two strongly and one weakly coupled</td>
</tr>
</tbody>
</table>

*Pople, J.A.; Schneider, W.G.; Bernstein, H.J. *High Resolution NMR* (1959), New York; McGraw-Hall*
Rigid vs. Free Rotation

If weakly coupled
- Termed A_2X_2 system
- Two triplets

If strongly coupled
- Termed A_2B_2 system
- Complex higher order

If weakly coupled
- Termed $AA'XX'$ system

If strongly coupled
- Termed $AA'BB'$ system
- Complex higher order

Conformational preferences and rigidity need to be taken into account
B₂, C₂, and D₂ are all strongly coupled
Together the “conglomerate” of spins couple to A₃

• At 300 MHz this leads to higher order system
 • Termed virtual coupling

• At 600 MHz Δν/J increases
 • Affords first order triplet
Three Coupling Constant Systems

AMX, ABX, and ABC systems

\[\Delta \nu / J > 35 \text{ for all protons} \]

Weakly coupled – affords AMX system

Aromatic protons are a BB’ CC’ D system–higher order
Chemical-Shift and Magnetic Equivalence

If the protons in the same set couple equally to every other proton in the spin system they are magnetically equivalent.

Ha protons are *Chemical Shift Equivalent* but *NOT Magnetically Equivalent*.

Not a simple first order spectrum—no matter what field strength used.

Pople notation: AA’ XX’

Check for *Magnetic Equivalence* if protons are chemical-shift equivalent.

Common in aromatic compounds.
Chemical-Shift and Magnetic Equivalence

Chemical Shift: $H_x = H_x'$ and $H_a = H_a'$.
Magnetic Equivalence: $H_x \neq H_x'$ and $H_a \neq H_a'$.

Note: H_a and H_a' do not couple the same with H_x'.

Pople notation: XX' AA' AXXX or X'2A'2A2X2

Recall: If protons are chemical-shift equivalent but are NOT magnetically equivalent the system is NOT first order and splitting is observed.

Corollary: In a first order system, chemical-shift-equivalent protons couple but do not lead to peak splitting.
Nuclear Overhauser Enhancement

Extension of Overhausers’ 1953 method to polarize nuclei of certain metals by Anderson and Freeman in 1962

• nOe can be heteronuclear
 • Between carbon and hydrogen atoms—directly bonded

• nOe can be homonuclear
 • Between hydrogen atoms—through space

• Time-averaged experiment
 • Lack of nOe is not proof of structure!

Heteronuclear nOe-Theory

• Irradiate one atom type while the NMR spectrum of the other type is determined
 • Enhancement occurs if intensities of non-irradiated atoms change
 • Effect can be positive or negative

• nOe occurs through space via spin-spin dipoles

• Magnitude decreases as function of the inverse of \(r^3 \)
 • \(r \) is radial distance from hydrogen of origin
Heteronuclear nOe-Theory

Cross Polarization

One spin can change per transition during excitation phase

Broadband irradiation of protons—population of $N_4 = N_2$ and $N_3 = N_1$
Disturbed from equilibrium populations

Relaxation restores equilibrium

Double quantum inversion allowed (W_2)
Increases carbon signals
Heteronuclear nOe

• Example – proton decoupled carbon spectrum
 • Positive effect for ^{13}C interacting with ^1H
 • $\text{nOe}_{\text{max}} = \frac{1}{2} \left(\frac{\gamma_{\text{irr}}}{\gamma_{\text{obs}}} \right) = 1.988$ for ^1H-decoupled ^{13}C spectrum
 • Effect is additive up to 200% enhancement
 • Total nOe increases $\text{C} < \text{CH} < \text{CH}_2 < \text{CH}_3$

\[
\text{Irradiation of formamide hydrogen leads to larger nOe of syn methyl group}
\]

- Formamide
 - 31.1 ppm
 - 36.2 ppm
Homonuclear nOe-Theory

Cross Polarization-through space

Uses a weaker irradiation frequency, ν_2, than that used for decoupling

Leads to increase in population of the higher energy level in the nearby non-irradiated protons—energy transfer via dipolar mechanism

Excess population undergoes relaxation—increase in signal intensity

Effect decreases as r^{-6}, r is distance between nuclei

Measurable effect up to 3–4 Å
nOe Difference Spectrometry

Obtain a 1H NMR spectrum with ν_2 set at a non-interfering frequency

Set ν_2 at a frequency to irradiate a desired resonance

Subtract the spectra from one another

Negative signal for irradiated resonance

Positive signals for nuclei that interact with irradiated resonance via dipolar mechanism—located within 3–4 Å

Signals of unaffected protons will be very weak or absent
nOe Difference Spectrometry

a: spectrum of 1e
b: nOe difference spectrum
c: spectrum of 1f
d: nOe difference spectrum

Taken from: Holzer, W. Tetrahedron, 1991, 47, 1393
NOESY Spectrometry

- 2D-variant of nOe experiment

- NOESY works best for small and large molecules:
 - For medium sized molecules—1000-2000 MW
 - ROESY (rotating-frame) can be applied

- Resembles a COSY spectrum
 - COSY peaks (spin-spin coupling) are present
 - May make interpretation cumbersome
HMQC Spectroscopy

- Result of one-bond couplings ($^{1}J_{CH}$)
 - Gives a correlation map of the coupled spins

- HMQC – Heteronuclear Multiple Quantum Coherence
 - Inversely detected experiment—detects ^{1}H

- HETCOR experiment preceded HMQC
 - Directly detects ^{13}C
 - 30-fold less sensitive

- HSQC – Heteronuclear Single Quantum Coherence
 - Provides better carbon resolution than HMQC
 - Very sensitive to pulse calibration and probe tuning
 - More susceptible to S/N loss
HMBC Spectroscopy

- Result of two and three-bond couplings ($^{2-3}J_{\text{CH}}$)
 - Indirectly gives carbon-carbon correlations

- HMBC – Heteronuclear Multiple Bond Coherence
 - Inversely detected experiment–detects ^1H
 - Carbon detected experiment was COLOC

- Interpretation can be difficult
 - STRONGLY coupled $^1J_{\text{CH}}$ couplings present
 - $^2J_{\text{CH}}$, and $^3J_{\text{CH}}$ couplings may be absent
 - $^4J_{\text{CH}}$ couplings may be present
 - ^{13}C satellites of intense protons common (i.e. methyl)

- J-value of 10 Hz
 - $^2J_{\text{CH}}$, and $^3J_{\text{CH}}$

- J-value of 2 Hz
 - $^3J_{\text{CH}}$, and $^4J_{\text{CH}}$
Summary

• Instrument field strength will affect spin system appearance
 • Higher Order \Rightarrow First Order
 • May depend upon shift and chemical equivalence

• Through space dipolar interactions can be used to aid in structure determination
 • NOE can be used to look at specific interactions
• 2D-version (NOESY) is useful for looking at all interactions

• HMQC and HSQC
 • Provides direct proton-carbon couplings

• HMBC – J-values set between 10 and 2 Hz
 • Together provides $^2J_{CH}$, $^3J_{CH}$, and $^4J_{CH}$ couplings
 • Indirect carbon-carbon coupling