Week 3 – % Riboflavin in a Multivitamin

Figure 1. Molecular structure of riboflavin, C_{17}H_{20}N_{4}O_{6}.

- Found in many foods (eggs, nuts, grains, dairy products)
- Biochemical: proper utilization of carbohydrates, fats, proteins as energy sources
- Component of two coenzymes (FAD and FMN):
 - Aid certain enzymes in oxidation and reduction rxns in e⁻ transport chain and a wide range of metabolic pathways
Objective: Determine Riboflavin Concentration

- Riboflavin: yellow \rightarrow absorbs blue and green strongly
- Can absorbance spectroscopy be used to measure riboflavin concentration?
 - **NO!** Many other components of vitamin absorb visible light

- Fluorescence spectroscopy
 - Little interference
Fluorescence Spectroscopy

• Much more sensitive than absorbance spectroscopy → detection of smaller concentrations possible (small increase in signal on top of near-zero background is easily detected)
• Only a small fraction of molecules will fluoresce (most lose energy thermally or break apart)
• Capable of detecting single molecules
 – Human genome sequencing, in vivo cell imaging
Fluorescence and Standard Addition Measurements

- Fluorescence calibration curve
- Standard addition curve (fluorescence vs. standard concentration)
 - Eliminates matrix effect
 - Make unknown solution that falls within range of fluorescence calibration curve (dilute if needed)
 - Keep unknown concentration constant; vary standard concentration
 - Extrapolate data to determine concentration of unknown (distance between origin and x-intercept)