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Abstract

In this paper we study a resilience version of the classical Littlewood-Offord problem. Consider
the sum X(ξ) =

∑n
i=1 aiξi, where a = (ai)

n
i=1 is a sequence of non-zero reals and ξ = (ξi)

n
i=1 is

a sequence of i.i.d. random variables with Pr[ξi = 1] = Pr[ξi = −1] = 1/2. Motivated by some
problems from random matrices, we consider the following question for any given x: how many of
the ξi is an adversary typically allowed to change without making X = x? We solve this problem
up to a constant factor and present a few interesting open problems.

1 Introduction

Let a = (ai)
n
i=1 be a fixed sequence of nonzero real numbers, and for a sequence of i.i.d. (inde-

pendent, identically distributed) random variables ξ = (ξi)
n
i=1, define the random sum

X = X(ξ) =

n∑
i=1

aiξi.

Sums of this form are ubiquitous in probability theory. Most famously, the Central Limit Theorem

asserts that if each ai is the same, then X asymptotically has a normal distribution. More sophisti-

cated variants of the central limit theorem allow the ai to differ to some extent, and give quantitative

control of the distribution. An important example is the Berry-Esseen theorem [1, 8], which gives an

estimate for the probability that X lies in a given interval, in terms of the corresponding probability

for an appropriate normal distribution. (We give a precise statement, adapted to our context, in

Section 2). The Berry-Esseen theorem is effective when the ais are of the same order of magnitude,

in which case it can be used to deduce the estimate

Pr[X = x] = O

(
1√
n

)
for any x. That is to say, X is unlikely to be concentrated on any particular value (it is anti-

concentrated).
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In connection with a problem on random polynomials, in 1943 Littlewood and Offord [13] studied

anti-concentration in the setting where each ξi takes the values ±1 with equal probability, and where

no assumption is made on a, other than that its entries are nonzero. In this setting X can be

understood as the outcome of an unbiased random walk with step sizes given by a. The classical

result of Littlewood and Offord [13] strengthened by Erdős [6] states that for all x and a we have

Pr[X = x] ≤
(

n

bn/2c

)
/2n = O

(
1√
n

)
,

which is sharp for the sequence a with ai = 1 for all i. This result was quite surprising; if one

does not assume anything about the ai then the distribution of X may be very far from normal and

Berry-Esseen type bounds are no longer useful. To prove the above inequality, Erdős observed that

each fiber X−1(x) = {ξ : X(ξ) = x} is a Sperner family under a suitable identification of {−1, 1}n

with the Boolean hypercube. For more details about Sperner families, the reader is referred to the

excellent book of Bollobás [2].

After the Littlewood-Offord problem was first introduced, many variants of the problem have been

proposed and solved. One particularly interesting line of research involves the relationship between

the structure of a and the resulting concentration probability maxx Pr[X = x]. Erdős and Moser [7]

and Sárközy and Szemerédi [18] considered the case where the ai are distinct, and showed that the

stronger bound Pr[X = x] = O
(
n−3/2

)
is valid. Halász [11] gave even stronger bounds for sequences

which are “arithmetically unstructured” in a certain sense. More recently, Tao and Vu [21, 22] and

Nguyen and Vu [15] introduced and studied the inverse problem of characterizing the arithmetic

structure of a given the concentration probability maxx Pr[X = x].

Many connections have been found between Littlewood-Offord-type problems and various different

areas of mathematics. In particular, Littlewood-Offord-type theorems were essential tools in some

of the landmark results in random matrix theory (see for example [20, 21]). Most straightforwardly,

the Littlewood-Offord theorem gives an upper bound on the probability that a particular row of

a random ±1 matrix is orthogonal to a given vector, and can thus be used (see for example [3,

Section 14.2]) to bound the probability that a random matrix is singular.

1.1 Our setting and results

In this paper we are interested in studying a “resilience” version of the Littlewood-Offord problem.

That is to say, we know that most ξ ∈ {−1, 1}n do not satisfy X(ξ) = x, but can we say that moreover

most ξ are “far” (in some sense) from the event “X = x”?

In order to put everything in a formal setting, let d
(
ξ, ξ′

)
be the Hamming distance between ξ

and ξ′ (that is, the number of coordinates in which ξ and ξ′ differ). Then, define the resilience of

ξ with respect to the event {X = x}, denoted by Rx(ξ), to be the minimum number of entries in

which one should change ξ in order to obtain X = x. That is,

Rx(ξ) = d
(
ξ, X−1(x)

)
.

Moreover, let us denote the maximum probability that the resilience is at most k by

pk(n) = max
a,x

Pr[Rx(ξ) ≤ k].

Equivalently, pk(n) is the maximum volume of the k-neighbourhood of a “Boolean line” X−1(x) in

the hypercube. An immediate natural question is as follows:
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Problem 1.1. Given a non-negative integer k, what is the asymptotic behavior of pk(n)?

The Erdős-Littlewood-Offord bound clearly gives

p0(n) = Θ
(
1/
√
n
)
.

Note that even the case k = 1 is already quite interesting on account of a discovery by Füredi, Kahn

and Kleitman [10] that there are Sperner families whose 1-neighbourhood comprises a non-negligible

proportion of the hypercube. If p1(n) → 0 then this demonstrates a special structural property of

“arithmetic” Sperner families of the form X−1(x). More generally, we believe an especially interesting

question is to understand the qualitative behaviour of pk(n) as a function of k.

Problem 1.2. For which k does pk(n)→ 0?

Stated another way, we are asking for which k we can expect a typical ξ ∈ {−1, 1}n to be k-

resilient, regardless of the choice of x and a. This question is especially compelling in view of the

recent popularity of resilience problems for random graphs (see for example the excellent survey of

Sudakov and Vu [19]), and in view of some questions asked by Vu [23, Conjectures 7.4-5] concerning

the resilience of the singularity of random matrices. Specifically, Vu asked how many entries of a

random ±1 matrix one has to change (”globally” or ”locally”) to make it singular; due to the connec-

tion between the Littlewood-Offord problem and singularity of random matrices, these conjectures

were actually our initial motivation for this paper.

Before stating our results, in order to give the reader some feeling for the setting we give some

simple examples computing the typical resilience for specific choices of a and x.

Example 1.3. Consider the case a = (1, . . . , 1), and for simplicity assume n is even. One can easily

derive that for all even x we have

Pr[X = x] =

(
n
n+x
2

)
2−n.

Therefore, by a direct calculation, one can show that a.a.s.1 we have |X| = Θ(
√
n). Noting that

R0 = |X|/2, we typically have R0 = Θ(
√
n).

Example 1.4. Here we consider the case a =
(
1, 2, 4, . . . , 2n−1

)
. Note that X can take 2n different

values (the odd integers between −2n and 2n). This of course leads to the minimal possible concen-

tration probability Pr[X = 1] = 2−n. Each x in the support of X can be obtained by exactly one

ξ, so Rx has the binomial distribution Bin(n, 1/2) and Rx is tightly concentrated around n/2 by a

large deviation inequality for the binomial distribution (see for example [12, Theorem 2.1]).

We can see from the above two examples that the type of additive structure influencing the concen-

tration probability does contribute to the typical resilience, to some extent. However, the following

example shows that the typical resilience is much more strongly influenced by small subsequences of

a.

Example 1.5. Let k be the minimal integer such that k ≥ log2 n and n − k is odd. Define a by

a1 = · · · = an−k = 1 and an−k+i = 2i−1. For any ξ, with at most k modifications we can make∑k
i=1 ξn−k+ian−k+i equal to any odd number between −n and n, so in particular we can make it

equal to −
∑n−k

i=1 ξiai, so that X = 0. This means R0 = O(log n) (with probability 1).

1By “asymptotically almost surely”, or “a.a.s.”, we mean that the probability of an event is 1− o(1). Here and for

the rest of the paper, asymptotics are as n→∞.
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A priori, it seems plausible that Example 1.5 demonstrates essentially the least robust anti-

concentration possible. Surprisingly this is not true.

Theorem 1.6. There exists a sequence a such that a.a.s. R0(ξ) = O(log log n).

Note that the construction in Example 1.5 was effective because one can form all nonnegative

integers less than 2k with sums of subsets of
{

1, 2, 4, . . . , 2k−1
}

. That is to say,
{

1, . . . , 2k−1
}

is an

additive basis of
{

0, 1, 2, . . . , 2k − 1
}

. In order to prove Theorem 1.6 we construct a more optimized

additive basis, using an idea that goes back to Rohrbach [17].

We are also able to prove that Theorem 1.6 is in fact optimal, essentially answering Problem 1.2.

Theorem 1.7. For any a ∈ (R \ {0})n and x ∈ R, a.a.s. Rx(ξ) = Ω(log log n).

As for Problem 1.1, we are able to find the asymptotics of each pk(n) up to a polylogarithmic

factor, as stated in the next theorem.

Theorem 1.8. For k = 1 we have

p1 = Θ
(
n−1/6

)
and for any fixed k ≥ 2 we have

pk(n) = n−1/(2×3
k) logO(1) n.

1.2 Notation

We use standard asymptotic notation throughout. For functions f = f(n) and g = g(n):

• f = O(g) means there is a constant C such that |f | ≤ C|g|,

• f = Ω(g) means there is a constant c > 0 such that f ≥ c|g|,

• f = Θ(g) means that f = O(g) and f = Ω(g),

• f = o(g) means that f/g → 0,

• f = ω(g) means that f/g →∞,

where all asymptotics are as n → ∞. Also, for a real number x, the floor and ceiling functions are

denoted bxc = max{i ∈ Z : i ≤ x} and dxe = min{i ∈ Z : i ≥ x}. For a positive integer i, we write

[i] for the set {1, 2, . . . , i}. Finally, all logarithms are base 2, unless specified otherwise.

2 Auxiliary results and proof outlines

In this section we introduce some tools and auxiliary results to be used in the proofs of our main

results.

First, we state a version of the Berry-Esseen theorem (as mentioned in the introduction), which

will be a key ingredient in our proofs. This version immediately follows from the version in [8].

Theorem 2.1. For X =
∑n

i=1 aiξi as in the introduction, let σ2 =
∑n

i=1 a
2
i be the variance of X, and

let ρ =
∑n

i=1

∣∣a3i ∣∣. Let Φ be the cumulative distribution function of the standard normal distribution.

Then, ∣∣∣∣Pr

[
X

σ
≤ x

]
− Φ(x)

∣∣∣∣ = O
( ρ
σ3

)
.
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2.1 Additive bases

An order-h additive basis of [n] is a subset B ⊆ [n] such that for each x ∈ [n], there are distinct

b1, . . . , bh ∈ B with x = b1 + · · · + bh. In Example 1.5, we used an additive basis of [n] which was

of order log n, and to construct a sequence with typical resilience O(log log n) to prove Theorem 1.6,

it makes sense to search for an additive basis of order O(log log n). However, a critical issue is that

our additive basis must be part of the sequence a itself, and therefore affects the behaviour of the

typical sum. This issue was circumvented in Example 1.5 because the size of the basis was equal to

its order: we were able to control each element in the basis with our k = log n changes.

In order to overcome this difficulty, we will use an additive basis consisting of two parts. The

first (main) part will be an additive basis designed to be as “bottom-heavy” as possible, so that it

does not cause the typical sum to be too large. The second part will be a small (size O(log log n))

sequence of the form r, 2r, 4r, . . . , 2qr, which we will have total control over. For the first part, we

will need the following lemma. Let vh(n) be the minimum sum of squares of an order-h additive

basis of [n].

Lemma 2.2. For h ≥ 1 we have

vh(n) = O
(
n2+2/(3h−1)

)
.

Our proof of Lemma 2.2 uses an inductive construction closely resembling a construction of

Rohrbach [17].

Proof. We prove by induction on h that vh(n) ≤ Cn2+2/(3h−1) for some large C to be determined.

For h = 1 we can take a = (1, . . . , n). So, assume vh−1(n) ≤ Cn2+2/(3h−1−1) for all n. Then let

m =
⌈
Dn2×3

h−1/(3h−1)
⌉

for some constant D ≥ 1 and consider an order-(h− 1) additive basis B′ of

[m/n] with sum of squares vh−1(n/m).

Now, let m · B′ = {mb : b ∈ B′}, and note that B = [m] ∪ (m · B′) is an order-h additive basis

of [n]. Indeed, for any x = mq + r, there are b1, . . . , bh−1 ∈ B′ with b1 + · · ·+ bh−1 = q. Then, note

that each mbi ∈ B, and r ∈ B, so we can write x = mb1 + · · ·+mbh−1 + r.

So,

vh(n) ≤ m3 +m2vh−1(n/m)

≤ 2D3n2×3
h/(3h−1) + 2C/D2n2×3

h/(3h−1)

If C is large and say D = C1/4 then this is at most

Cn2×3
h/(3h−1) = Cn2+2/(3h−1).

This completes the proof.

The proof of Theorem 1.6 using Lemma 2.2 appears in Section 4. Lemma 2.2 is also used to prove

the lower bound in Theorem 1.8, in Section 5.

2.2 A recurrence relation

The following lemma is our main tool for giving upper bounds on pk(n). Indeed, Theorem 1.7

(proved in Section 3) and the upper bound for k ≥ 2 in Theorem 1.8 (proved in Section 5.1) are

immediate inductive consequences.
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Lemma 2.3. For each k ∈ N, and any function f = f(n)→∞ satisfying kf2 log n = o(n), we have

pk(n) ≤
k∑
i=1

(
O
(
kf2 log n

))i
pk−i(n− o(n)) +O(k/f + 1/n).

As suggested by Example 1.5, it is important to consider small subsets of large ai, and the proof

of Lemma 2.3 indeed follows this path. The argument starts by isolating ai which are “abnormally

large” in the sense that a2i is almost as large as the sum of the squares of all aj < ai (here “almost as

large” is parameterized by the function f). If there are many such ai, then for similar reasons as in

example 1.4. the resilience is very likely to be high. Now, assuming that there are a small amount

of such ai, we use strong induction to proceed: of the k changes to be made, if i > 1 are made on

“large” numbers and k − i on “small” numbers, we apply the union bound over all possible choices

of i changes on the large ai (since we know there are few of them) and induct on the subsequence

of small ai. The case where all changes are to be made on small ai can be addressed using the

Berry-Esseen theorem; showing that a typical sum of such ai is larger than one can “cancel out” by

changing just k signs.

Proof of Lemma 2.3. Fix k > 0 and a. Without loss of generality assume a1 ≤ · · · ≤ an. Let

σi =
√∑i

j=1 a
2
j and ρi =

∑i
j=1 a

3
j and for I ⊆ [n] let XI(ξ) =

∑
i∈I ξiai.

Let i1 = n, and for t > 1 with a1 ≤ ait−1/2 let it = max
{
i : ai ≤ ait−1/2

}
. Let t = t∗ be the point

where this stops (when a1 > ait/2). Let τ be the first t such that ait ≤ σit/f , or τ =∞ if this never

happens.

First, we consider the case where t∗ is large

Claim 2.4. If t∗ = ω(k log n) then pk ≤ 1/n.

Proof. Let I = {it : t ≤ t∗} and let J = [n]\I. Note that every possible sum of the ait is distinct,

so if we condition on ξ|J , then X can take 2t
∗

different values, each occuring with probability 2−t
∗
.

There are nk possible modifications we can make to go from ξ to ξ′, so pk ≤ nk2−t
∗
.

So, from now on we assume that t∗ = O(k log n).

Claim 2.5. We never have τ =∞ (so τ ≤ t∗). Also, n− iτ = O
(
kf2 log n

)
.

Proof. Consider t with ait > σit/f(n). Note that |{i : ait/2 < ai ≤ ait}| ≤ 4f2. Indeed, otherwise

we would have the contradiction σ2it ≥ 4f2(n)
(
a2it/4

)
> σ2it .

If we were to have τ =∞ then ait > σit/f(n) for all t ≤ t∗ so

∣∣{i : ai > ait∗/2
}∣∣ =

t∗∑
t=1

|{i : ait/2 < ai ≤ ait}| = O
(
kf2 log n

)
= o(n)

and thus
{
i : ai ≤ ait∗/2

}
6= ∅, which is a contradiction. Similarly,

n− iτ =
∣∣{i : ai > aiτ−1/2

}∣∣ =
τ−1∑
t=1

|{i : ait/2 < ai ≤ ait}| = O
(
kf2 log n

)
.
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Now, let I = [iτ ] and J = [n]\I. We use the union bound over all possibilities for modifying ξ|J .

For i > 0, there are O
((
kf2 log n

)i)
ways to modify i elements of ξ|J , and then we have k − i

modifications left to use on ξ|I . For each possibility, we can condition on ξ|J (therefore on XJ

(
ξ′
)
),

and the probability that we will be able to make XI = x−XJ with our remaining k− i modifications

is at most pk−i(iτ ) by induction. Therefore, the probability we can make X = x while modifying at

least one element of ξ|J is at most

k∑
i=1

(
O
(
kf2 log n

))i
pk−i(n− o(n))

We also need to consider the possibility that we do not modify ξ|J at all. In this case, condition

on ξ|J (therefore on XJ

(
ξ′
)

= XJ(ξ)). Note that ρiτ ≤ σiτaiτ , so by the Berry-Esseen Theorem

(theorem 2.1), with Z having the standard normal distribution,

Pr
[∣∣XI −XJ

(
ξ′
)∣∣ ≤ kσiτ /f(n)

]
= Pr[|Z| ≤ k/f(n)] +O(aiτ /σiτ ) = O(k/f(n)).

Note that by changing ξ|I we can change the value of X by at most kaiτ , which is not greater than

kσiτ /f(n). So the probability we can make X = x without modifying ξ|J is at most O(k/f). This

completes the proof.

3 Proof of Theorem 1.7

In this section we deduce Theorem 1.7 from Lemma 2.3.

Proof. Let ε > 0 be any constant and let c = 3 + ε. We will prove that pk ≤ n−c
−k−1

for k ≤
log(3+2ε) log n and sufficiently large n. This will imply that plog3+2ε logn → 0, and since ε is arbitrary

this then implies that for any a, x, a.a.s. Rx > (1 + o(1)) log3 log n.

We proceed by induction on k. So, consider some k and suppose pk′ ≤ n−c
−k′−1

for all k′ < k.

Let f = nc
−k/3. Then,

pk ≤
k∑
i=1

(
O
(
kf2 log n

))i
pk−i(n− o(n)) +O(k/f + 1/n)

≤
k∑
i=1

(
n2c
−k/3 log2 n

)i
exp
(
−c−k+i−1(log n+ o(1))

)
+ o
(
n−c

−k−1
)

=
k∑
i=1

exp

(
−c−k−1 log n

(
ci − 2c

3
i+ o(1)

))
+ o
(
n−c

−k−1
)

≤ exp
(
−(c/3 + o(1))c−k−1 log n

)
+ o
(
n−c

−k−1
)

= o
(
n−c

−k−1
)

= o(1),

where the last inequality holds by the choice of k. This completes the proof.
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4 Proof of Theorem 1.6

In this section we prove Theorem 1.6 by constructing a sequence a such that a.a.s. R0 =

O(log log n).

Proof. For convenience, suppose n = 2r is a power of 2. (A factor of 2 will make no difference in the

asymptotics of log log n, and as we will see, the constructed sequence a will consist mostly of “1”s,

which we can trim without changing the proof). Let ε > 0 and let

h = log3−ε log n, h′ = log2−ε log n.

We will construct a sequence a such that a.a.s. R0 ≤ h+ h′.

Fix an order-h additive basis B of
[
n/2h

′
]

with sum of squares

∑
b∈B

b2 = O

((
n/2h

′
)2+2/(3h−1)

)
= o
(
n2/ log n

)
.

Define a by combining log2−ε n copies of each b ∈ B, and the numbers n, n/2, . . . , n/2h
′−1, and

padding the remaining n − h′ − |B| log2−ε n entries with “1”s. For convenience we assume that∑n
i=1 ai is even (this can be ensured by adding a superfluous even number to B, if necessary).

Now, consider some b ∈ B and let Ib be the set of indices corresponding to the copies of b in a.

Note that

Pr[ξ|Ib = (1, . . . , 1)] = Pr[ξ|Ib = (−1, . . . ,−1)] = 2− log2−ε n = o(1/n)

for large C. So, by the union bound, a.a.s. for each b ∈ B there is at least one copy of b associated

with a negative sign and one associated with a positive sign. Assume this holds.

Now, let J = {i : ai = 1} and I =
⋃
b∈B Ib and note

∑
i∈I∪J a

2
i ≤ n+ o

(
n2
)

so VarXI∪J = o(n2)

and by Chebyshev’s inequality, a.a.s. |XI∪J | ≤ 2n. If this holds, by modifying the signs associated

with n, n/2, . . . , n/2h
′−1 we can make |X| ≤ n/2h′−1. Then, there are b1, . . . bh ∈ B and ξ1, . . . , ξh ∈

{−1, 1} with
∑h

i=1 ξibi = |X/2|, and we can therefore make X = 0 by changing a further h signs in

ξ|I . This completes the proof.

5 Proof of Theorem 1.8

In this section we prove Theorem 1.8. Similarly to Theorems 1.6 and 1.7, the upper and lower

bounds are proved completely differently.

5.1 Upper bounds

The upper bound pk(n) ≤ n−1/(2×3
k) logO(1) n follows immediately from Theorem 2.3, using a

similar (but much simpler) induction argument to the one used to prove Theorem 1.7, as follows.

Proof. Suppose pk′ ≤ n
−1/

(
2×3k′

)
logO(1) n for k′ < k. Let f = n1/(2×3

k). Then,

pk ≤
k∑
i=1

(
O
(
kf2 log n

))i
pk−i(n− o(n)) +O(k/f + 1/n)
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≤
k∑
i=1

f2in−1/(2×3
k−i) logO(1) n

≤ n−1/(2×3k−i) logO(1) n.

This completes the proof.

For the upper bound on p1(n) we will use Sárközy and Szemerédi’s theorem which asserts that if

a has distinct elements, then

Pr[X = x] = O
(
n−3/2

)
.

Proof of the upper bound on p1(n). Fix any a, x. Suppose there are q distinct values in a, so the

union bound gives

Pr[Rx ≤ 1] = O
(
qn−1/2

)
.

Alternatively, let ai1 , . . . , aiq give a representative for each distinct value and let I = {i1, . . . , iq}.
Conditioning on ξ|[n]\I and using the union bound,

Pr[Rx ≤ 1] = O
(
q × q−3/2

)
= O

(
q−1/2

)
.

No matter the value of q, one of these gives

Pr[Rx ≤ 1] = O
(
n−1/6

)
,

which completes the proof.

5.2 Lower bounds

First we prove the general lower bound pk(n) ≥ n−1/(2×3k) logO(1) n.

Proof. Let

σI =

√∑
i∈I

a2i , ρI =
∑
i∈I

a3i ,

with σ = σ[n] and ρ = ρ[n]. The proof proceeds in a similar way to Theorem 1.6, as follows. Fix an

order-k additive basis B of [n] with sum of squares∑
b∈B

b2 = O
(
q2+2/(3k−1)

)
,

for some q to be determined. Define a by combining log n copies of each b ∈ B (let I be the

corresponding set of indices in a), and padding the remaining n− |B| log n entries with “1”s. As in

Section 4, we can assume that
∑n

i=1 ai is even, and we can show that a.a.s. for each b ∈ B there is at

least one copy of b associated with a negative sign and one associated with a positive sign. Assume

this holds.

Now, σ2I = O
(
q2+2/(3k−1) log n

)
, σ2 = n − q + σ2I , and ρ ≤ n − q + qσ2I . Choose q such that

σ2I = εn for some small constant ε > 0 to be determined. This implies

q = n1/(2+2/(3k−1)) logO(1) n = n1/2−1/(2×3
k) logO(1) n.
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By the Berry-Esseen Theorem,

Pr[|X/2| ≤ q] = Θ
( q
σ

)
+O

(ρ
σ

)
= Θ

(
q√
n

)
+O

(
ε2q√
n

)
= n−1/(2×3

k) logO(1) n.

Now, if |X/2| ≤ q then there are b1, . . . bk ∈ B and ξ1, . . . , ξk ∈ {−1, 1} with
∑k

i=1 ξibi = |X/2|, and

we can therefore make X = 0 by changing a further k signs in ξ|I . This completes the proof.

Finally, we prove the sharp bound p1(n) = Ω
(
n−1/6

)
.

Proof. The construction is exactly the same as above (with k = 1), but we include only one copy of

each element in B. Recalling the base case for the induction in Section 4, this means a is defined by

a1 = · · · = an−q = 1, an−q+i = i.

By exactly the same argument as above, by the Berry-Esseen Theorem,

Pr[|X/2| ≤ q] = Θ
(
n−1/6

)
for some q = Θ

(
n1/3

)
. Similarly, with I = [n− q] and J = [n] \ I, we can use the Berry-Esseen

theorem on XI and XJ , to show that for large C and any x ∈ R,

Pr
[
XJ > C

√
n
]
≤ 1/C,

Pr[|XI + x| ≤ 2q] = O
(
n−1/6

)
.

So,

Pr
[
|X/2| ≤ q and |XJ | > C

√
n
]

=
∑

x:|x|>C
√
n

Pr[|XI + x| ≤ 2q] Pr[XJ = x]

= O

(
n−1/6

C

)
.

For large enough C, we therefore have

Pr
[
|X/2| ≤ q and |XJ | ≤ C

√
n
]

= Θ
(
n−1/6

)
−O

(
n−1/6

C

)
= Θ

(
n−1/6

)
.

Now, with N = n− q, for any x ≤ 2C
√
n we have

Pr[XI = x] =

(
N

(N + x)/2

)
/2N

=
Θ(1)

√
N(1 + x/N)(N+x)/2(1− x/N)(N−x)/2

=
Θ(1)

√
N(1− x2/N2)N/2(1 +O(x/N))x/2

=
Θ(1)

√
N(1−O(1/n))O(n)(1 +O(1/x))x/2

10



= Θ

(
1√
n

)
.

That is to say, the probabilities Pr[XI = x] differ from each other by at most a constant factor.

Let s(a) = sign(ξn−q+a). Conditioning on any choice of ξ|J such that XJ(ξ) ≤ C
√
n, we have

Pr
[
|X/2| ≤ q and sign(X) = sign

(
ξn−q+|X/2|

)]
=

∑
a:0≤a≤q

Pr[XI = 2s(a)a−XJ ]

= Θ

 ∑
a:0≤a≤q

Pr[XI = −2s(a)a−XJ ]


= Θ

(
Pr
[
|X/2| ≤ q and sign(X) 6= sign

(
ξn−q+|X/2|

)])
.

(note that XI = XJ (mod 2) so X is divisible by 2). So,

Pr
[
|X/2| ≤ q and sign(X) = sign

(
ξn−q+|X/2|

)
and XJ(ξ) ≤ C

√
n
]

= Θ
(
Pr
[
|X/2| ≤ q and XJ(ξ) ≤ C

√
n
])

= Ω
(
n−1/6

)
.

But if |X/2| ≤ q and sign(X) = sign
(
ξn−q+|X/2|

)
then we can modify ξn−q+|X/2| to make X = 0.

This completes the proof.

6 Concluding remarks and open problems

In this paper we have investigated the resilience of the anti-concentration in the Littlewood-Offord

problem. We hope that results and ideas of the type in this paper can be applied to other problems,

in particular to the resilience questions for random matrices raised by Vu [23]. There are several

very interesting open questions that remain.

• Most obviously, there is the question of removing the polylogarithmic factor in Theorem 1.8.

This problem is analogous to the situation in the Erdos-Moser problem, where Sárközy and

Szemerédi [18] removed a polylogarithmic factor in Erdős and Moser’s original bound. Indeed,

it is due to Sárközy and Szemerédi’s theorem that we could get a tight result for p1(n).

• Let R = minxRx. We showed that for k ≤ (1− o(1)) log3 log n, a.a.s. R > k for any a, and for

k ≥ (1 + log2(3) + o(1)) log3 log n there is a such that a.a.s. R ≤ k. It remains open what the

behaviour is when k is in the narrow interval between these values. Is there a “sharp threshold”

k in the sense that a.a.s. R > k for any a, but there is a such that a.a.s. R ≤ k + 2?

• The constructions used to prove Theorem 1.6 had a very special structure consisting of “layered”

additive bases. The proof of the lower bound in Theorem 1.7 seems to indicate that this type of

structure is necessary for the typical resilience to be small. It would be interesting to formalize

this idea in an inverse theorem of some kind. An inverse theorem for Theorem 1.8 would also

be interesting: fixing k, what can be said about the structure of a given maxx Pr[Rx ≤ k]?

• We have considered the setting where X is a linear combination of independent Rademacher

random variables. As suggested to us by Van Vu, we can consider more generally the setting

11



whereX is a low-degree polynomial. The anti-concentration problem in this setting was initated

by Costello, Tao and Vu [5] in order to study symmetric random matrices, and was further

developed by many authors, most recently by Meka, Nguyen and Vu [14]. Resilience problems in

this setting appear to be much more difficult than for the ordinary Littlewood-Offord problem,

and are likely to require new ideas.
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