Euler, Polyhedron, and Smooth 4-Manifolds

Ronald J. Stern
University of California, Irvine
June 1, 2007
Euler and the Beginnings of Combinatorial Topology

<table>
<thead>
<tr>
<th>Name</th>
<th>Image</th>
<th>(V) vertices</th>
<th>(E) edges</th>
<th>(F) faces</th>
<th>(V - E + F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetrahedron</td>
<td></td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Hexahedron or cube</td>
<td></td>
<td>8</td>
<td>12</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Octahedron</td>
<td></td>
<td>6</td>
<td>12</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Dodecahedron</td>
<td></td>
<td>20</td>
<td>30</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Icosahedron</td>
<td></td>
<td>12</td>
<td>30</td>
<td>20</td>
<td>2</td>
</tr>
</tbody>
</table>

\((V - E + F) \) for a convex polyhedron equals 2.

First mentioned in a letter to Goldbach dated 14 November 1750.
Euler and the Beginnings of Combinatorial Topology

<table>
<thead>
<tr>
<th>Name</th>
<th>Image</th>
<th>(V) vertices</th>
<th>(E) edges</th>
<th>(F) faces</th>
<th>(V - E + F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetrahedron</td>
<td></td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Hexahedron or cube</td>
<td></td>
<td>8</td>
<td>12</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Octahedron</td>
<td></td>
<td>6</td>
<td>12</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Dodecahedron</td>
<td></td>
<td>20</td>
<td>30</td>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>

\((V[ertices] - E[dges] + F[aces])(convex polyhedron) = 2\)

First mentioned in a letter to Goldbach dated 14 November 1750
An Early Topological Invariant

Euler characteristic $= \chi = V[ertices] - E[edges] + F[aces]$
An Early Topological Invariant

Euler characteristic $\chi = V[ertices] - E[dges] + F[aces]$

<table>
<thead>
<tr>
<th>Name</th>
<th>Image</th>
<th>Euler characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Torus</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Two-Holed Torus</td>
<td></td>
<td>-2</td>
</tr>
<tr>
<td>Klein bottle</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
An Early Topological Invariant
Euler characteristic = \(\chi = V[ertices] - E[dges] + F[aces] \)

- Classifies orientable surfaces: \(\chi = 2 - 2g \)
- Classifies non-orientable surfaces: \(\chi = 1 - g \)
 - Möbius (1870) was the first to attempt the classification of surfaces: proved for orientable surfaces smoothly imbedded in \(R^3 \).
 - Classification for non-orientable surfaces first announced by W. von Dyck (1888): proof incomplete. Among other problems, at that time there was no satisfactory concept of an abstract surface, not imbedded in Euclidean space.
 - The first rigorous proof was given by M. Dehn and P. Heegard in 1907, assuming surfaces are polyhedra
 - Surfaces are polyhedra first proved by T. Rado (1925) thus completing the proof of the classification theorem.
An Early Topological Invariant

Euler characteristic = $\chi = \text{Vertices} - \text{Edges} + \text{Faces}$

- Classifies orientable surfaces: $\chi = 2 - 2g$
- Classifies non-orientable surfaces: $\chi = 1 - g$
 - Möbius (1870) was the first to attempt the classification of surfaces: proved for orientable surfaces smoothly imbedded in R^3.
 - Classification for non-orientable surfaces first announced by W. von Dyck (1888): proof incomplete. Among other problems, at that time there was no satisfactory concept of an abstract surface, not imbedded in Euclidean space.
 - The first rigorous proof was given by M. Dehn and P. Heegard in 1907, assuming surfaces are polyhedra.
 - Surfaces are polyhedra first proved by T. Rado (1925) thus completing the proof of the classification theorem.
An Early Topological Invariant

Euler characteristic = \(\chi = V[ertices] - E[ges] + F[aces] \)

- Classifies orientable surfaces: \(\chi = 2 - 2g \)
- Classifies non-orientable surfaces: \(\chi = 1 - g \)
 - Möbius (1870) was the first to attempt the classification of surfaces: proved for orientable surfaces smoothly imbedded in \(R^3 \).
 - Classification for non-orientable surfaces first announced by W. von Dyck (1888): proof incomplete. Among other problems, at that time there was no satisfactory concept of an abstract surface, not imbedded in Euclidean space.
 - The first rigorous proof was given by M. Dehn and P. Heegard in 1907, assuming surfaces are polyhedra
 - Surfaces are polyhedra first proved by T. Rado (1925) thus completing the proof of the classification theorem.
An Early Topological Invariant

Euler characteristic = $\chi = V[ertices] - E[des] + F[aces]$

- Classifies orientable surfaces: $\chi = 2 - 2g$
- Classifies non-orientable surfaces: $\chi = 1 - g$
 - Möbius (1870) was the first to attempt the classification of surfaces: proved for orientable surfaces smoothly imbedded in R^3.
 - Classification for non-orientable surfaces first announced by W. von Dyck (1888): proof incomplete. Among other problems, at that time there was no satisfactory concept of an abstract surface, not imbedded in Euclidean space.
 - The first rigorous proof was given by M. Dehn and P. Heegard in 1907, assuming surfaces are polyhedra
 - Surfaces are polyhedra first proved by T. Rado (1925) thus completing the proof of the classification theorem.
An Early Topological Invariant

Euler characteristic = $\chi = V[ertices] - E[edges] + F[aces]$

- Classifies orientable surfaces: $\chi = 2 - 2g$
- Classifies non-orientable surfaces: $\chi = 1 - g$

- Möbius (1870) was the first to attempt the classification of surfaces: proved for orientable surfaces smoothly imbedded in R^3.
- Classification for non-orientable surfaces first announced by W. von Dyck (1888): proof incomplete. Among other problems, at that time there was no satisfactory concept of an abstract surface, not imbedded in Euclidean space.
- The first rigorous proof was given by M. Dehn and P. Heegard in 1907, assuming surfaces are polyhedra
- Surfaces are polyhedra first proved by T. Rado (1925) thus completing the proof of the classification theorem.
What is a polyhedron?
What is a polyhedron?

Grünebaum (1994)- Are Your Polyhedra the Same as My Polyhedra?

The Original Sin in the theory of polyhedra goes back to Euclid, and through Kepler, Poinsot, Cauchy and many others ... [in that] at each stage ... the writers failed to define what are the 'polyhedra' There is very little in common between the meaning of the word in topology and geometry.
What is a polyhedron?
What is a polyhedron?

- For us - a *polyhedron* P is topological space given along with a specific decomposition into shapes that are topologically equivalent to simplices (convex hull of the coordinate unit vectors in R^{n+1}, for some n) and that are attached to each other in a regular way.

- More precisely - a *polyhedron* P is a set of simplices κ that satisfies the following conditions:

 Any face of a simplex from κ is also in κ.

 The intersection of any two simplices σ_1 and σ_2 is a single face of both σ_1 and σ_2.

- P is triangulated as a *simplicial complex*.

- The Euler characteristic of polyhedron P is

$$
\chi(P) = \sum_{i=0}^{\infty} (-1)^i \alpha_i
$$

where $\alpha_i = \text{ the number of simplices of dimension } i$.
What is a polyhedron?

- For us - a *polyhedron* \(P \) is topological space given along with a specific decomposition into shapes that are topologically equivalent to simplices (convex hull of the coordinate unit vectors in \(\mathbb{R}^{n+1} \), for some \(n \)) and that are attached to each other in a regular way.

- More precisely - a *polyhedron* \(P \) is a set of simplices \(\kappa \) that satisfies the following conditions:

 Any face of a simplex from \(\kappa \) is also in \(\kappa \).

 The intersection of any two simplices \(\sigma_1 \) and \(\sigma_2 \) is a single face of both \(\sigma_1 \) and \(\sigma_2 \).

- \(P \) is triangulated as a *simplicial complex*.

- The Euler characteristic of polyhedron \(P \) is

\[
\chi(P) = \sum_{i=0}^{\infty} (-1)^i \alpha_i
\]

where \(\alpha_i \) = the number of simplices of dimension \(i \).
What is a polyhedron?

- For us - a *polyhedron* P is topological space given along with a specific decomposition into shapes that are topologically equivalent to simplices (convex hull of the coordinate unit vectors in \mathbb{R}^{n+1}, for some n) and that are attached to each other in a regular way.

- More precisely - a *polyhedron* P is a set of simplices κ that satisfies the following conditions:
 - Any face of a simplex from κ is also in κ.
 - The intersection of any two simplices σ_1 and σ_2 is a single face of both σ_1 and σ_2.

- P is triangulated as a *simplicial complex*.

- The Euler characteristic of polyhedron P is

$$
\chi(P) = \sum_{i=0}^{\infty} (-1)^i \alpha_i
$$

where α_i = the number of simplices of dimension i.

What is a polyhedron?

▶ For us - a *polyhedron* P is topological space given along with a specific decomposition into shapes that are topologically equivalent to simplices (convex hull of the coordinate unit vectors in \mathbb{R}^{n+1}, for some n) and that are attached to each other in a regular way.

▶ More precisely - a *polyhedron* P is a set of simplices κ that satisfies the following conditions:
- Any face of a simplex from κ is also in κ.
- The intersection of any two simplices σ_1 and σ_2 is a single face of both σ_1 and σ_2.

▶ P is triangulated as a *simplicial complex*.

▶ The Euler characteristic of polyhedron P is

$$
\chi(P) = \sum_{i=0}^{\infty} (-1)^i \alpha_i
$$

where $\alpha_i = \text{the number of simplices of dimension } i$.
What is a polyhedron?
Is every compact topological n-manifold a polyhedron?

- **Yes** for $n \leq 3$ ($n = 2$: Rado, 1925; $n = 3$: Moise, 1952)
- **No** for $n = 4$ (Freedman, 1980)
- **Unknown** for $n > 4$

Open Conjecture
Every topological n-manifold, $n > 4$, is a polyhedron, i.e. can be triangulated as a simplicial complex.
Is every compact topological \(n \)-manifold a polyhedron?

- **Yes** for \(n \leq 3 \) (\(n = 2 \): Rado, 1925; \(n = 3 \): Moise, 1952)
- **No** for \(n = 4 \) (Freedman, 1980)
- **Unknown** for \(n > 4 \)

Open Conjecture

Every topological \(n \)-manifold, \(n > 4 \), is a polyhedron, i.e. can be triangulated as a simplicial complex.
Is every compact topological n-manifold a polyhedron?

- **Yes** for $n \leq 3$ ($n = 2$: Rado, 1925; $n = 3$: Moise, 1952)
- **No** for $n = 4$ (Freedman, 1980)
- **Unknown** for $n > 4$

Open Conjecture
Every topological n-manifold, $n > 4$, is a polyhedron, i.e. can be triangulated as a simplicial complex.
Is every compact topological n-manifold a polyhedron?

- **Yes** for $n \leq 3$ ($n = 2$: Rado, 1925; $n = 3$: Moise, 1952)
- **No** for $n = 4$ (Freedman, 1980)
- **Unknown** for $n > 4$

Open Conjecture
Every topological n-manifold, $n > 4$, is a polyhedron, i.e. can be triangulated as a simplicial complex.
Is every compact topological n-manifold a polyhedron?

- **Yes** for $n \leq 3$ ($n = 2$: Rado, 1925; $n = 3$: Moise, 1952)
- **No** for $n = 4$ (Freedman, 1980)
- **Unknown** for $n > 4$

Open Conjecture

Every topological n-manifold, $n > 4$, is a polyhedron, i.e. can be triangulated as a simplicial complex.
No for $n = 4$

- If a topological n-manifold X is a simplicial complex, then the link Σ of every vertex is a homotopy $n - 1$-sphere.
- The Poincaré conjecture implies that if $n = 4$, then Σ is the 3-sphere; hence X is a PL manifold; hence a smooth manifold [Cairns, Whitehead, Hirsch, Milnor, Munkres, Lashof, Mazur, . . . , 1940 -1968]
- A 4-manifold X is a polyhedron iff X smoothable.
- There are non-smoothable 4-manifolds [Freedman, 1980].
No for $n = 4$

- If a topological n-manifold X is a simplicial complex, then the link Σ of every vertex is a homotopy $n-1$-sphere.
- The Poincaré conjecture implies that if $n = 4$, then Σ is the 3-sphere; hence X is a PL manifold; hence a smooth manifold [Cairns, Whitehead, Hirsch, Milnor, Munkres, Lashof, Mazur, . . . , 1940 -1968]
- A 4-manifold X is a polyhedron iff X smoothable.
- There are non-smoothable 4-manifolds [Freedman, 1980].
No for $n = 4$

- If a topological n-manifold X is a simplicial complex, then the link Σ of every vertex is a homotopy $n - 1$-sphere.
- The Poincaré conjecture implies that if $n = 4$, then Σ is the 3-sphere; hence X is a PL manifold; hence a smooth manifold [Cairns, Whitehead, Hirsch, Milnor, Munkres, Lashof, Mazur, . . . , 1940 -1968]
- A 4-manifold X is a polyhedron iff X smoothable.
- There are non-smoothable 4-manifolds [Freedman, 1980].
No for $n = 4$

- If a topological n-manifold X is a simplicial complex, then the link Σ of every vertex is a homotopy $n - 1$-sphere.
- The Poincaré conjecture implies that if $n = 4$, then Σ is the 3-sphere; hence X is a PL manifold; hence a smooth manifold [Cairns, Whitehead, Hirsch, Milnor, Munkres, Lashof, Mazur, . . . , 1940 -1968]
- A 4-manifold X is a polyhedron iff X smoothable.
- There are non-smoothable 4-manifolds [Freedman, 1980].
$n > 4$: The triangulation obstruction

Open Conjecture

Every topological n-manifold, $n > 4$, is a polyhedron, i.e. can be triangulated as a simplicial complex.

- Rochlin invariant map μ fits into short exact sequence

$$0 \rightarrow \ker(\mu) \rightarrow \Theta^H_3 \xrightarrow{\mu} \mathbb{Z}_2 \rightarrow 0$$

Θ^H_3 the homology cobordism group of oriented smooth homology 3–spheres and $\mu(\Sigma) = \text{signature}(W^4)/8 \mod 2$, W^4 spin with $\partial W^4 = \Sigma$.

- (Galewski-Stern, 1976) The triangulation obstruction of a compact TOP n–manifold M is

$$\delta_M \in H^5(M; \ker(\mu))$$

For $n \geq 5$ M can be triangulated iff $\delta_M(M) = 0$.

- $|H^4(M; \ker(\mu))|$ such triangulations up to concordance.

- Still unknown if there is an M with $\delta_M \neq 0$.
n > 4: The triangulation obstruction

Open Conjecture

Every topological n-manifold, $n > 4$, is a polyhedron, i.e. can be triangulated as a simplicial complex.

- Rochlin invariant map μ fits into short exact sequence

$$0 \rightarrow \ker(\mu) \rightarrow \Theta^H_3 \xrightarrow{\mu} \mathbb{Z}_2 \rightarrow 0$$

Θ^H_3 the homology cobordism group of oriented smooth homology 3−spheres and $\mu(\Sigma) = \text{signature}(W^4)/8 \mod 2$, W^4 spin with $\partial W^4 = \Sigma$.

- (Galewski-Stern, 1976) The triangulation obstruction of a compact TOP n−manifold M is

$$\delta_M \in H^5(M; \ker(\mu))$$

For $n \geq 5$ M can be triangulated iff $\delta_\kappa(M) = 0$.

- $|H^4(M; \ker(\mu))|$ such triangulations up to concordance.

- Still unknown if there is an M with $\delta_M \neq 0$.
$n > 4$: The triangulation obstruction

Open Conjecture
Every topological n-manifold, $n > 4$, is a polyhedron, i.e. can be triangulated as a simplicial complex.

- Rochlin invariant map μ fits into short exact sequence

\[
0 \to \ker(\mu) \to \Theta^H_3 \xrightarrow{\mu} \mathbb{Z}_2 \to 0
\]

Θ^H_3 the homology cobordism group of oriented smooth homology 3–spheres and $\mu(\Sigma) = \text{signature}(W^4)/8 \mod 2$, W^4 spin with $\partial W^4 = \Sigma$.

- (Galewski-Stern, 1976) The **triangulation obstruction** of a compact TOP n–manifold M is

\[
\delta_M \in H^5(M; \ker(\mu))
\]

For $n \geq 5$ M can be triangulated iff $\delta_\kappa(M) = 0$.

- $|H^4(M; \ker(\mu))|$ such triangulations up to concordance.
- Still unknown if there is an M with $\delta_M \neq 0$.
$n > 4$: The triangulation obstruction

Open Conjecture
Every topological n-manifold, $n > 4$, is a polyhedron, i.e. can be triangulated as a simplicial complex.

- Rochlin invariant map μ fits into short exact sequence

\[0 \rightarrow \ker(\mu) \rightarrow \Theta_3^H \xrightarrow{\mu} \mathbb{Z}_2 \rightarrow 0 \]

Θ_3^H the homology cobordism group of oriented smooth homology 3–spheres and $\mu(\Sigma) = \text{signature}(W^4)/8 \mod 2$, W^4 spin with $\partial W^4 = \Sigma$.

- (Galewski-Stern, 1976) The triangulation obstruction of a compact TOP n–manifold M is

\[\delta_M \in H^5(M; \ker(\mu)) \]

For $n \geq 5$ M can be triangulated iff $\delta_{\kappa}(M) = 0$.

- $|H^4(M; \ker(\mu))|$ such triangulations up to concordance.

- Still unknown if there is an M with $\delta_M \neq 0$.
The triangulation obstruction

Open Conjecture

Every topological n-manifold, \(n > 4 \), is a polyhedron, i.e. can be triangulated as a simplicial complex.

Rochlin invariant map \(\mu \) fits into short exact sequence

\[
0 \to \ker(\mu) \to \Theta_3^H \xrightarrow{\mu} \mathbb{Z}_2 \to 0
\]

\(\Theta_3^H \) the homology cobordism group of oriented smooth homology 3–spheres and \(\mu(\Sigma) = \text{signature}(W^4)/8 \mod 2, \ W^4 \text{ spin with } \partial W^4 = \Sigma. \)

(Galewski-Stern, 1976) The triangulation obstruction of a compact TOP \(n-\)manifold \(M \) is

\[
\delta_M \in H^5(M; \ker(\mu))
\]

For \(n \geq 5 \) \(M \) can be triangulated iff \(\delta_{\kappa}(M) = 0. \)

\(|H^4(M; \ker(\mu))| \) such triangulations up to concordance.

Still unknown if there is an \(M \) with \(\delta_M \neq 0. \)
$n > 4$: The triangulation obstruction

- For $n \geq 5$: M^n can be triangulated iff $\delta_M \in H^5(M; \ker(\mu))$ vanishes.
- $|H^4(M; \ker(\mu))|$ such triangulations up to concordance.
- Still unknown if there is an M with $\delta_M \neq 0$.
- (Galewski-Stern, Matumoto) $\delta_M = 0$ iff there exits an order two element $\Sigma \in \Theta_3^H$ with $\mu(\Sigma) = 1$; i.e $\Sigma \# \Sigma$ bounds an acyclic 4-manifold.
- Do not know any example of $\Sigma \in \Theta_3^H$ with non-zero finite order.
- $\ker(\mu)$ is infinitely generated (Furuta, Fintushel-Stern 1990 using Donaldson, 1982). Each generator has infinite order.
- δ_M is the image of the Kirby-Siebenmann PL-triangulation obstruction $\kappa(M) \in H^4(M; \mathbb{Z}_2)$ under the Bockstein

$$\delta : H^4(M; \mathbb{Z}_2) \to H^5(M; \ker(\mu))$$

in the sequence

$$0 \to \ker(\mu) \to \Theta_3^H \xrightarrow{\mu} \mathbb{Z}_2 \to 0$$
$n > 4$: The triangulation obstruction

- For $n \geq 5$: M^n can be triangulated iff $\delta_M \in H^5(M; \ker(\mu))$ vanishes.
- $|H^4(M; \ker(\mu))|$ such triangulations up to concordance.
- Still unknown if there is an M with $\delta_M \neq 0$.
- (Galewski-Stern, Matumoto) $\delta_M = 0$ iff there exits an order two element $\Sigma \in \Theta^H_3$ with $\mu(\Sigma) = 1$; i.e $\Sigma \# \Sigma$ bounds an acyclic 4-manifold.
- Do not know any example of $\Sigma \in \Theta^H_3$ with non-zero finite order.
- $\ker(\mu)$ is infinitely generated (Furuta, Fintushel-Stern 1990 using Donaldson, 1982). Each generator has infinite order.
- δ_M is the image of the Kirby-Siebenmann PL-triangulation obstruction $\kappa(M) \in H^4(M; \mathbb{Z}_2)$ under the Bockstein

$$
\delta : H^4(M; \mathbb{Z}_2) \to H^5(M; \ker(\mu))
$$

in the sequence

$$
0 \to \ker(\mu) \to \Theta^H_3 \xrightarrow{\mu} \mathbb{Z}_2 \to 0
$$
\textbf{\(n > 4\): The triangulation obstruction}

- For \(n \geq 5\): \(M^n\) can be triangulated iff \(\delta_M \in H^5(M; \ker(\mu))\) vanishes.
- \(|H^4(M; \ker(\mu))|\) such triangulations up to concordance.
- Still unknown if there is an \(M\) with \(\delta_M \neq 0\).
- (Galewski-Stern, Matumoto) \(\delta_M = 0\) iff there exits an order two element \(\Sigma \in \Theta^H_3\) with \(\mu(\Sigma) = 1\); i.e. \(\Sigma \# \Sigma\) bounds an acyclic 4-manifold.
- Do not know any example of \(\Sigma \in \Theta^H_3\) with non-zero finite order.
- \(\ker(\mu)\) is infinitely generated (Furuta, Fintushel-Stern 1990 using Donaldson, 1982). Each generator has infinite order.
- \(\delta_M\) is the image of the Kirby-Siebenmann PL-triangulation obstruction \(\kappa(M) \in H^4(M; \mathbb{Z}_2)\) under the Bockstein
 \[
 \delta : H^4(M; \mathbb{Z}_2) \to H^5(M; \ker(\mu))
 \]
 in the sequence
 \[
 0 \to \ker(\mu) \to \Theta^H_3 \xrightarrow{\mu} \mathbb{Z}_2 \to 0
 \]
n > 4: The triangulation obstruction

- For $n \geq 5$: M^n can be triangulated iff $\delta_M \in H^5(M; \ker(\mu))$ vanishes.
- $|H^4(M; \ker(\mu))|$ such triangulations up to concordance.
- Still unknown if there is an M with $\delta_M \neq 0$.
- (Galewski-Stern, Matumoto) $\delta_M = 0$ iff there exists an order two element $\Sigma \in \Theta^H_3$ with $\mu(\Sigma) = 1$; i.e. $\Sigma \# \Sigma$ bounds an acyclic 4-manifold.
- Do not know any example of $\Sigma \in \Theta^H_3$ with non-zero finite order.
- $\ker(\mu)$ is infinitely generated (Furuta, Fintushel-Stern 1990 using Donaldson, 1982). Each generator has infinite order.

δ_M is the image of the Kirby-Siebenmann PL-triangulation obstruction $\kappa(M) \in H^4(M; \mathbb{Z}_2)$ under the Bockstein

$$\delta : H^4(M; \mathbb{Z}_2) \to H^5(M; \ker(\mu))$$

in the sequence

$$0 \to \ker(\mu) \to \Theta^H_3 \xrightarrow{\mu} \mathbb{Z}_2 \to 0$$
$n > 4$: The triangulation obstruction

- For $n \geq 5$: M^n can be triangulated iff $\delta_M \in H^5(M; \ker(\mu))$ vanishes.
- $|H^4(M; \ker(\mu))|$ such triangulations up to concordance.
- Still unknown if there is an M with $\delta_M \neq 0$.
- (Galewski-Stern, Matumoto) $\delta_M = 0$ iff there exits an order two element $\Sigma \in \Theta^H_3$ with $\mu(\Sigma) = 1$; i.e $\Sigma \# \Sigma$ bounds an acyclic 4-manifold.
- Do not know any example of $\Sigma \in \Theta^H_3$ with non-zero finite order.
- $\ker(\mu)$ is infinitely generated (Furuta, Fintushel-Stern 1990 using Donaldson, 1982). Each generator has infinite order.
- δ_M is the image of the Kirby-Siebenmann PL-triangulation obstruction $\kappa(M) \in H^4(M; \mathbb{Z}_2)$ under the Bockstein

$$\delta : H^4(M; \mathbb{Z}_2) \rightarrow H^5(M; \ker(\mu))$$

in the sequence

$$0 \rightarrow \ker(\mu) \rightarrow \Theta^H_3 \xrightarrow{\mu} \mathbb{Z}_2 \rightarrow 0$$
Is every topological n-manifold a polyhedron?

- For $n \leq 3$: Yes since all are smooth.
- For $n = 4$: iff smooth
- For $n \geq 5$: iff there exists a homology 3-sphere Σ with $\mu(\Sigma) = 1$ and $\Sigma \# \Sigma$ bounds an acyclic 4-manifold.
- All oriented closed 5-manifolds triangulable.
- (Galewski-Stern) \exists non-orientable closed 5-manifold M such that all $n \geq 5$ manifolds are triangulable iff M is triangulable.
- No progress in finding elements of finite order in $\Sigma \in \Theta_3^H$ (all known are infinite order). Hence no progress on the triangulation problem since 1976.
- However, this contributed to interest in 4-dimensional topology.
Is every topological n-manifold a polyhedron?

- For $n \leq 3$: Yes since all are smooth.
- For $n = 4$: iff smooth
- For $n \geq 5$: iff there exits a homology 3-sphere Σ with $\mu(\Sigma) = 1$ and $\Sigma \# \Sigma$ bounds an acyclic 4-manifold.
- All oriented closed 5-manifolds triangulable.
 - (Galewski-Stern) \exists non-orientable closed 5-manifold M such that all $n \geq 5$ manifolds are triangulable iff M is triangulable.
 - No progress in finding elements of finite order in $\Sigma \in \Theta^H_3$ (all known are infinite order). Hence no progress on the triangulation problem since 1976.
 - However, this contributed to interest in 4-dimensional topology.
Is every topological n-manifold a polyhedron?

- For $n \leq 3$: Yes since all are smooth.
- For $n = 4$: iff smooth
- For $n \geq 5$: iff there exists a homology 3-sphere Σ with $\mu(\Sigma) = 1$ and $\Sigma \# \Sigma$ bounds an acyclic 4-manifold.
- All oriented closed 5-manifolds triangulable.
- (Galewski-Stern) \exists non-orientable closed 5-manifold M such that all $n \geq 5$ manifolds are triangulable iff M is triangulable.
- No progress in finding elements of finite order in $\Sigma \in \Theta^H_3$ (all known are infinite order). Hence no progress on the triangulation problem since 1976.
- However, this contributed to interest in 4-dimensional topology.
Is every topological n-manifold a polyhedron?

- For $n \leq 3$: Yes since all are smooth.
- For $n = 4$: iff smooth
- For $n \geq 5$: iff there exits a homology 3-sphere Σ with $\mu(\Sigma) = 1$ and $\Sigma \# \Sigma$ bounds an acyclic 4-manifold.
- All oriented closed 5-manifolds triangulable.
- (Galewski-Stern) \exists non-orientable closed 5-manifold M such that all $n \geq 5$ manifolds are triangulable iff M is triangulable.
- No progress in finding elements of finite order in $\Sigma \in \Theta_3^H$ (all known are infinite order). Hence no progress on the triangulation problem since 1976.
- However, this contributed to interest in 4-dimensional topology.
Is every topological n-manifold a polyhedron?

- For $n \leq 3$: Yes since all are smooth.
- For $n = 4$: iff smooth
- For $n \geq 5$: iff there exits a homology 3-sphere Σ with $\mu(\Sigma) = 1$ and $\Sigma \# \Sigma$ bounds an acyclic 4-manifold.
- All oriented closed 5-manifolds triangulable.
- (Galewski-Stern) \exists non-orientable closed 5-manifold M such that all $n \geq 5$ manifolds are triangulable iff M is triangulable.
- No progress in finding elements of finite order in $\Sigma \in \Theta_3^H$ (all known are infinite order). Hence no progress on the triangulation problem since 1976.
- However, this contributed to interest in 4-dimensional topology.
What do we know about 4-manifolds?

Invariants

- Euler characteristic: $e(M) = \sum_{i=0}^{4} (-1)^i H^i(M; \mathbb{Z})$
- $Q_M : H^2(M; \mathbb{Z}) \times H^2(M; \mathbb{Z}) \to \mathbb{Z}; \ Q_M(\alpha, \beta) = (\alpha \cup \beta)[M]$
 is an integral, symmetric, unimodular, bilinear form.

Signature of $M = \sigma(M) = \text{Signature of } Q_M = b_+ - b_-$

Type: Even if $Q_M(\alpha, \alpha)$ even for all α; otherwise Odd

- (Freedman, 1980) Q_M classifies simply-connected topological 4-manifolds: There is one homeomorphism type if Q_M even; there are two if Q_M odd - exactly one of which has $M \times S^1$ smoothable.

- (Donaldson, 1982) Two simply-connected smooth 4-manifolds are homeomorphic iff they have the same e, σ, and type.
What do we know about 4-manifolds?

Invariants

- Euler characteristic \(e(M) = \sum_{i=0}^{4} (-1)^i H^i(M; \mathbb{Z}) \)
- \(Q_M : H^2(M; \mathbb{Z}) \times H^2(M; \mathbb{Z}) \to \mathbb{Z}; \) \(Q_M(\alpha, \beta) = (\alpha \cup \beta)[M] \)
 is an integral, symmetric, unimodular, bilinear form.
 Signature of \(M = \sigma(M) = \) Signature of \(Q_M = b_+ - b_- \)
 Type: Even if \(Q_M(\alpha, \alpha) \) even for all \(\alpha \); otherwise Odd

(Freedman, 1980) \(Q_M \) classifies simply-connected topological 4-manifolds: There is one homeomorphism type if \(Q_M \) even; there are two if \(Q_M \) odd - exactly one of which has \(M \times S^1 \) smoothable.

(Donaldson, 1982) Two simply-connected smooth 4-manifolds are homeomorphic iff they have the same \(e, \sigma, \) and type.
What do we know about 4-manifolds?

Invariants

- Euler characteristic $e(M) = \sum_{i=0}^{4} (-1)^{i} H^{i}(M; \mathbb{Z})$
- $Q_{M} : H^{2}(M; \mathbb{Z}) \times H^{2}(M; \mathbb{Z}) \rightarrow \mathbb{Z}$; $Q_{M}(\alpha, \beta) = (\alpha \cup \beta)[M]$ is an integral, symmetric, unimodular, bilinear form.

Signature of $M = \sigma(M) = \text{Signature of } Q_{M} = b_{+} - b_{-}$

Type: Even if $Q_{M}(\alpha, \alpha)$ even for all α; otherwise Odd

(Freedman, 1980) Q_{M} classifies simply-connected topological 4-manifolds: There is one homeomorphism type if Q_{M} even; there are two if Q_{M} odd - exactly one of which has $M \times S^{1}$ smoothable.

(Donaldson, 1982) Two simply-connected smooth 4-manifolds are homeomorphic iff they have the same e, σ, and type.
What do we know about 4-manifolds?

Invariants

- Euler characteristic $e(M) = \sum_{i=0}^{4} (-1)^i H^i(M; \mathbb{Z})$
- $Q_M : H^2(M; \mathbb{Z}) \times H^2(M; \mathbb{Z}) \to \mathbb{Z}; \quad Q_M(\alpha, \beta) = (\alpha \cup \beta)[M]$
- Q_M is an integral, symmetric, unimodular, bilinear form.

Signature of $M = \sigma(M) = \text{Signature of } Q_M = b_+ - b_-$

Type: Even if $Q_M(\alpha, \alpha)$ even for all α; otherwise Odd

- (Freedman, 1980) Q_M classifies simply-connected topological 4-manifolds: There is one homeomorphism type if Q_M even; there are two if Q_M odd - exactly one of which has $M \times S^1$ smoothable.

- (Donaldson, 1982) Two simply-connected smooth 4-manifolds are homeomorphic iff they have the same e, σ, and type.
What do we know about 4-manifolds?

Invariants

- Euler characteristic $e(M) = \sum_{i=0}^{4} (-1)^i H^i(M; \mathbb{Z})$
- $Q_M : H^2(M; \mathbb{Z}) \times H^2(M; \mathbb{Z}) \to \mathbb{Z}$; $Q_M(\alpha, \beta) = (\alpha \cup \beta)[M]$ is an integral, symmetric, unimodular, bilinear form.

Signature of $M = \sigma(M) = \text{Signature of } Q_M = b_+ - b_-$

Type: Even if $Q_M(\alpha, \alpha)$ even for all α; otherwise Odd

(Freedman, 1980) Q_M classifies simply-connected topological 4-manifolds: There is one homeomorphism type if Q_M even; there are two if Q_M odd - exactly one of which has $M \times S^1$ smoothable.

(Donaldson, 1982) Two simply-connected smooth 4-manifolds are homeomorphic iff they have the same e, σ, and type.
What do we know about 4-manifolds?

Invariants

- Euler characteristic $e(M) = \sum_{i=0}^{4} (-1)^j H^j(M; \mathbb{Z})$

- $Q_M : H^2(M; \mathbb{Z}) \times H^2(M; \mathbb{Z}) \to \mathbb{Z}; \ Q_M(\alpha, \beta) = (\alpha \cup \beta)[M]$ is an integral, symmetric, unimodular, bilinear form. Signature of $M = \sigma(M) = \text{Signature of } Q_M = b_+ - b_-$

 Type: Even if $Q_M(\alpha, \alpha)$ even for all α; otherwise Odd

- (Freedman, 1980) Q_M classifies simply-connected topological 4-manifolds: There is one homeomorphism type if Q_M even; there are two if Q_M odd - exactly one of which has $M \times S^1$ smoothable.

- (Donaldson, 1982) Two simply-connected smooth 4-manifolds are homeomorphic iff they have the same e, σ, and type.
What do we know about smooth 4-manifolds?

Wild and Open Conjecture

Every 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for $n > 4$, every n-manifold has only finitely many distinct smooth n-manifolds which are homeomorphic to it.

- Need new invariants: Donaldson, Seiberg-Witten Invariants

 $SW : H^2(M; \mathbb{Z}) \rightarrow \mathbb{Z}$

- $SW(\beta) \neq 0$ for only finitely many β: called basic classes

- $\alpha \in H^2(M; \mathbb{Z})$, then

 \[2g(\Sigma_\alpha) - 2 \geq Q_M(\alpha, \alpha) + |Q_M(\alpha, \beta)|\]

 for every basic class β. (adjunction inequality[Kronheimer-Mrowka])

Basic classes are the smooth analogue of the canonical class of a complex surface.
What do we know about smooth 4-manifolds?

Wild and Open Conjecture

Every 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for $n > 4$, every n-manifold has only finitely many distinct smooth n-manifolds which are homeomorphic to it.

- Need new invariants: Donaldson, Seiberg-Witten Invariants
 \[\text{SW} : H^2(M; \mathbb{Z}) \to \mathbb{Z} \]
 \[\text{SW}(\beta) \neq 0 \text{ for only finitely many } \beta: \text{ called basic classes} \]

 \[\alpha \in H^2(M; \mathbb{Z}), \text{ then} \]

 \[
 2g(\Sigma_\alpha) - 2 \geq Q_M(\alpha, \alpha) + |Q_M(\alpha, \beta)|
 \]

 for every basic class β. (adjunction inequality[Kronheimer-Mrowka])

 Basic classes are the smooth analogue of

 the canonical class of a complex surface.
What do we know about smooth 4-manifolds?

Wild and Open Conjecture

Every 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for $n > 4$, every n-manifold has only finitely many distinct smooth n-manifolds which are homeomorphic to it.

- Need new invariants: Donaldson, Seiberg-Witten Invariants

 $\text{SW} : H^2(M; \mathbb{Z}) \to \mathbb{Z}$

 $\text{SW}(\beta) \neq 0$ for only finitely many β: called basic classes

 $\alpha \in H^2(M; \mathbb{Z})$, then

 $$2g(\Sigma \alpha) - 2 \geq Q_M(\alpha, \alpha) + |Q_M(\alpha, \beta)|$$

 for every basic class β. (adjunction inequality[Kronheimer-Mrowka])

 Basic classes are the smooth analogue of the canonical class of a complex surface.
What do we know about smooth 4-manifolds?

Wild and Open Conjecture

Every 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for $n > 4$, every n-manifold has only finitely many distinct smooth n-manifolds which are homeomorphic to it.

Need new invariants: Donaldson, Seiberg-Witten Invariants

$SW : H^2(M; \mathbb{Z}) \rightarrow \mathbb{Z}$

$SW(\beta) \neq 0$ for only finitely many β: called basic classes

$\alpha \in H^2(M; \mathbb{Z})$, then

$$2g(\Sigma_\alpha) - 2 \geq Q_M(\alpha, \alpha) + |Q_M(\alpha, \beta)|$$

for every basic class β. (adjunction inequality[Kronheimer-Mrowka])

Basic classes are the smooth analogue of the canonical class of a complex surface.
What do we know about smooth 4-manifolds?

Wild and Open Conjecture

Every 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for $n > 4$, every n-manifold has only finitely many distinct smooth n-manifolds which are homeomorphic to it.

- Need new invariants: Donaldson, Seiberg-Witten Invariants

 \[\text{SW} : H^2(M; \mathbb{Z}) \to \mathbb{Z} \]

- $\text{SW}(\beta) \neq 0$ for only finitely many β: called *basic* classes

- $\alpha \in H^2(M; \mathbb{Z})$, then

 \[2g(\Sigma_\alpha) - 2 \geq Q_M(\alpha, \alpha) + |Q_M(\alpha, \beta)| \]

for every basic class β. (adjunction inequality[Kronheimer-Mrowka])

Basic classes are the smooth analogue of the canonical class of a complex surface.
What do we know about smooth 4-manifolds?

Wild and Open Conjecture

Every 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for $n > 4$, every n-manifold has only finitely many distinct smooth n-manifolds which are homeomorphic to it.

- Need new invariants: Donaldson, Seiberg-Witten Invariants

 $\mathcal{SW} : H^2(M; \mathbb{Z}) \to \mathbb{Z}$

- $\mathcal{SW}(\beta) \neq 0$ for only finitely many β: called basic classes

- $\alpha \in H^2(M; \mathbb{Z})$, then

 \[2g(\Sigma_\alpha) - 2 \geq Q_M(\alpha, \alpha) + |Q_M(\alpha, \beta)| \]

for every basic class β. (adjunction inequality[Kronheimer-Mrowka])

Basic classes are the smooth analogue of the canonical class of a complex surface.
What do we know about smooth 4-manifolds?

Wild and Open Conjecture

Every 4-manifold has either zero or infinitely many distinct smooth 4-manifolds which are homeomorphic to it.

In contrast, for $n > 4$, every n-manifold has only finitely many distinct smooth n-manifolds which are homeomorphic to it.

- Need new invariants: Donaldson, Seiberg-Witten Invariants

 $SW : H^2(M; \mathbb{Z}) \rightarrow \mathbb{Z}$

- $SW(\beta) \neq 0$ for only finitely many β: called basic classes

- $\alpha \in H^2(M; \mathbb{Z})$, then

$$2g(\Sigma \alpha) - 2 \geq Q_M(\alpha, \alpha) + |Q_M(\alpha, \beta)|$$

for every basic class β. (adjunction inequality[Kronheimer-Mrowka])

Basic classes are the smooth analogue of the canonical class of a complex surface.
What we know about smooth 4-manifolds with $\mathcal{SW} \neq 0$

joint with Ron Fintushel
What we know about smooth 4-manifolds with $\mathcal{SW} \neq 0$
joint with Ron Fintushel

All manifolds minimal
$c = 3\sigma + 2e$
$\chi_h = \frac{\sigma + e}{4}$
What we know about smooth 4-manifolds with $\mathcal{SW} \neq 0$
joint with Ron Fintushel

All manifolds minimal

\[c = 3\sigma + 2e \]

\[\chi_h = \frac{\sigma + e}{4} \]
What we know about smooth 4-manifolds with $SW \neq 0$

joint with Ron Fintushel

All manifolds minimal

$c = 3\sigma + 2e$

$\chi_h = \frac{\sigma + e}{4}$

surfaces of general type

$2\chi_h - 6 \leq c \leq 9\chi_h$

$c = 9\chi_h$

$c = 2\chi_h - 6$

$2\chi_h - 6 \leq c \leq 9\chi_h$

All lattice points have ∞ smooth structures except possibly near $c = 9\chi_h$ and on $\chi_h = 1$

For $n > 4$ TOP n-manifolds have finitely many smooth structures

$\mathbb{CP}^2 \bigoplus \mathbb{CP}^2 \bigoplus \mathbb{CP}^2$
What we know about smooth 4-manifolds with $\mathcal{SW} \neq 0$
joint with Ron Fintushel

All manifolds minimal
\[c = 3\sigma + 2e \]
\[\chi_h = \frac{\sigma + e}{4} \]

Elliptic Surfaces
\[E(n) \]
\[\chi_h \]
\[c = 9\chi_h \]
\[c = 2\chi_h - 6 \]

surfaces of general type
\[2\chi_h - 6 \leq c \leq 9\chi_h \]

CP2
What we know about smooth 4-manifolds with $\mathcal{SW} \neq 0$

joint with Ron Fintushel

All manifolds minimal

$c = 3\sigma + 2e$

$\chi_h = \frac{\sigma + e}{4}$

surfaces of general type

$2\chi_h - 6 \leq c \leq 9\chi_h$

Elliptic Surfaces $E(n)$
What we know about smooth 4-manifolds with $SW \neq 0$

joint with Ron Fintushel

All manifolds minimal
$\sigma = 3\sigma + 2e$
$\chi_h = \frac{\sigma + e}{4}$

$\chi_h \leq c \leq 9\chi_h$ surfaces of general type

$c = 2\chi_h - 6$ symplectic with one SW basic class

$c = \chi_h - 3$ symplectic with $(\chi_h - c - 2) SW$ basic classes

$0 \leq c \leq (\chi_h - 3)$

Elliptic Surfaces $E(n)$

$\sigma > 0$ $\sigma < 0$

$c = 9\chi_h$
$c = 8\chi_h$
$c = \chi_h - 3$
$\chi_h - 3 \leq c \leq 2\chi_h - 6$

CP2, $S^2 \times S^2$
What we know about smooth 4-manifolds with $\mathcal{SW} \neq 0$

joint with Ron Fintushel

All manifolds minimal
\[c = 3\sigma + 2e \]
\[\chi_h = \frac{\sigma + e}{4} \]

- Elliptic Surfaces $E(n)$
- $c = 9\chi_h$
- $c = 8\chi_h$ for $\sigma = 0$
- $c > 9\chi_h$?? for $\sigma > 0$
- $c < 0$?? for $\sigma < 0$
- Symplectic with one \mathcal{SW} basic class
 \[\chi_h - 3 \leq c \leq 2\chi_h - 6 \]
- Symplectic with $(\chi_h - c - 2)$ \mathcal{SW} basic classes
 \[0 \leq c \leq (\chi_h - 3) \]
- Surfaces of general type
 \[2\chi_h - 6 \leq c \leq 9\chi_h \]

\[CP^2 \]
\[S^2 \times S^2 \]

All lattice points have ∞ smooth structures except possibly near $c = 9\chi_h$ and on $\chi_h = 1$

For $n > 4$ TOP n-manifolds have finitely many smooth structures
What we know about smooth 4-manifolds with $SW \neq 0$

joint with Ron Fintushel

All manifolds minimal
$$c = 3\sigma + 2e$$
$$\chi_h = \frac{\sigma + e}{4}$$

All lattice points have ∞ smooth structures except possibly near $c = 9\chi$ and on $\chi_h = 1$

Elliptic Surfaces $E(n)$

$\chi_h = \chi_h - 3$

symplectic with one SW basic class
$$\chi_h - 3 \leq c \leq 2\chi_h - 6$$

symplectic with $$(\chi_h - c - 2) SW$$ basic classes
$$0 \leq c \leq (\chi_h - 3)$$

surfaces of general type
$$2\chi_h - 6 \leq c \leq 9\chi_h$$

$c > 9\chi_h$?? $\sigma > 0$

$c = 8\chi_h$

$\sigma = 0$

$c = 9\chi_h$

$c < 0$??
What we know about smooth 4-manifolds with $\mathcal{SW} \neq 0$

joint with Ron Fintushel

All manifolds minimal

$$c = 3\sigma + 2e$$

$$\chi_h = \frac{\sigma + e}{4}$$

All lattice points have ∞ smooth structures except possibly near $c = 9\chi$ and on $\chi_h = 1$

For $n > 4$ TOP n-manifolds have finitely many smooth structures
What we know about smooth 4-manifolds with $SW \neq 0$

joint with Ron Fintushel

All manifolds minimal
\[c = 3\sigma + 2e \]
\[\chi_h = \frac{\sigma + e}{4} \]

All lattice points have ∞ smooth structures except possibly near $c = 9\chi$ and on $\chi_h = 1$

For $n > 4$ TOP n-manifolds have finitely many smooth structures

\[\sigma > 0 \quad \sigma < 0 \]

Elliptic Surfaces $E(n)$

\[c = 9\chi_h \]
\[c = 8\chi_h \]
\[c = 2\chi_h - 6 \]
\[c = \chi_h - 3 \]

surfaces of general type

\[2\chi_h - 6 \leq c \leq 9\chi_h \]

symplectic with one SW basic class
\[\chi_h - 3 \leq c \leq 2\chi_h - 6 \]

symplectic with $(\chi_h - c - 2)$ SW basic classes
\[0 \leq c \leq (\chi_h - 3) \]

\[c < 0 \quad \text{??} \]

\[c > 9\chi_h \quad \text{??} \]

$\sigma = 0$

CP^2

$S^2 \times S^2$
What we know about smooth 4-manifolds with $SW \neq 0$

joint with Ron Fintushel

All manifolds minimal
$c = 3\sigma + 2e$
$\chi_h = \frac{\sigma + e}{4}$

All lattice points have ∞ smooth structures except possibly near $c = 9\chi$ and on $\chi_h = 1$

For $n > 4$ TOP n-manifolds have finitely many smooth structures

Elliptic Surfaces $E(n)$
What we know about smooth 4-manifolds with $\mathcal{SW} \neq 0$

joint with Ron Fintushel

All manifolds minimal

$c = 3\sigma + 2e$

$\chi_h = \frac{\sigma + e}{4}$

All lattice points have ∞ smooth structures except possibly near $c = 9\chi$ and on $\chi_h = 1$

For $n > 4$ TOP n-manifolds have finitely many smooth structures
What we know about smooth 4-manifolds with $SW \neq 0$

joint with Ron Fintushel

All manifolds minimal
\[c = 3\sigma + 2e \]

\[\chi_h = \frac{\sigma + e}{4} \]

All lattice points have ∞ smooth structures except possibly near $c = 9\chi$ and on $\chi_h = 1$

For $n > 4$ TOP n-manifolds have finitely many smooth structures

Elliptic Surfaces $E(n)$

$c = 9\chi_h$
$c = 8\chi_h$
$c = 2\chi_h - 6$
$c = \chi_h - 3$

surfaces of general type
\[2\chi_h - 6 \leq c \leq 9\chi_h \]
symplectic with one SW basic class
\[\chi_h - 3 \leq c \leq 2\chi_h - 6 \]
symplectic with $(\chi_h - c - 2)$ SW basic classes
\[0 \leq c \leq (\chi_h - 3) \]

$c > 9\chi_h$?? $\sigma > 0$
$c < 0$??
$\sigma < 0$
$c < 0$??
χ_h
Happy Birthday Leonhard!