RESOLUTIONS OF HOMOLOGY MANIFOLDS:
A CLASSIFICATION THEOREM

ALLAN L. EDMONDS† AND RONALD J. STERN†

1. Introduction

Let \(BPL \) and \(BH \) denote the classifying spaces for stable PL block bundles \([9]\) and stable homology cobordism bundles \(([4], [5])\). There is a natural map \(j : BPL \to BH \) with homotopy fibre denoted by \(H/PL \). If \(M \) is a closed (integral) homology manifold, a resolution of \(M \) is a pair \((P, f)\), where \(P \) is a piecewise linear (PL) manifold and \(f: P \to M \) is a surjective PL map which is acyclic, i.e. \(\tilde{f}_*(f^{-1}(x)) = 0 \) for all \(x \in M \). Let \(\tau : M \to BH \) classify the homology tangent bundle of \(M \). We prove the following theorems.

Existence Theorem. There is a resolution of \(M \) if and only if \(\tau \) lifts through \(j \) to \(BPL \).

Classification Theorem. The set of concordance classes (naturally defined) of resolutions of \(M \) is in one-to-one correspondence with the set of vertical homotopy classes of lifts of \(\tau \) through \(j \) to \(BPL \).

The Existence and Classification Theorems are deduced using the

Product Structure Theorem. \(M \times [-1, 1]^k \) is resolvable if and only if \(M \) is resolvable.

Let \(\theta_3^H \) denote the abelian group obtained from the set of oriented 3-dimensional PL homology spheres using the operation of connected sum, modulo those which bound acyclic PL 4-manifolds. Then according to N. Martin \([3]\) (also see \([7]\)),

\[
\pi_i(H/PL) = \begin{cases}
\theta_3^H & \text{if } i = 3 \\
0 & \text{otherwise.}
\end{cases}
\]

Thus, using standard obstruction theory, the Existence Theorem can be restated in the form of the usual resolution theorem due to Sullivan \([12]\) and Cohen \([2]\) (also see \([3]\) and \([10]\)): \(M \) is resolvable if and only if a class in \(H^4(M; \theta_3^H) \) is zero. Similarly, if \(M \) is resolvable, then there is a one-to-one correspondence between the set of concordance classes of resolutions of \(M \) and \(H^3(M; \theta_3^H) \). This version of the Classification Theorem has also been obtained by N. Martin.

In §2 we summarize some basic facts about homology manifolds and their resolutions; in §3 we prove the Product Structure Theorem; in §4 we investigate the tangential properties of resolutions; and, finally, in §5 we complete the proofs of the main theorems.

We thank Clint McCrory and David Galewski for useful discussions concerning homology manifolds and resolutions.

Received 3 April, 1974; revised 11 December, 1974.

† Supported in part by National Science Foundation grant GP3641X1 while at the Institute for Advanced Study, Princeton, New Jersey.

[J. LONDON MATH. SOC. (2), 11 (1975), 474–480]
2. Background

A compact polyhedron M is called a homology n-manifold if there is a triangulation K of M such that for any $x \in M$ and subdivision K_1 of K such that x is a vertex, $H_\ast(\text{Link}(x, K_1))$ is isomorphic either to $H_\ast(S^{n-1})$ or to $H_\ast(\text{point})$. The boundary of M, ∂M, is the set of points x such that $H_\ast(\text{Link}(x)) = H_\ast(\text{point})$ and is a closed (compact without boundary) homology $(n-1)$-manifold. We refer the reader to [6] for the basic properties of homology manifolds.

Two closed homology n-manifolds M and N are said to be H-cobordant if there is a homology $(n+1)$-manifold W such that ∂W is the disjoint union of M and N and $H_\ast(W, M) = H_\ast(W, N) = 0$. If M and N are homology n-manifolds with boundary, they are said to be H-cobordant if there is a homology $(n+1)$-manifold W such that $\partial W = M \cup W_0 \cup N$ where W_0 is an H-cobordism from ∂M to ∂N and $H_\ast(W, M) = H_\ast(W, N) = 0$.

Let M be a homology manifold and N be a codimension zero PL submanifold of ∂M. A resolution of M rel N is a pair (P, f), where P is a PL manifold and $f: (P, \partial P) \to (M, \partial M)$ is a surjective PL map of pairs such that (i) $f^{-1}(\partial M) = \partial P$, (ii) $f|f^{-1}(N)$ is a PL homeomorphism, and (iii) f is acyclic, i.e. $H_\ast(f^{-1}(x)) = 0$ for all $x \in M$. If (P, f) is a resolution of M and X is a subcomplex of M, then $f_\ast f^{-1}(X): f^{-1}(X) \to X$ is an acyclic map and so, by the Vietoris–Begle Mapping Theorem [11; p. 344], induces an isomorphism $H_\ast(f^{-1}(X)) \to H_\ast(X)$.

Two such resolutions $(P_i, f_i), i = 0, 1$, of M rel N are concordant rel N if there is a resolution (Q, F) of $M \times I$ rel $N \times I$ such that $(F^{-1}(M \times i), F|F^{-1}(M \times i))$ is (P_i, f_i) for $i = 0, 1$. If $\partial M = N = \emptyset$, we denote the set of concordance classes of resolutions of M by $\text{Res}(M)$.

Sullivan [12] and Cohen [2] (see also Martin [3] and Sato [10]) have constructed an elegant obstruction theory for resolving a homology manifold. The theory shows that if N is a codimension zero PL submanifold of the boundary of a homology manifold M, then there is an element σ_M in $H^4(M, N; \mathbb{Z})$ as defined in §1) such that $\sigma_M = 0$ if and only if M can be resolved rel N. See especially Martin [3] for this relative formulation.

We shall also use the elementary fact that the mapping cylinder of a surjective PL acyclic map between two homology manifolds is an H-cobordism and in particular a homology manifold.

For the basic properties of homology cobordism (disk) bundles over homology manifolds, we refer the reader to [4]. Recall from [4] that if ξ is a homology cobordism bundle over a homology manifold M, then the total space $E(\xi)$ is also a homology manifold. Also if ξ and ζ are equivalent homology cobordism bundles then $E(\xi)$ and $E(\zeta)$ are H-cobordant as homology manifolds.

Martin and Maunder in [4] and [5] have shown that there is a space BH which classifies stable equivalence classes of homology cobordism bundles. There is a natural map $j: BPL \to BH$, where BPL denotes the classifying space for stable PL block bundles [9]. We make j into a fibration and call its fibre H/PL. It is not hard to see that two homology cobordism bundles ξ and ζ are stably equivalent if and only if $\xi \times I^n$ is isomorphic to $\zeta \times I^n$, for some m and n, in the sense of [4].

If M is a homology manifold we denote its homology tangent bundle by $T(M)$. If M is a PL manifold, we denote its PL tangent block bundle by $T(M)$. In either case, the tangent bundle is given by a regular neighbourhood of the diagonal in $M \times M$.

RESOLUTIONS OF HOMOLOGY MANIFOLDS: A CLASSIFICATION THEOREM 475
If ξ is a homology cobordism bundle (resp. PL block bundle) over a complex X, we will also often denote by $\xi : X \to BH$ (resp., $\xi : X \to BPL$) the stable classifying map of the bundle.

Finally we recall the construction of the pullback of a homology cobordism bundle [5; p. 112]. Let $f : M \to N$ be a simplicial map of homology manifolds and let ξ be a homology cobordism bundle over N. Let C_f denote the simplicial mapping cylinder of f. Then, as in [4; 3.5], ξ can be extended to a homology cobordism bundle ξ over all of C_f and ξ is unique up to isomorphism. Then we define $f^*\xi$ to be $\xi | M$.

3. The Product Structure Theorem.

Let M be a homology manifold such that ∂M is a PL manifold. Our goal in this section is to relate the resolutions of $M \times B^k (B^k = [-1, 1]^k)$ with those of M.

Theorem 3.1 (Product Structure Theorem). Let (Q, g) be a resolution of $M \times B^k$ rel $\partial M \times B^k$. Then there is a resolution (P, f) of M, where P is a PL submanifold of Q with trivial normal block bundle, and a commutative diagram

\[
\begin{array}{ccc}
Q & \longrightarrow & M \times B^k \\
\uparrow g & & \uparrow h \\
P & \longrightarrow & M
\end{array}
\]

where h is a proper PL embedding isotopic to the standard embedding $M \times 0$.

Proof. A finite induction shows that it suffices to find a resolution (P, f) of $M \times B^{k-1}$ rel $\partial M \times B^{k-1}$, where P is a properly embedded PL submanifold of Q with trivial normal bundle, and a commutative diagram

\[
\begin{array}{ccc}
Q & \longrightarrow & M \times B^k \\
\uparrow g & & \uparrow h \\
P & \longrightarrow & M \times B^{k-1}
\end{array}
\]

in which h is a proper embedding properly isotopic to the standard inclusion $M \times B^{k-1} \subset M \times B^k$.

To this end we may assume that Q and $M \times B^k$ are triangulated so that g is simplicial and so that the standard $M \times B^{k-1}$ is a full subcomplex of $M \times B^k$. Let N be the simplicial neighbourhood of $M \times B^{k-1}$ in the first derived subdivision of $M \times B^k$. Since inverse images of dual cells by simplicial maps are manifolds [1; 5.6], we see that $\mathcal{Q}_0 = g^{-1}(N)$ is a codimension zero submanifold of Q and that $g | \mathcal{Q}_0 : \mathcal{Q}_0 \to N$ is a resolution rel $N \cap (\partial M \times B^k)$. Now the frontier of N breaks into two pieces; let N^+ be one of them. Let $P = g^{-1}(N^+)$, which must be one of the two components of the frontier of \mathcal{Q}_0 in Q. Let $f = g | P$. Then the theory of derived neighbourhoods shows that there is a proper PL homeomorphism

\[(M \times B^{k-1}, \partial M \times B^{k-1}) \to (N^+, N^+ \cap \partial M \times B^k)\]
which is isotopic to the standard inclusion $M \times B^{k-1} \subset M \times B^k$. Finally, P has trivial normal bundle in Q, being a boundary component of a codimension zero submanifold.

4. Tangential Properties of Resolutions

If M is a homology manifold and ξ is a homology cobordism bundle over M, then a (stable) reduction of ξ to a PL block bundle is a homology cobordism bundle η over $M \times I$ such that $\eta | M \times 0 = \xi$ stably and $\eta | M \times 1$ is a PL block bundle. Two reductions of ξ are equivalent if there is a reduction of $\xi \times I$ over $(M \times I) \times I$ between them. Let $H/PL(\xi)$ denote the set of equivalence classes of stable reductions of ξ.

Also, let Lift(ξ) denote the set of vertical homotopy classes of lifts to BPL of $\xi : M \rightarrow BH$ through $j : BPL \rightarrow BH$. Then the following lemma is an exercise in the definitions, using the homotopy lifting property.

Lemma 4.1. There is a one-to-one correspondence between the elements of $H/PL(\xi)$ and those of Lift(ξ).

Lemma 4.2. If N and M are homology manifolds and $f : N \rightarrow M$ induces an isomorphism on homology, then the natural map

$$f^* : H/PL(\tau(M)) \rightarrow H/PL(f^* \tau(M))$$

is a bijection.

Proof (of 4.2). If η is a reduction of $\tau(M)$, $f^*[\eta]$ is given by $[(f \times 1)^*\eta]$. Obstruction theory shows that there are lifts of $\tau(M)$ to BPL if and only if there are lifts of $f^*\tau(M)$ to BPL. So assume such lifts exist and choose one lift α of $\tau(M)$. Then comparison with α and with $f^*\alpha$ and application of the homotopy lifting property for fibrations shows that we have a commutative diagram

$$\begin{array}{ccc}
H/PL(\tau(M)) & \rightarrow & H/PL(f^* \tau(M)) \\
\downarrow & & \downarrow \\
\text{Lift}(\tau(M)) & \rightarrow & \text{Lift}(f^* \tau(M)) \\
\downarrow & & \downarrow \\
[M; H/PL] & \rightarrow & [N; H/PL]
\end{array},$$

where horizontal arrows are induced by f and the vertical arrows are bijections. But the lower horizontal arrow is a bijection by obstruction theory (all coefficients are simple since $\pi_1(H/PL) = 0$), completing the proof.

Theorem 4.3. A resolution (P, f) of a homology manifold M determines a well defined element of $H/PL(\tau(M))$ which depends only on the class of (P, f) in Res(M).

Proof. The mapping cylinder C_f of f is a homology manifold (see §2). Let $\pi : P \times I \rightarrow C_f$ be the natural quotient map. Then $\pi^* (C_f)$ is a stable reduction of $f^* \tau(M)$ to the PL block bundle $T(P)$. Using (4.2), let α be the unique element of $H/PL(\tau(M))$ corresponding to $f^*\tau(M)$. The same construction applied to a concordance shows that the class of α in $H/PL(\tau(M))$ depends only on the concordance class of (P, f) in Res(M).

By (4.3) we obtain a well-defined function

$$\psi : \text{Res}(M) \rightarrow H/PL(\tau(M)).$$
5. Bijectivity of ψ.

We first show that the existence of a reduction of $\tau(M)$ to a PL block bundle implies that M is resolvable. Carefully done this shows that ψ is surjective. A suitable relative version of the above then shows that ψ is injective.

If (P,f) is a resolution of M let $[P,f]$ denote its class in $\text{Res}(M)$; if η is a stable reduction of $\tau(M)$ to a PL block bundle, let $[\eta]$ denote its class in $H/\text{PL}(\tau(M))$.

Theorem 5.1 (Existence Theorem). Let M be a compact homology n-manifold with $\partial M = \emptyset$. If η is a stable reduction of $\tau(M)$ to a PL block bundle, then there is a resolution (P,f) of M such that $\psi[P,f] = [\eta]$.

Proof. Let M be embedded in some Euclidean space \mathbb{R}^k and let N be a closed regular neighbourhood of M in \mathbb{R}^k. Then N is a parallelizable PL k-manifold and there is a PL deformation retraction $r : N \to M$. The induced stable reduction $\xi = (r \times 1)^*\eta$ of $r^*\tau(M)$ to a PL block bundle is a homology cobordism bundle over $N \times I$ such that $\xi_0 = \xi | N \times 0$ is a PL block bundle and $\xi_1 = \xi | N \times 1$ is stably isomorphic to $r^*\tau(M)$. The total space $E(\xi)$ of ξ is an H-cobordism between the PL manifold $E(\xi_0)$ and the homology manifold $E(\xi_1)$. Also $E(\xi_1)$ is PL homeomorphic to $M \times I^m$ for some m, since $E(\xi_1) = E(r^*\tau(M)) \times I^q$ for some q, and $E(r^*\tau(M))$ can be seen to be a regular neighbourhood of $M \times 0$ in $M \times \mathbb{R}^k$ (compare [8; 5.12]).

Since $H^*(E(\xi), E(\xi_0)) = 0$, the obstruction to resolving $E(\xi)$ rel $E(\xi_0)$ is zero, so let (Q, g) be such a resolution. Pulling back a small regular neighbourhood of $E(\xi_1) \cong M \times I^m$ in $\partial E(\xi)$ we obtain by restriction, as in the proof of the Product Structure Theorem, a resolution (R, h) of $M \times I^m$, and hence a resolution (P, f) of M.

It remains to see that $\psi[P, f] = [\eta]$. For this we use the fact that we resolved the entire H-cobordism $E(\xi)$. Now by (4.3), (Q, g) determines a reduction of $\tau(E(\xi))$ to a PL block bundle, hence a reduction of $\tau(E(\xi)) | N \times I$ to a PL block bundle. But $\tau(E(\xi)) | N \times I \cong \tau(N \times I^I) \oplus \xi$ which stably is just ξ since N is parallelizable. Thus (Q, g) determines a stable reduction β over $(N \times I) \times I$ with $\beta | N \times I \times 1$ a PL block bundle and $\beta | N \times I \times 0 = \xi$. Furthermore, $\beta | N \times 1 \times I$ is a PL block bundle, being obtained from the trivial reduction induced by the identity map and the isomorphism $\tau(E(\xi)) | N \times 1 = T(E(\xi)) | N \times 1$. Also, $\beta | N \times 0 \times I$ is stably $r^*\mu$ where μ is the reduction of $\tau(M)$ induced by (P, f). This follows because, by the Product Structure Theorem, P has a trivial normal PL block bundle in Q and there is a commutative diagram

$$
\begin{array}{ccc}
Q & \xrightarrow{g} & M \times I^m \\
\uparrow & & \uparrow h \\
P & \xrightarrow{f} & M
\end{array}
$$

where h is a PL embedding which is PL isotopic to the standard embedding $M \times 0$.

Thus β determines an equivalence between the stable reductions $\xi = r^*\eta$ and $r^*\mu$ and hence between η and μ by (4.2) as desired.

In a similar fashion one proves the following relative version of (5.1).
Theorem 5.2. Let M be a homology manifold with ∂M a PL manifold. If η is a stable reduction of $\tau(M)$ to a PL block bundle such that $\eta|\partial M \times I = T(\partial M) \times I$ as stable PL block bundles, then there is a resolution (P, f) of M rel ∂M.

Corollary 5.3. (Classification Theorem). If M is a homology manifold with $\partial M = \emptyset$, then $\psi : \text{Res}(M) \to H/\text{PL}(\tau(M))$ is bijective. Hence $\text{Res}(M) \approx \text{Lift}(\tau(M))$.

Proof. Surjectivity follows from (5.1). To prove injectivity, let (P_i, f_i), $i = 0, 1$, be two resolutions of M such that the corresponding stable reductions η_0 and η_1 are equivalent. Then we obtain a homology cobordism bundle η over $M \times I \times I$ such that $\eta| (M \times I \times i) = \eta_i$ stably, for $i = 0, 1$, $\eta| (M \times 1 \times I)$ is a PL block bundle, and $\eta| (M \times 0 \times I)$ is $\tau(M) \times I$ stably.

Let C_i denote the mapping cylinder of f_i, $i = 0, 1$, and consider the homology manifold $N = C_0 \cup M \times I \cup C_1$, where we identify the zero ends of C_0 and C_1 with $M \times 0$ and $M \times 1$ respectively. Using the natural retraction of N onto $M \times I$, we obtain from η a reduction of $\tau(N)$ to a PL bundle rel $P_0 \cup P_1$. Thus we obtain by (5.2) a resolution (Q, g) of N rel $\partial N = P_0 \cup P_1$.

Define a map $r : N \to M \times I$ by

$$
[r[x, t]] = \begin{cases}
(f_0(x), (1-t)/3) & \text{if } [x, t] \in C_0, \\
(f_1(x), (2+t)/3) & \text{if } [x, t] \in C_1, \\
(x, (1+t)/3) & \text{if } [x, t] \in M \times I.
\end{cases}
$$

Then (Q, rg) is a resolution of $M \times I$ and a concordance between (P_0, f_0) and (P_1, f_1).

Using similar techniques one also proves the following more general relative classification theorem.

Theorem 5.4. Let M be a homology manifold with ∂M a PL manifold. Then there is a one-to-one correspondence between concordance classes of resolutions of M rel ∂M and vertical homotopy classes of lifts of $\tau(M) : M \to BH$ to BPL rel a fixed lift $T(\partial M) : \partial M \to BPL$ of $\tau(\partial M) : \partial M \to BH$.

References

Cornell University,
Ithaca, New York 14853,
U.S.A.

University of Utah,
Salt Lake City, Utah 84112
U.S.A.