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Abstract

In this paper we prove an optimal co-degrees resilience property for the binomial k-uniform
hypergraph model Hk

n,p with respect to perfect matchings. That is, for a sufficiently large n
which is divisible by k, and p ≥ Ck logn /n, we prove that with high probability every subgraph
H ⊆ Hk

n,p with minimum co-degree (meaning, the number of supersets every set of size k − 1 is
contained in) at least (1/2 + o(1))np contains a perfect matching.

1 Introduction

A perfect matching in a k-uniform hypergraph H is a collection of vertex-disjoint edges, covering

every vertex of V (H) exactly once. Clearly, a perfect matching in a k-uniform hypergraph cannot

exist unless k divides n. From now on, we will always assume that this condition is met.

As opposed to graphs (that is, 2-uniform hypergraphs) where the problem of finding a perfect match-

ing (if one exists) is relatively simple, the analogous problem in the hypergraph setting is known to

be NP-hard (see [4]). Therefore, it is natural to investigate sufficient conditions for the existence of

perfect matchings in hypergraphs.

A famous result by Dirác [2] asserts that every graph G on n vertices and with minimum degree

δ(G) ≥ n/2 contains a hamiltonian cycle (and therefore, by taking alternating edges along the cycle it

also contains a perfect matching whenever n is even). Extending this result to hypergraphs provides

us with some interesting cases, as one can study ‘minimum degree’ conditions for subsets of any size

1 ≤ ` < k. That is, given a k-uniform hypergraph H = (V,E) and a subset of vertices X, we define

its degree

d(X) = |{e ∈ E : X ⊆ e}|.

Then, for every 1 ≤ ` < k we define

δ`(H) = min{d(X) : X ⊆ V (H), |X| = `},

to be the minimum `-degree of H. A natural question is: Given 1 ≤ ` < k, what is the minimum

m`(n) such that every k-uniform hypergraph on n vertices with δ`(H) ≥ m`(n) contains a perfect

matching?

The above question has attracted a lot of attention in the last few decades. For more details about

previous work and open problems, we will refer the reader to surveys by Rödl and Rucińsky [8] and
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Keevash [5]. In this paper we restrict our attention to the case where ` = k − 1. Following a long

line of work in studying this property, which is expanded upon in the aforementioned survey, Kühn

and Osthus proved in [6] that every k-uniform hypergraph with δk−1 ≥ n/2 +
√

2n log n contains a

perfect matching. This bound is optimal with an additive error term of
√

2n log n. Note that one can

view this result as follows: Start with a complete k-uniform hypergraph on n vertices (this clearly

contains a perfect matching). Imagine that an adversary is allowed to delete ‘many’ edges in an

arbitrary way, under the restriction that he/she cannot delete more than r edges that intersect on a

subset of size at least (k− 1). What then, is the largest r for which the resulting hypergraph always

contains a perfect matching? We refer to this value as the ‘(k−1)-local-resilience’ of the hypergraph.

The above mentioned result equivalently shows that such a hypergraph has ‘(k − 1)-local-resilience’

at least n/2−
√

2n log n.

Here we study a similar problem in the random hypergraph setting. Let Hk
n,p be a random variable

which outputs a k-uniform hypergraph on vertex set [n] by including any k-subset X ∈
([n]
k

)
as an

edge with probability p, independently. The existence of perfect matchings in a typical Hk
n,p is a well

studied problem with a very rich history. Unlike for random graphs where finding a ‘threshold’ for

the existence of a perfect matching is quite simple, the problem of finding a ‘threshold’ function p for

the existence of a perfect matching, with high probability, in the hypergraph setting is notoriously

hard. After a few decades of study, in 2008 Johansson, Kahn and Vu [3] finally managed to determine

the threshold. Among their results, one of particular note is that for p ≥ C log n/nk−1, whp Hk
n,p

contains a perfect matching. On the other hand, it is quite simple to show that if p ≤ c log n/nk−1

for some small constant c, then a typical Hk
n,p contains isolated vertices and thus has no perfect

matchings.

In this note we determine the ‘(k − 1)-local-resilience’ of a typical Hk
n,p. Note that if p = o(log n/n)

then whp there exists a (k − 1)-set of vertices which is not contained in any edge and therefore,

for the study of (k − 1)-resilience, it is natural to restrict our attention to p ≥ C log n/n (which is

significantly above the threshold for a perfect matching as obtained in [3]). The following theorem

gives a complete solution to this problem for this range of p.

Theorem 1.1. Let k ∈ N, let ε > 0, and let C := C(k, ε) be a sufficiently large constant. Then, for

all p ≥ C logn
n , whp a hypergraph Hk

n,p is such that the following holds: Every spanning subhypergraph

H ⊆ Hk
n,p with δk−1(H) ≥ (1/2 + ε)np contains a perfect matching.

Next, we show that the above theorem is asymptotically tight.

Theorem 1.2. For every ε > 0 whp there exists H ⊆ Hk
n,p with δk−1(H) ≥ (1/2 − ε)np that does

not contain a perfect matching.

Sketch. This proof is based on an idea of Kühn and Osthus outlined in [6]. Fix a partition of

V (H) = V1 ∪ V2 into two sets of size roughly n/2, where |V1| is odd. Now, expose all the edges of

Hk
n,p and let H be the subhypergraph obtained by deleting all the hyperedges that intersect V1 on

an odd number of vertices. Clearly, H cannot have a perfect matching, as every edge covers an even

number of vertices in V1 and |V1| is odd. Now, we demonstrate that every (k − 1)-subset of vertices

still has at least (1/2 − ε)np neighbors in H. Indeed, given any (k − 1) subset X, we distinguish

between two cases:

1. |X∩V1| is even – as we clearly kept all the edges of the form X∪{v}, v ∈ V2, and since |V2| ≈ n/2,

by a standard application of Chernoff’s bounds, X is contained in at least (1/2 − ε)np many such

edges as required.
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2. |X ∩V1| is odd – as we clearly kept all the edges of the form X ∪{v}, v ∈ V1, and since |V1| ≈ n/2,

a similar reasoning as in 1. gives the desired.

All in all, whp the resulting subhypergraph has δk−1(H) ≥ (1/2−ε)np and does not contain a perfect

matching.

2 Notation

For the sake of brevity, we present the following, commonly used notation:

Given a graph G and X ⊆ V (G), let N(X) = ∪x∈XN(x). For two subsets X,Y ⊆ V (G) we define

E(X,Y ) to be the set of all edges xy ∈ E(G) with x ∈ X and y ∈ Y , and set eG(X,Y ) := |E(X,Y )|.
For a k-uniform hypergraph H on vertex set V (H), and for two subsets X,Y ⊆ V (H) we define

d(X,Y ) = |{e ∈ E(H) : X ⊆ e and e \X ⊆ Y }|.

Given any k-partite, k-uniform hypergraph with parts V (H) = V1 ∪ . . . ∪ Vk of the same size m we

consider all Vi to be disjoint copies of the integers 1 to m, without loss of generality.

Finally, for every random variable X, we let M(X) be its median.

3 Outline

In this section we give a brief outline of our argument. Consider a typical Hk
n,p, and let H ⊆ Hk

n,p

with δk−1(H) ≥ (1 + ε)np. In order to show that H contains a perfect matching, we first show that

some auxiliary bipartite graph B contains a perfect matching. Then, we show that every perfect

matching in B can be translated into a perfect matching in H.

To this end, we first find a partition V (H) = V1 ∪ · · · ∪ Vk, with all Vi’s having the exact same size

m = n
k , such that the following property holds: For every subset X ∈

( [n]
k−1
)

and for every 1 ≤ i ≤ k
we have

dH(X,Vi) ∈ (1± ε) · dH(X)

k
.

Then, we let H ′ be the k-partite, k-uniform subhypergraph induced by this partition of V (H).

Now, given some set of permutations π = {π1, π2, · · · , πk−1 }, πi = [m] → Vi, we can construct a

bipartite graph Bπ(H ′) as follows:

The parts of Bπ(H ′) are Vk and

Xπ = {{π1(i), π2(i), . . . , πk−1(i)} | 1 ≤ i ≤ m}.

The edges of Bπ(H ′) consist of all pairs xv ∈ Xπ × Vk, for which x ∪ {v} ∈ E(H ′).

A moment’s thought now reveals that a perfect matching in any such Bπ(H ′) corresponds to a perfect

matching in H ′, which itself corresponds to a perfect matching in H. Therefore, the main part of

the proof consists of showing that, with high probability, there exists a π such that Bπ(H ′) contains

a perfect matching.

4 Tools

In this section we present some tools to be used in the proof of our main result.
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4.1 Chernoff’s inequalities

First, we need the following well-known bound on the upper and lower tails of the Binomial distri-

bution, outlined by Chernoff (see Appendix A in [1]).

Lemma 4.1 (Chernoff’s inequality). Let X ∼ Bin(n, p) and let E(X) = µ. Then

• P (X < (1− a)µ) < e−a
2µ/2 for every a > 0;

• P (X > (1 + a)µ) < e−a
2µ/3 for every 0 < a < 3/2.

Remark 4.2. These bounds also hold when X is hypergeometrically distributed with mean µ.

In addition, we will make use of the following simple bound.

Lemma 4.3. Let X ∼ Bin(m, q). Then, for all k we have

Pr[X ≥ k] ≤
(emq

k

)k
.

Proof. Note that

Pr[X ≥ k] ≤
(
m

k

)
qk ≤

(emq
k

)k
as desired.

4.2 Talagrand’s type inequality

Our main concentration tool is the following theorem from McDiarmid [7]. Given a set S of size m,

we let Sym(S) denote the set of all m! permutations of S. Let (B1, . . . , Bk) be a family of finite non-

empty sets, and let Ω =
∏
i Sym(Bi). Let π = (π1, . . . , πk) be a family of independent permutations,

such that for i, πi ∈ Sym(Bi) is chosen uniformly at random.

Let c and r be constants, suppose that the nonnegative real-valued function h on Ω satisfies the

following conditions for each π ∈ Ω.

1. Swapping any two elements in any πi can change the value of h by at most 2c.

2. If h(π) = s, then in order to show that h(π) ≥ s, we need to specify at most rs coordinates

such that h(π′) ≥ s for any π′ ∈ ω which shares these coordinates with π.

Here is the resulting theorem.

Theorem 4.4. For each t ≥ 0 we have

Pr[h ≤M(h(π))− t] ≤ 2 exp

(
− t2

16rc2M

)
.

4.3 Hall’s theorem

It is convenient for us to work with the following equivalent version of Hall’s theorem (the proof is

an easy exercise).

Theorem 4.5. Let G = (A ∪ B,E) be a bipartite graph with |A| = |B| = n. Then, G contains a

perfect matching if and only if the following holds:

1. For all X ⊆ A of size |X| ≤ n/2 we have |N(X)| ≥ |X|, and

2. For all Y ⊆ B of size |Y | ≤ n/2 we have |N(Y )| ≥ |Y |.
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4.4 Properties of random hypergraphs

In this section we collect some properties that a typical Hk
n,p satisfies. First, we show that all the

(k − 1)-degrees are ‘more or less’ the same.

Lemma 4.6. Let ε > 0 and let k ≥ 2 be any integer. Then, whp we have

(1− ε)np ≤ δk−1(Hk
n,p) ≤ ∆k−1(H

k
n,p) ≤ (1 + ε)np,

provided that p = ω(log n/n).

Proof. Let us fix some X ∈
( [n]
k−1
)
. Observe that d(X) ∼ Bin(n− k + 1, p), and therefore

µ := E[d(X)] = (n− k + 1)p.

Hence, by Chernoff’s inequalities we obtain that

Pr[d(X) /∈ (1± ε)µ] ≤ 2e−
ε2µ
3 = o(1/nk).

All in all, by taking a union bound over all sets
( [n]
k−1
)
, we conclude that

Pr[∃X ∈
(

[n]

k − 1

)
s.t. d(X) /∈ (1± ε)µ] = o(1).

This completes the proof.

In the proof of our main result we will convert the problem of finding a perfect matching in H into

the problem of finding a perfect matching in some auxiliary bipartite graph. In order to do so, we

wish to partition our hypergraph H ⊆ Hk
n,p into k equal parts satisfying some ‘degree assumptions’,

and then to define our auxiliary bipartite graph based on such a partition. In the following lemma we

show that, given a k-uniform hypergraph H with ‘relatively large’ (k−1)-degree, a random partition

of its vertices into equally sized parts satisfies these assumptions.

Lemma 4.7. For every ε > 0 there exists C := C(ε) for which the following holds. Let H be a

k-uniform hypergraph on n vertices, where n is sufficiently large. Suppose that δk−1(H) ≥ C log n

and that n is divisible by k. Then, there exists a partition V (H) = V1 ∪ . . .∪Vk into sets of the exact

same size satisfying the following property: For every subset X ∈
( [n]
k−1
)

and for every 1 ≤ i ≤ k we

have

dH(X,Vi) ∈ (1± ε) · dH(X)

k
.

Proof. Let H be a a k-uniform hypergraph on n vertices, where n is sufficiently large. Consider the

random partition V (H) = V1 ∪ . . . ∪ Vk into sets of the exact same size. Observe that dH(X,Vi) is

hypergeometrically distributed with an expected value of dH(X)
k . Therefore, we can use Lemma 4.1

to determine that

Pr[dH(X,Vi) > (1 + ε) · dH(X)

k
] ≤ e−ε2

dH (X)

k
/3 ≤ e−k logn = n−k,

where the last inequality holds for a large enough C.

By applying a union bound over all possible Xs and is, we obtain that the probability of having such

a set and an index i is at most
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(
n

k − 1

)
kn−k = o(1).

Similarly, we obtain that

Pr

[
∃X and i : dH(X,Vi) < (1− ε) · dH(X)

k

]
= o(1).

This completes the proof.

Definition 4.8. Let ε > 0, p ∈ (0, 1], and m ∈ N. A bipartite graph G = (A ∪ B,E) with

|A| = |B| = m is called (ε, p)-pseudorandom if it satisfies the following properties:

1. δ(G) ≥ (1/2 + ε)mp,

2. for every X ⊆ A and Y ⊆ B with |X| − 1 = |Y | ≤ m/10 we have eG(X,Y ) ≤ mp|X|/2,

3. for every X ⊆ A and Y ⊆ B with m/10 ≤ |X| − 1 = |Y | ≤ m/2 we have eG(X,Y ) ≤
(1/2 + ε/2)mp|X|

Definition 4.9. Let H ′ be a k-partite, k-uniform hypergraph with parts V (H ′) = V1 ∪ . . . ∪ Vk of

the same size m. Given a set of permutations π = {π1, π2, . . . πk−1}, πi : [m]→ Vi, we construct an

auxiliary bipartite graph, Bπ := Bπ(H ′), as follows:

Let Xπ = {{π1(i), π2(i), . . . , πk−1(i)}; 1 ≤ i ≤ m} and Vk be the parts of Bπ. For every pair xv with

x ∈ Xπ and v ∈ Vk, we let xv ∈ E(Bπ) iff x ∪ {v} ∈ E(H ′).

Remark 4.10. Note that every edge in a given Bπ(H ′) with parts x ∈ Xπ and v ∈ Vk corresponds

to an edge π−11 (i)∪π−12 (i) . . . π−1k−1(i)∪{v} in H ′ for some 1 ≤ i ≤ m. Therefore, if Bπ(H ′) contains

a perfect matching, clearly H ′ contains a perfect matching as well. Having established this fact, our

main goal is to show that there exists a π for which Bπ contains a perfect matching.

We now wish to demonstrate that given a ‘proper’ k-partite, k-uniform hypergraph H ′, a randomly

chosen π results in a Bπ(H ′) with a sufficiently large minimum degree. As will be seen soon, the

‘problematic’ random variables that we need to control are dBπ(v), where v ∈ Vk. In order to prove

that these variables concentrate about their expectation, we will use Theorem 4.4.

For the sake of simplicity in the following lemma, we define this notation: Suppose that H ′ is a k-

partite, k-uniform hypergraph with parts V (H ′) = V1∪. . .∪Vk. LetWi := V1×. . . Vi−1×Vi+1×. . .×Vk.
For every X ∈Wi (note that |X| = k − 1) define

δ∗k−1(H
′) := min{d(X,Vi) : X ∈Wi, and 1 ≤ i ≤ k}.

Lemma 4.11. Let 0 < α < 1/2 and let m ∈ N be sufficiently large. Let H ′ be a k-partite, k-uniform

hypergraph with parts V (H ′) = V1∪. . .∪Vk of the same size m. Suppose that δ∗k−1(H
′) ≥ 200/α2. Let

Bπ be the auxiliary-bipartite graph formed from the set of permutations π := {π1, id2, ..., idk−1}, where

π1 is a random permutation of V1 and each idj is the identity permutation of Vj. Let µv = E[dBπ(v)].

Then, for every v ∈ Vk we have

Mv = M(dBπ(v)) ∈ (1± α)µv.

Remark 4.12. The above lemma enables us to use µv instead of Mv in Theorem 4.4 when it is

applied to dBπ(v).
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Proof. Consider the Bπ, formed from the set of permutations π := {π1, id2, ..., idk−1}, where π1 is a

random permutation of V1 and each idj is the identity permutation of Vj . Let v be some element

in Vk. For each 1 ≤ i ≤ m, let Ai := {id2(i), id3(i) . . . , idk−1(i)}, and let di(v) be the number of

extensions of {v} ∪ Ai into V1 (that is, the number of edges e ∈ E(H ′) for which {v} ∪ Ai ⊆ e).

Moreover, let dv =
∑

i di(v), and for each i define a indicator random variable 1i, where 1i = 1 if

{π1(i)} ∪Ai ∪ {v} ∈ E(H ′). Observe that dBπ(v) =
∑

1i.

Our plan is to compute µv := E[dBπ(v)] and σ2 = V ar(dBπ(v)) and to show that σ2 ≤ α2µ2v/100.

The desired result will then be easily obtained as follows: First, note that by Chebyshev’s inequality

we have

P[|dBπ(v)− µv| ≥ αµv] ≤
σ2

α2µ2v
≤ 1/100.

Since with probability at least 99/100 we have that dBπ(v) ∈ (1±α)µv, we conclude that the median

also lies in this interval.

It remains to compute µv and σ2. Since P[1i = 1] = di(v)
m , by linearity of expectation we obtain

µv =

m∑
i=1

E[1i] =

m∑
i=1

di(v)

m
=
dv
m
.

To compute the variance, note that

V ar (dBπ(v)) = V ar

(
m∑
i=1

1i

)
=

m∑
i=1

V ar (1i) + 2
∑
i<j

Cov(1i,1j)

≤ µv + 2
∑
i<j

(E[1i1j ]− E[1i]E[1j ])

≤ µv + 2
∑
i<j

(
di(v)dj(v)

m(m− 1)
− di(v)dj(v)

m2

)
= µv + 2

∑
i<j

(
di(v)dj(v)

m2(m− 1)

)

≤ µv + 2
m∑
i=1

m∑
j=1

(
di(v)dj(v)

m2(m− 1)

)
≤ µv + 2

m∑
i=1

(
di(v)dv

m2(m− 1)

)

= µv +
2d2v

m2(m− 1)
= µv +

2µ2v
m− 1

.

To complete the proof let us first observe that since m is sufficiently large we have 2µ2v
m−1 ≤ α

2µ2v/200.

Second, note that since µv ≥ 200/α2 we have that µv ≤ α2µ2v/200. Plugging these estimates into

the last line of the above equation gives us the desired.

Lemma 4.13. For every ε > 0 there exists C := C(ε) for which the following holds for sufficiently

large m ∈ N and p = C logm/m. Let H ′ be a k-partite, k-uniform hypergraph with parts V (H ′) =

V1 ∪ . . . ∪ Vk of the same size m. Suppose that δ∗k−1(H
′) ≥ (12 + ε)mp. Then there exists π :=

{π1, π2, ...πk−1}, πi : [m]→ Vi, s.t. δ(Bπ) ≥ (12 + ε
2)mp.

Proof. We can assume without loss of generality that ε is sufficiently small when needed.

Consider the Bπ, formed from the set of permutations π := {π1, id2, ..., idk−1}, where π1 is random

and idj is the identity permutation for Vj . As δ∗k−1(H
′) ≥ (12 + ε)mp, it is guaranteed that for all

x ∈ Xπ we have (deterministically) that dBπ(x) ≥ (12 + ε)mp.
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Consider some v ∈ Vk and observe from the proof of Lemma 4.11, under the same notation, that

E[dBπ(v)] = dv
m ≥ (1/2 + ε)mp.

In order to complete the proof, we want to show that the dBπ(v)’s are ‘highly concentrated’ using

Theorem 4.4. To this end, let h(π) = dBπ(v) and note that swapping any two elements of π1 can

change h by at most 2. Moreover, note that if h(π) ≥ s, then it is enough to specify only s elements

of V . Therefore, h(π) satisfies the conditions outlined by Talagrand’s type inequality with c = 1 and

r = 1.

Now, let α = ε/100, and observe that by Lemma 4.11 we have that the median M of dBπ(v) lies in

the interval (1± α)E[dBπ(v)].

Therefore, we have

Pr[h ≤ (
1

2
+ ε/2)mp] ≤ Pr[h ≤ (1− ε/2)E[dBπ(v)]]

and the latter is at most

Pr[h ≤ (1− ε/2)(1 + α)M ] ≤ Pr[h ≤ (1− ε/4)M ].

Now, by Theorem 4.4 we obtain that

Pr[h ≤ (1/2 + ε/2)mp] ≤ 2 exp

(
−(εM/4)2

16M

)
.

Next, using (again) the fact that M ∈ (1± α)E[dBπ(v)] and that E[dBπ(v)] = Θ(mp) ≥ C logm, we

can upper bound the above right hand side by

2 exp (−Θ(mp)) ≤ n−2.

Finally, in order to complete the proof, we take a union bound over all v ∈ Vk and obtain that whp

δ(Bπ) ≥ (12 + ε
2)mp.

Lemma 4.14. Let ε > 0, k ∈ N and p ≥ C log n/n, where C := C(ε, k) > 0 is a sufficiently large

constant. Then, a random hypergraph Hk
n,p with high probability satisfies the following: For every

k-partite, k-uniform subhypergraph H ′ ⊆ Hk
n,p with parts V (H ′) = V1 ∪ . . . ∪ Vk of the same size

m := n
k , if δ∗k−1(H

′) ≥ (1/2 + ε)mp, there exists π := {π1, π2, ...πk−1}, πi : [m] → Vi, s.t. Bπ is

(ε/2, p)-pseudorandom.

Proof. Let H ′ be such a subhypergraph. Our goal is to prove the existence of π for which Bπ is

(ε/2, p)-pseudorandom. That is, we want to show that Bπ satisfies the following properties:

1. δ(Bπ) ≥ (1/2 + ε/2)mp,

2. for every X ⊆ A and Y ⊆ B with |X| − 1 = |Y | ≤ m/10 we have eBπ(X,Y ) ≤ mp|X|/2,

3. for every X ⊆ A and Y ⊆ B with m/10 ≤ |X| − 1 = |Y | ≤ m/2 we have eBπ(X,Y ) ≤
(1/2 + ε/4)|X|mp

Let π be obtained as in Lemma 4.13, and consider Bπ = (A ∪B,E). Clearly, Property 1 is satisfied

by the conclusion of Lemma 4.13.

For Property 2, let us fix X ⊆ A and Y ⊆ B of sizes x and y respectively where x− 1 = y ≤ m/10.

We now wish to establish an upper bound for the number of edges between them. Assume towards
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contradiction that eBπ(X,Y ) > mpx/2. Observe that this translates to the following: There exist x

disjoint sets F1, . . . , Fx, each of size exactly k−1 and a set Y of size x−1, which is disjoint to all the

Fis, such that the number of edges in Hk
n,p, of the form Fi ∪ {a} where a ∈ Y , is larger than mpx/2.

Let us show that whp Hk
n,p has no such sets, thereby also guaranteeing that whp no such sets exist

in any subhypergraph H ′ ⊆ Hk
n,p.

First, let us fix such F1, . . . , Fx and Y . Observe that the expected number of edges of the form

Fi ∪ {y} in Hk
n,p is exactly xyp. Therefore, by Lemma 4.3 we obtain

Pr[# such edges ≥ xmp/2] ≤
(

2exyp

xmp

)xmp/2
= exp

(
−xmp

2
log

m

2ey

)
.

By applying the union bound over all choice of Fi’s and Y we obtain that the probability for having

such sets which span at least xmp/2 edges of the form discussed above, is at most

m/10∑
x=mp/2

(
n

k − 1

)x(n
x

)
exp

(
−xmp

2
log

m

2ey

)

≤
m/10∑

x=mp/2

(
en

k − 1

)kx (en
x

)x
exp

(
−xmp

2
log
( m

2ex

))

≤
m/10∑

x=mp/2

exp

(
kx log

(
en

k − 1

)
+ x log

(en
x

)
− xmp

2
log
( m

2ex

))

≤
m/10∑

x=mp/2

exp

(
(k + 1)x log n− mpx

2
log

(
10

2e

)
+O(1)

)
= o(1)

where the last equality holds if we pick p = C log n/n where C is a sufficiently large constant to

satisfy
mp

2
log

(
10

2e

)
> 2(k + 1) log n

Therefore, whp Bπ satisfies property 2.

For property 3, let us fix X ⊆ A and Y ⊆ B of sizes x and y respectively where m/10 ≤ x − 1 =

y ≤ m/2. We now wish to establish an upper bound for the number of edges between them.

Assume towards contradiction that eBπ(X,Y ) > (1/2 + ε/4)mpx. Observe that this translates to

the following: There exist x disjoint sets F1, . . . , Fx, each of size exactly k − 1 and a set Y of size

x − 1, which is disjoint to all the Fis, such that the number of edges in Hk
n,p, of the form Fi ∪ {a}

where a ∈ Y , is larger than (1/2 + ε/4)mpx. Let us show that whp Hk
n,p has no such sets, thereby

also guaranteeing that whp no such sets exist in any subhypergraph H ′ ⊆ Hk
n,p.

First, let us fix such F1, . . . , Fx and Y . Observe that the expected number of edges of the form

Fi ∪ {y} in Hk
n,p is exactly xyp. Therefore, by Lemma 4.1 we obtain

Pr[# such edges ≥ (1/2 + ε/4)mpx] ≤ exp
(
−ε2xyp/40

)
.

By applying the union bound we obtain that the probability to have such sets is at most

m/2∑
x=m/10

(
n

k − 1

)x(n
x

)
exp

(
−ε2xyp/40

)
9



≤
m/2∑

x=m/10

n(k−1)xnx exp
(
−ε2xyp/40

)

≤
m/2∑

x=m/10

exp
(
(k − 1)x log n+ x log n− ε2x2p/40

)
= o(1)

where the last inequality holds if we pick p = C log n/n where C is a sufficiently large constant to

satisfy

pmε2/400 ≥ 2k log n.

Therefore, whp Bπ satisfies property 3.

We can conclude that whp Bπ satisfies all three properties, and is (ε/2, p)-pseudorandom. This

completes the proof.

Now that we know we can construct an (ε/2, p)-pseudorandom bipartite graph Bπ from every sub-

hypergraph H with the properties outlined above, we will make use of the following lemma to show

that every such Bπ must also contain a perfect matching. A similar proof appears in [9].

Lemma 4.15. Every (ε, p)-pseudorandom bipartite graph contains a perfect matching.

Proof. Let G = (A ∪ B,E) be an (ε, p)-pseudorandom bipartite graph with |A| = |B| = m. If G

does not contain a perfect matching, then it must violate the condition in Theorem 4.5. That is,

without loss of generality, there exists some X ⊆ A of size x ≤ m/2 and Y ⊆ B of size x − 1 such

that NG(X) ⊆ Y . In particular, as δ(G) ≥ (1/2 + ε)mp by property 1, it follows that eG(X,Y ) ≥
(1/2 + ε)mpx. In order to complete the proof we show that G does not contain two such sets for all

1 ≤ x ≤ m/2.

We distinguish between three cases: First, assume x ≤ mp/2. As |Y | ≤ x < (1/2 + ε)mp ≤ δ(G), it

follows that NG(X) 6⊆ Y .

Second, assume that mp/2 ≤ x ≤ m/10. By property 2, eG(X,Y ) ≤ mpx/2 < (1/2 + ε)mpx,

which is clearly a contradiction. Lastly, consider the case m/10 ≤ x ≤ m/2. By property 3,

eG(X,Y ) ≤ (1/2 + ε/2)xmp < (1/2 + ε)mpx, which is also a contradiction. This completes the

proof.

5 Proof of Theorem 1.1

Now we are ready to prove Theorem 1.1.

Proof. Let k ∈ N, ε > 0 and p ≥ C log n/n, for a sufficiently large C. Observe that, by Lemma 4.6,

whp a hypergraph Hk
n,p satisfies

(1− ε)np ≤ δk−1(Hk
n,p) ≤ ∆k−1(H

k
n,p) ≤ (1 + ε)np.

Let H ⊆ Hk
n,p be any subhypergraph with δk−1(H) ≥ (1/2 + ε)np. We wish to show that H contains

a perfect matching.

To this end, as was previously explained in the outline, we will construct a bipartite graph in such

a way that each perfect matching of this graph corresponds to a perfect matching of H.

10



To do so, let α > 0 where (1−α)(1/2+ε) ≥ 1/2+ε/2, and let us take a partitioning [n] = V1∪. . .∪Vk
into sets of the exact same size for which the following holds: For every subset X ∈

( [n]
k−1
)

and for

every 1 ≤ i ≤ k we have

dH(X,Vi) ∈ (1± α) · dH(X)

k
.

In particular, for all X ∈
( [n]
k−1
)

and all 1 ≤ i ≤ k, we have

dH(X,Vi) ≥ (1/2 + ε/2)mp,

where m = n
k . The existence of such a partitioning is guaranteed by Lemma 4.7.

Next, let H ′ be the resulting k-partite, k-uniform subhypergraph induced by the above partitioning.

Recall that

δ∗k−1(H
′) := min{d(X,Vi) : X ∈Wi, and 1 ≤ i ≤ k},

where Wi = V1 × . . .× Vi−1 × Vi+1 × . . .× Vk.
Clearly, δ∗k−1(H

′) ≥ (1/2+ε/2)mp. Therefore, Lemma 4.14 guarantees that there exists an auxiliary

bipartite graph Bπ(H ′) (as defined in 4.9) that is (ε/4, p)-pseudorandom. By Lemma 4.15, such a

Bπ would contain a perfect matching and therefore, by Remark 4.10, H ′ must also contain a perfect

matching. This completes the proof.
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