Objectives

- Present an analytical model of benthic exchange and reaction
- Pumping of solute across bedforms
- Advection-dominated mass transport
- First-order reaction in sediment
- Evaluate model
 - Compare to numerical solution
 - Derive solution for solute flux into the sediment
- Application
 - Correlations for mass transfer coefficient
 - Trade-off between volume of water processed in the sediment and extent of reaction

Solution approach (neglect dispersion & diffusion)

Streamline geometry

\[C_I = \frac{C_f}{C_0} \]

Predicted concentration field (analytical)

\[C(y) = C_I(l) \exp \left(\frac{-r_y \sin \theta}{2 \lambda \pi \cos \theta} \right) \]

Mass-transfer-limited flux

\[J_{\text{mass}} = -C_0 u_m \left(\frac{\theta \pi}{\lambda} \right) \]

Variable definitions

- \(u_m \): mass velocity
- \(\theta \): horizontal distance
- \(\lambda \): bed form wavelength
- \(\pi \): unit cell

Elliot and Brooks Velocity Model

- Normalize by wave number
 - \(\bar{x} = 2\pi x / \lambda \)
 - \(\bar{y} = 2\pi y / \lambda \)

- Velocity field
 - \(u_x = \text{u}_x \)
 - \(u_y = \text{u}_y \)

- Pressure head
 - \(\bar{h} = \text{h}_x \sin \pi \bar{x} \)

- Bed geometry
 - \(\bar{h} = \text{h}_x \sin \pi \bar{x} \)

- Maximum pressure head
 - \(u_m = -2\pi K_b h_n / \lambda \)

Applications

- Numerical and analytical solutions near-identical
- Numerical simulation carried out with COMSOL
- Mechanical dispersion & molecular diffusion negligible
- Dirichlet b.c. at surface causes gradient artifact

Ecosystem services

- Flux into sediment = mass removal in sediment
- Mass removal in sediment = ecosystem service (N, P, C processing; CEC removal)
- Model identifies trade-off between volume of water processed by hyporheic zone and extent of reaction in sediment (hard to optimize both)

Acknowledgements

Funding by the National Science Foundation Partnerships for International Research and Education (PRIE) Award No. OISE-0821543. A huge THANK YOU to Keith Stow, UCLA, Megan Rippy (UCL), Mike Searles (UoM), and Niran Cook (Monash Univ).