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Abstract

Many problems in combinatorial linear algebra require upper bounds on the number of so-
lutions to an underdetermined system of linear equations Ax = b, where the coordinates of the
vector x are restricted to take values in some small subset (e.g. {±1}) of the underlying field.
The classical ways of bounding this quantity are to use either a rank bound observation due to
Odlyzko or a vector anti-concentration inequality due to Halász. The former gives a stronger
conclusion except when the number of equations is significantly smaller than the number of
variables; even in such situations, the hypotheses of Halász’s inequality are quite hard to verify
in practice. In this paper, using a novel approach to the anti-concentration problem for vector
sums, we obtain new Halász-type inequalities which beat the Odlyzko bound even in settings
where the number of equations is comparable to the number of variables. In addition to being
stronger, our inequalities have hypotheses which are considerably easier to verify. We present
two applications of our inequalities to combinatorial (random) matrix theory: (i) we obtain the
first non-trivial upper bound on the number of n × n Hadamard matrices, and (ii) we improve
a recent bound of Deneanu and Vu on the probability of normality of a random {±1} matrix.

1 Introduction

1.1 The number of Hadamard matrices

A square matrix H of order n whose entries are {±1} is called a Hadamard matrix of order n if its
rows are pairwise orthogonal i.e. if HHT = nIn. They are named after Jacques Hadamard, who
studied them in connection with his maximal determinant problem. Specifically, Hadamard asked for
the maximum value of the determinant of any n× n square matrix all of whose entries are bounded
in absolute value by 1. He proved [8] that the value of the determinant of such matrices cannot
exceed nn/2. Moreover, he showed that Hadamard matrices are the only ones that can attain this
bound. Since their introduction, Hadamard matrices have been the focus of considerable attention
from many different communities – coding theory, design theory, statistical inference, and signal
processing to name a few. We refer the reader to the surveys [10, 19] and the books [1, 11] for a
comprehensive account of Hadamard matrices and their numerous applications.

Hadamard matrices of order 1 and 2 are trivial to construct, and it is quite easy to see, by
considering the first few rows, that every other Hadamard matrix (if exists) must be of order 4m
for some m ∈ N. Whereas Hadamard matrices of infinitely many orders have been constructed, the
question of whether one of order 4m exists for every m ∈ N is the most important open question on
this topic, and remains wide open.
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Conjecture 1.1 (The Hadamard conjecture, [15]). There exists a Hadamard matrix of order 4m
for every m ∈ N.

In this paper, we study the question of how many Hadamard matrices of order n = 4m could
possibly exist for a given m ∈ N. Let us denote this number by H(n). Note that if a single
Hadamard matrix of order n exists, then we immediately get at least (n!)2 distinct Hadamard
matrices by permuting all the rows and columns. Thus, if the Hadamard conjecture is true, then
H(n) = 2Ω(n logn) for every n = 4m,m ∈ N. On the other hand, the bound H(n) ≤ 2(n+1

2 ) is quite
easy to obtain, as we will discuss in the next subsection.

This bound also appeared in the work of de Launey and Levin [3] on the enumeration of partial
Hadamard matrices (i.e. k×4mmatrices whose rows are pairwise orthogonal, in the limit asm→∞)
using Fourier analytic techniques; notably, while they were able to get a very precise answer to this
problem (up to an overall (1+o(1)) multiplicative factor), their techniques still did not help them to
obtain anything better than the essentially trivial bound for the case of square Hadamard matrices.
As our first main result, we give the only known non-trivial upper bound on the number of square
Hadamard matrices.

Theorem 1.2. There exists an absolute constant cH > 0 such that H(n) ≤ 2
(1−cH )n2

2 for all suffi-
ciently large n that is a multiple of 4.

Remark 1.3. In our proof of the above theorem, we have focused on the simplicity and clarity of
presentation and have made no attempt to optimize this constant, since our proof cannot give a
value of cH larger than (say) 1

2 whereas we believe that the correct value of cH should be close (as
a function of n) to 1.

Conjecture 1.4. For any n = 4m,m ∈ N, H(n) = 2O(n logn).

We believe that proving a bound of the form H(n) = 2o(n
2) will already be very interesting, and

will likely require new ideas.

1.1.1 The approach

We now discuss the proof of the trivial upper bound H(n) ≤ 2(n+1
2 ). The starting point is the

following classical (and almost trivial to prove) observation due to Odlyzko.

Lemma 1.5 (Odlyzko, [14]). Let W be a d-dimensional subspace of Rn. Then, |W ∩ {±1}n| ≤ 2d.

Sketch. As W is a d-dimensional space, it depends only on d coordinates. Therefore, it spans at
most 2d vectors with entries from {±1}.

The bound H(n) ≤ 2(n+1
2 ) is now immediate. Indeed, we construct the matrices row by row,

and note that by the orthogonality of the rows, the first k rows span a subspace of dimension k to
which the remaining rows are orthogonal. In particular, once the first k rows have been selected,
the (k + 1)st row lies in a specified subspace of dimension n− k (the orthogonal complement of the
vector space spanned by the first k (linearly independent) rows), and hence, by Lemma 1.5, is one
of at most 2n−k vectors. It follows that H(n) ≤

∏n−1
i=0 2n−i = 2(n+1

2 ).
The weak point in the above proof is the following – while Odlyzko’s bound is tight in general, we

should expect it to be far from the truth in the average case. Indeed, working with vectors in {0, 1}n
for the moment, note that a subspace of dimension k spanned by vectors in {0, 1}n has exactly 2n−k

vectors in {0, 1}n orthogonal to it viewed as elements of Fn2 . However, typically, the inner products
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will take on many values in 2Z \ {0} so that many of these vectors will not be orthogonal viewed as
elements of Rn.

The study of the difference between the Odlyzko bound and how many {±1}n vectors a subspace
actually contains has been very fruitful in discrete random matrix theory, particularly for the out-
standing problem of determining the probability of singularity of random {±1} matrices. Following
Kahn, Komlós and Szemerédi [13], Tao and Vu [20] isolated the following notion.

Definition 1.6 (Combinatorial dimension). The combinatorial dimension of a subspace W in Rn,
denoted by d±(W ), is defined to be smallest real number such that

|W ∩ {±1}n| ≤ 2d±(W ).

Thus, Odlyzko’s lemma says that for any subspace W , its combinatorial dimension is no more
than its dimension. However, improving on another result of Odlyzko [14], Kahn, Komlós and
Szemerédi showed that this bound is very loose for typical subspaces spanned by {±1}n vectors:

Theorem 1.7 (Kahn-Komlós-Szemerédi, [13]). There exists a constant C > 0 such that if r ≤ n−C,
and if v1, . . . , vr are chosen independently and uniformly from {±1}n, then

Pr [d±(span{v1, . . . , vr}) > log2(2r)] = (1 + o(1))4

(
r

3

)(
3

4

)n
.

In other words, they showed that a typical r-dimensional subspace spanned by r vectors in {±1}n
contains the minimum possible number of {±1}n vectors i.e. only the 2r vectors consisting of the
vectors spanning the subspace and their negatives.

Compared to the setting of Kahn, Komlós and Szemerédi, our setting has two major differences:

(i) We are interested not in the combinatorial dimension of subspaces spanned by {±1}n vectors
but of their orthogonal complements.

(ii) The {±1}n vectors spanning a subspace in our case are highly dependent due to the mutual
orthogonality constraint – indeed, as the proof of the trivial upper bound at the start of the
subsection shows, the probability that the rows of a random k × n {±1} matrix are mutually
orthogonal is 2−Ω(k2); this rules out the strategy of conditioning on the rows being orthogonal
when k = Ω(

√
n), even if one were to prove a variant of the result of Kahn, Komlós and

Szemerédi to deal with orthogonal complements.

Briefly, our approach to dealing with these obstacles is the following. For k < n, let Hk,n denote
a k × n matrix with all its entries in {±1} and all of whose rows are orthogonal. We will show that
there exist absolute constants 0 < c1 < c2 < 1 such that if k ∈ [c1n, c2n] and if n is sufficiently large,
then Hk,n must have a certain desirable linear algebraic property; this is the only way in which we
use the orthogonality of the rows of Hk,n, and takes care of (ii). Next, to deal with (i), we will show
that for any k × n matrix A which has this linear algebraic structure, the number of solutions x
in {±1}n to Ax = 0 is at most 2n−(1+C)k, where C > 0 is a constant depending only on c1 and
c2. Using these improved bounds with the same strategy as for the trivial proof, we see that for n
sufficiently large,

H(n) ≤
n−1∏
i=0

2n−i
c2n∏
i=c1n

2−Ck

≤ 2(n+1
2 )2−

C(c22−c
2
1)n

2

2 ,

which gives the desired improvement. We discuss this in more detail in the next subsection.
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1.2 Improved Halász-type inequalities

As mentioned above, our goal is to study the number of {±1}n solutions to an underdetermined
system of linear equations Ax = 0 possessing some additional structure. This question was studied
by Halász, who proved the following:

Theorem 1.8 (Halász, [9]). Let a1, . . . , an be a collection of vectors in Rd. Suppose there exists
a constant δ > 0 such that for any unit vector e ∈ Rd, one can select at least δn vectors ak with
|〈ak, e〉| ≥ 1. Then,

sup
u∈Rd

Pr

[∥∥∥∥∥
n∑
i=1

εiai − u

∥∥∥∥∥
2

< 1

]
≤ c(δ, d)

(
1√
n

)d
,

where ε1, . . . , εn are independent Rademacher random variables i.e. they take the values ±1 with
probability 1/2 each.

The constant c(δ, d), which is crucial for our applications, was left implicit by Halász. However,
explicit estimates on this constant may be obtained, as was done by Howard and Oskolkov [12].

Theorem 1.9 ([12]). Let a1, . . . , an be a collection of vectors in Rd. Suppose that there exists some
m ∈ N such that for every unit vector e ∈ Rd, one can select at least m vectors ai1 , . . . , aim with
|〈aij , e〉| ≥ 1/(2

√
d) for all j ∈ [m]. Then,

sup
u∈Rd

Pr

[∥∥∥∥∥
n∑
i=1

εiai − u

∥∥∥∥∥
∞

<
1

2

]
≤ C(d)

(
1√
m

)d
,

where C(d) =
(
π3/2d√

2

)d
.

Remark 1.10. When a1, . . . , an and u belong to Zd, as will be the case in our applications, the event
‘‖
∑n

i=1 εiai−u‖∞ < 1/2’ is equivalent to the event ‘
∑n

i=1 εiai = u’. In this case, it was noted by Tao
and Vu (Exercise 7.2.3 in [21]) that the condition |〈aij , e〉| ≥ 1/(2

√
d) may be relaxed to |〈aij , e〉| > 0.

However, as stated, their proof still gives a constant C(d) = Θ(d)d due to a ‘duplication’ step, which
we will show is unnecessary.

There are two drawbacks to using the results mentioned above for the kinds of applications
we have in mind. Firstly, a constant of the form C(d) = Θ(d)d does not give any non-trivial
information when d = Ω(n), whereas as discussed in the proof outline, we require an improvement
over the Odlyzko bound for d = Θ(n). Secondly, the hypotheses of these theorems, which involve
two quantifiers (‘for all’ followed by ‘there exists’), are quite stringent and not easy to verify; in fact,
we were unable to find any direct applications of Theorem 1.8 in the literature.

Our key structural observation is that a ‘pseudorandom’ rectangular matrix contains many dis-
joint submatrices of large rank. This motivates replacing the double quantifier hypothesis by a
(weaker) hypothesis involving just one existential quantifier which, as we will see, is readily verified
to hold in pseudorandom situations. Moreover, while our hypothesis is weaker, we are able to obtain
conclusions with asymptotically much better constants, since our structural setting allows us to
efficiently leverage the existing rich literature on anti-concentration of sums of independent random
variables and anti-concentration of linear images of high dimensional distributions. In particular,
we are able to give short and transparent proofs of our inequalities for very general classes of dis-
tributions; in contrast, Theorems 1.8 and 1.9 hold only for (vector)-weighted sums of independent
Rademacher variables, and their proofs involve explicit trigonometric manipulations. We discuss
this in more detail in Sections 2.2 and 3.1.

Our first inequality is a strengthening of Theorem 1.9 in the setting of Remark 1.10, both in
terms of the hypothesis and the conclusion. A more general statement appears in Theorem 3.1.
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Theorem 1.11. Let a1, . . . , an be a collection vectors in Rd which can be partitioned as A1, . . . ,A`
with ` even such that dimRd(span{a : a ∈ Ai}) =: ri. Then,

sup
u∈Rd

Pr

[
n∑
i=1

εiai = u

]
≤
(

2−`
(
`

`/2

)) r1+···+r`
`

≤

(√
2

π`

(
1 +O

(
1

`

))) r1+···+r`
`

.

Remark 1.12. This inequality is tight, as can be easily seen by taking (assuming n is divisible by
d) ai to be ei mod d, where e1, . . . , ed denotes the standard basis of Rd, in which case we can take
` = n/d and r1 = · · · = r` = d.

To see how Theorem 1.11 strengthens Theorem 1.9, note that the assumptions of Theorem 1.9
guarantee that there exist ` := bm/dc disjoint subsets A1, . . . ,A` such that r1 = · · · = r` = d. Such
a collection of disjoint subsets can be obtained greedily by repeating the following construction `
times: let v1 ∈ {a1, . . . , an} be any nonzero vector that has not already been chosen in a previous
iteration. Having chosen v1, . . . , vs for s < d, let us ∈ (span{v1, . . . , vs})⊥, and let vs+1 be any vector
satisfying |〈vs+1, us〉| > 0 which has not already been chosen in a previous iteration – such a vector
is guaranteed to exist since there are at least m choices of vs+1 by assumption, of which at most
(`− 1)d < m could have been chosen in a previous iteration. It follows that under the assumptions
of Theorem 1.9, when a1, . . . , an ∈ Zd, we have:

sup
u∈Rd

Pr

[∥∥∥∥∥
n∑
i=1

εiai − u

∥∥∥∥∥
∞

<
1

2

]
≤ C ′(d)

(
1√
m

)d
,

where C ′(d) ≤
(√

2d
3

)d
. In particular, we now have a non-trivial bound all the way up to d = Θ(m),

as opposed to just d = O(
√
m) as before.

Our second inequality is a ‘small-ball probability’ version of Theorem 1.11. In order to state it,
we need the following definition.

Definition 1.13. The stable rank of A, denoted by rs(A), is defined as

rs(A) :=

⌊
‖A‖2HS
‖A‖2

⌋
,

where ‖A‖HS denotes the Hilbert-Schmidt norm of A, and ‖A‖ denotes the operator norm of A.

Remark 1.14. Recall that ‖A‖ = s1(A) and ‖A‖2HS =
∑rank(A)

i=1 si(A)2, where s1(A), s2(A), . . . denote
the singular values of A arranged in non-increasing order. Hence,

rs(A) :=

⌊∑rank(A)
i=1 si(A)2

s1(A)2

⌋
;

in particular, for any non-zero matrix A, 1 ≤ rs(A) ≤ rank(A), with the right inequality being an
equality if and only if A is an orthogonal projection up to an isometry.

We can now state our inequality. A more general version appears in Theorem 3.2.

Theorem 1.15. Let a1, . . . , an be a collection vectors in Rd. For some ` ∈ 2N, let A1, . . . ,A` be a
partition of the set {a1, . . . , an}, and for each i ∈ [`], let Ai denote the d× |Ai| dimensional matrix
whose columns are given by the elements of Ai. Then, for every M ≥ 1 and ε ∈ (0, 1),

Pr

[∥∥∥∥∥
n∑
i=1

εiai − u

∥∥∥∥∥
2

≤M

]
≤ 2d

∏̀
i=1

(
CM√

ε`‖Ai‖HS

) d(1−ε)rs(Ai)e
`

,

where rs(Ai) denotes the stable rank of Ai and C is an absolute constant.
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For illustration, consider a situation like above where the set of vectors a1, . . . , an can be parti-
tioned into m/d subsets, each of rank d. Assume further that each ai has norm at least one, so that
each of the m/d matrices has Hilbert-Schmidt norm at least

√
d. Then, if the stable rank of each of

these matrices is at least δd for some δ > 0, it follows that

Pr

[∥∥∥∥∥
n∑
i=1

εiai − u

∥∥∥∥∥
2

≤ 1

]
≤ Kd,

where K ≤ 2 (C/
√
m)

δ/2, which is a big improvement over the bound coming from Theorem 1.2
provided that δ is not too small and d is large.

1.3 Counting {±1}-valued normal matrices

Recall that a matrix M is normal if it commutes with its adjoint, i.e., MM∗ = M∗M (for real
matrices this is the same as MMT = MTM). Recently, Deneanu and Vu [4] studied the number of
n × n {±1}-valued normal matrices. Since real symmetric matrices are normal, there are at least
2(n+1

2 ) {±1}-valued normal matrices. They conjectured that this lower bound is essentially sharp.

Conjecture 1.16 (Deneanu-Vu, [4]). There are 2(0.5+o(1))n2
n× n {±1}-valued normal matrices.

As a first non-trivial step towards this conjecture, they showed the following.

Theorem 1.17 (Deneanu-Vu, [4]). The number of n × n {±1}-valued normal matrices is at most
2(cDV +o(1))n2 for some constant cDV < 0.698.

The problem of counting normal matrices also boils down to the problem of counting the number
of solutions to some underdetermined system of linear equations, and using our framework, it is very
easy to obtain an upper bound on the number of such matrices of the form 2(1−α)n2 , for some α > 0.
Unfortunately, it does not seem that one can get 1− α < cDV using this simple method. However,
the proof of Theorem 1.17 in [4] itself uses the Odlyzko bound at a certain stage; therefore, by using
their strategy as a black-box, with the application of the Odlyzko bound at this stage replaced by
our better bound, we obtain:

Theorem 1.18. There exists some δ > 0 such that the number of n×n {±1}-valued normal matrices
is at most 2(cDV −δ+o(1))n2, where cDV denotes the constant in [4].

2 Tools

2.1 The Fourier transform

For p ∈ [1,∞), let Lp(Rd) denote the set of functions f : Rd → C such that
∫
Rd |f(x)|pdx <∞. For

f ∈ L1(Rd), the Fourier transform of f – denoted by f̂ – is a function from Rd to C given by:

f̂(ξ) :=

∫
Rd
f(x)e−2πi〈x,ξ〉dx,

where 〈x, ξ〉 := x1ξ1 + · · · + xdξd denotes the standard inner product on Rd. For the reader’s
convenience, as well as to establish notation, we summarize the following basic properties of the
Fourier transform which may be found in any standard textbook on analysis (see, e.g., [18]).
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• (Parseval’s formula) Let f, g ∈ L1(Rd)∩L2(Rd). Then, the Fourier transforms f̂ , ĝ are also in
L2(Rd). Moreover, ∫

Rd
f(x)g(x)dx =

∫
Rd
f̂(ξ)ĝ(ξ)dξ.

• (Convolution formula) For f, g ∈ L1(Rd), let f ∗ g : Rd → C denote the convolution of f and
g i.e.

f ∗ g(x) =

∫
Rd
f(x− y)g(y)dy.

Then, f ∗ g ∈ L1(Rd), and for any ξ ∈ Rd

f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).

• (Fourier inversion) Let f ∈ L1(Rd) be such that f̂ is also in L1(Rd). Then, for any x ∈ Rd

f(x) =

∫
Rd
f̂(ξ)e2πi〈x,ξ〉dξ.

• (Fourier transform of autocorrelation) Let f ∈ L1(Rd) be real-valued, and let h denote the
autocorrelation of f i.e.

h(x) :=

∫
Rd
f(y)f(x+ y)dy.

Then, for all ξ ∈ Rd,
ĥ(ξ) =

∣∣∣f̂(ξ)
∣∣∣2 .

The notion of Fourier transform extends more generally to finite Borel measures on Rd. For such
a measure µ, the Fourier transform is a function from Rd to C given by:

µ̂(ξ) :=

∫
Rd
e−2πi〈x,ξ〉dµ(x).

To see the connection with the Fourier transform for functions in L1(Rd), note that if the measure µ
is absolutely continuous with respect to the Lebesgue measure λ, then the density (more precisely,
the Radon-Nikodym derivative) fµ := dµ/dλ is in L1(Rd), and we have µ̂(ξ) = f̂µ(ξ).

The only finite Borel measures we will deal with are those which arise as distributions of random
vectors valued in Rd. For a d-dimensional random vector X, let µX denote its distribution. Then,
we have (see, e.g., [5]):

• (Fourier transform of independent random variables) LetX1, . . . , X` be independent d-dimensional
random vectors, and let S` := X1 + · · ·+X` denote their sum. Then, for all ξ ∈ Rd,

µ̂S`(ξ) =
∏̀
i=1

µ̂Xi(ξ).

• (Inversion at atoms) Let X be a d-dimensional random vector. For any x ∈ Rd,

µX({x}) = lim
T1,...,Td→∞

1

vol(B[T1, . . . , Td])

∫
B[T1,...,Td]

e2πi〈x,t〉µ̂X(t)dt,

where B[T1, . . . , Td] denotes the box [−T1, T1]× · · · × [−Td, Td].

• (Fourier transform of origin-symmetric random vectors) Let X be a d-dimensional, origin-
symmetric random vector i.e. µX(x) = µX(−x) for all x ∈ Rd. Then, µ̂X is a real-valued
function.
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2.2 Anti-concentration

Definition 2.1. For a random vector X valued in Rd, its (Euclidean) Lévy concentration function
L(X, ·) is a function from R≥0 to R defined by:

L(X, δ) := sup
u∈Rd

Pr[‖X − u‖2 ≤ δ].

Anti-concentration inequalities seek to upper bound the Lévy concentration function for various
values of δ. In the discrete setting, a particularly important case is δ = 0, which corresponds to the
size of the largest atom in the distribution of the random variable X. The proofs of our Halász-type
inequalities will exploit two very general anti-concentration phenomena.

The first principle states that sums of independent random variables do not concentrate much
more than sums of suitable independent Gaussians. In particular, for the weighted sum of inde-
pendent Rademacher variables, Erdős gave a beautiful combinatorial proof to show (improving on
a previous bound of Littlewood and Offord) the following.

Theorem 2.2 (Erdős, [6]). Let a = (a1, . . . , an) be a vector in Rn all of whose entries are nonzero.
Let Sa denote the random sum ε1a1 + · · ·+ εnan, where the εi’s are independent Rademacher random
variables. Then,

sup
c∈R

Pr[Sa = c] ≤

(
n
bn/2c

)
2n

∼
√

2

πn
.

Up to a constant, this was subsequently generalized by Rogozin to handle the Lévy concentration
function of sums of general independent random variables.

Theorem 2.3 (Rogozin, [16]). There exists a universal constant C > 0 such that for any independent
random variables X1, . . . , Xn, and any r > 0, we have

L(Sn, δ) ≤
C√∑n

i=1 (1− L(Xi, δ))
,

where Sn := X1 + · · ·+Xn.

The second anti-concentration principle concerns random vectors of the form AX, where A is
a fixed m × n matrix, and X = (X1, . . . , Xn) is a random vector with independent coordinates. It
states roughly that if the Xi’s are anti-concentrated on the line, and if A has large rank in a suitable
sense, then the random vector AX is anti-concentrated in space [17].

As a first illustration of this principle, we present the following lemma, which may be viewed as
a ‘tensorization’ of the Erdős-Littlewood-Offord inequality.

Lemma 2.4. Let A be an m × n matrix (where m ≤ n) of rank r, and let X be a random vector
distributed uniformly on {±1}n. Then for any ` ∈ N,

sup
u∈Rm

Pr[AX(1) + · · ·+AX(`) = u] ≤
(

2−`
(

`

b`/2c

))r
,

where X(1), . . . , X(`) are i.i.d. copies of X.

Proof. By relabeling the coordinates if needed, we may write A as a block matrix
(
E F
G H

)
where

E is an r × r invertible matrix, F is an r × (n − r) matrix, G is a (m − r) × r matrix, and H is a
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(m− r)× (n− r) matrix. Let B denote the invertible m×m matrix
(
E−1 0

0 Im−r

)
, and note that

BA =

(
Ir ∗
∗ ∗

)
. For a vector v ∈ Rs with s ≥ r, let Qr(v) ∈ Rr denote the vector consisting of

the first r coordinates of v. Also, let X(j)
i denote the ith coordinate of the random vector X(j), let R

denote the collection of random variables {X(1)
r+1, . . . , X

(1)
n , . . . X

(`)
r+1, . . . , X

(`)
n }, and let S denote the

collection of random variables {X(1)
1 , . . . , X

(1)
r , . . . , X

(`)
1 , . . . , X

(`)
r }. Then for any u ∈ Rm, we have:

Pr
[
AX(1) + · · ·+AX(`) = u

]
= Pr

[
BAX(1) + · · ·+BAX(`) = Bu

]
≤ Pr

[
Qr(BAX

(1)) + · · ·+Qr(BAX
(`)) = Qr(Bu)

]
= ER

[
Pr
S

[
Qr(BAX

(1)) + · · ·+Qr(BAX
(`)) = Qr(Bu)|R

]]
= ER

[
Pr
S

[
Qr(X

(1)) + · · ·+Qr(X
(`)) = f(R)|R

]]
= ER

[
r∏
i=1

Pr
[
X

(1)
i + · · ·+X

(`)
i = fi(R)|R

]]

≤ ER

[
r∏
i=1

2−`
(
`

`/2

)]

=

(
2−`
(
`

`/2

))r
,

where the third line follows from the law of total probability; the fourth line follows from the explicit
form of BA mentioned above; the fifth line follows from the independence of the coordinates of X(j);
and the sixth line follows from the Erdős-Littlewood-Offord inequality (Theorem 2.2). Taking the
supremum over u ∈ Rm completes the proof.

Remark 2.5. By using Rogozin’s inequality (Theorem 2.3) instead of the Erdős-Littlewood-Offord
inequality, we may generalize the lemma to handle any random vector X = (X1, . . . , Xn) with
independent coordinates Xi, provided we replace the conclusion by

sup
u∈Rm

Pr[AX(1) + · · ·+AX(`) = u] ≤
(
C

`

)r/2
× max
I⊆[n],|I|=r

∏
i∈I

1√
1− L(Xi, 0)

,

where C is a universal constant.
For the Lévy concentration function for general δ, a version of Lemma 2.4 was proved by Rudelson

and Vershynin in [17].

Theorem 2.6 (Rudelson-Vershynin, [17]). Consider a random vector X = (X1, . . . , Xd) where Xi

are real-valued independent random variables. Let δ, ρ ≥ 0 be such that for all i ∈ [d],

L(Xi, δ) ≤ ρ.

Then, for every m× n matrix A, every M ≥ 1 and every ε ∈ (0, 1), we have

L (AX,Mδ‖A‖HS) ≤ (CεMρ)d(1−ε)rs(A)e ,

where Cε = C/
√
ε for some absolute constant C > 0.

More general statements of a similar nature may be found in [17].
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2.3 The replication trick

In this section, we present the ‘replication trick’, which allows us to reduce considerations about anti-
concentration of sums of independent random vectors to considerations about anti-concentration of
sums of independent identically distributed random vectors. This will be useful since the ‘correct’
analog of Rogozin’s inequality for general random vectors with independently coordinates is not
available; to our knowledge, the best result in this direction is due to Esseen [7], who proved an
inequality of this form for such random vectors satisfying additional symmetry conditions, which will
not be available in our applications. The statement/proof of the ‘atomic’ version of the replication
trick (Proposition 2.7) is similar in spirit to Corollaries 7.12 and 7.13 in [21] with an important
difference: we have no need for the lossy ‘domination’ and ‘duplication’ steps in [21]; instead, we
ensure the non-negativity of the Fourier transform at various places by using the previously stated
simple fact that the Fourier transform of the distribution of an origin-symmetric random vector is
real valued, and restricting ourselves to even powers thereof.

Proposition 2.7. Let X1, . . . , Xn be independent random vectors valued in Rd. For each i ∈ [n],
let X̃i := Xi −X ′i, where X ′i is an independent copy of Xi. Let Sn := X1 + · · · + Xn, and for any
i ∈ [n], m ∈ N, let S̃i,m := X̃

(1)
i + . . . X̃

(m)
i , where X̃(1)

i , . . . , X̃
(m)
i are independent copies of X̃i.

Then for any v ∈ Rd,

Pr [Sn = v] ≤
n∏
i=1

Pr
[
S̃i,ai/2 = 0

] 1
ai

for any a1, . . . , an ∈ 4 · N such that a−1
1 + · · ·+ a−1

n = 1.

Here, 4 · N denotes the subset of natural numbers given by {4m : m ∈ N}.

Proof. As before, we let µX denote the distribution of the d-dimensional random vector X. We
have:

µSn(v) = lim
T1,...,Td→∞

1

volB[T1, . . . , Td]

∫
B[T1,...,Td]

e−i〈t,v〉µ̂Sn(t)dt

= lim
T1,...,Td→∞

1

volB[T1, . . . , Td]

∫
B[T1,...,Td]

e−i〈t,v〉
n∏
i=1

µ̂Xi(t)dt

≤ lim
T1,...,Td→∞

1

volB[T1, . . . , Td]

n∏
i=1

(∫
B[T1,...,Td]

|µ̂Xi(t)|
ai dt

) 1
ai

= lim
T1,...,Td→∞

1

volB[T1, . . . , Td]

n∏
i=1

(∫
B[T1,...,Td]

(
µ̂X̃i(t)

)ai
2
dt

) 1
ai

= lim
T1,...,Td→∞

1

volB[T1, . . . , Td]

n∏
i=1

(∫
B[T1,...,Td]

µ̂S̃i,ai/2
(t)dt

) 1
ai

=

n∏
i=1

(
lim

T1,...,Td→∞

1

volB[T1, . . . , Td]

∫
B[T1,...,Td]

µ̂S̃i,ai/2
(t)dt

) 1
ai

=

n∏
i=1

(
µS̃i,ai/2

(0)
) 1
ai ,

where the first line follows from the Fourier inversion formula at atoms; the second line follows
from the independence of X1, . . . , Xn; the third line follows from Hölder’s inequality; the fourth line
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follows from the fact that µ̂X̃i(t) = |µ̂Xi(t)|2 (since the distribution of X̃i is the autocorrelation of

the distribution of Xi); the fifth line follows from the independence of X̃(1)
i . . . , X̃

(ai/2)
i ; and the last

line follows again from the Fourier inversion formula at atoms.

Remark 2.8. The same proof shows that when X1, . . . , Xn are independent origin symmetric random
vectors, then for any v ∈ Rd

Pr [Sn = v] ≤
n∏
i=1

Pr [Si,ai = 0]
1
ai

for any a1, . . . , an ∈ 2N such that a−1
1 + · · ·+a−1

n = 1, where Si,ai denotes the sum of ai independent
copies of Xi.

The next proposition is a version of Proposition 2.7 for the Lévy concentration function. Es-
sentially the same proof can also be used to prove variants for norms other than the Euclidean
norm.

Proposition 2.9. Let X1, . . . , Xn be independent random vectors valued in Rd. For each i ∈ [n],
let X̃i := Xi −X ′i, where X ′i is an independent copy of Xi. Let Sn := X1 + · · · + Xn, and for any
i ∈ [n], m ∈ N, let S̃i,m := X̃

(1)
i + . . . X̃

(m)
i , where X̃(1)

i , . . . , X̃
(m)
i are independent copies of X̃i.

Then for any δ > 0,

L(Sn, δ) ≤ 2d
n∏
i=1

L(S̃i,ai/2, 4δ)
1/ai

for any a1, . . . , an ∈ 4N such that a−1
1 + · · ·+ a−1

n = 1.

Proof. Let 1Bδ(0) denote the indicator function of the ball of radius δ centered at the origin. We
will make use of the readily verified elementary inequality

vol(Bδ(0))1Bδ(0)(x) ≤ 1B2δ(0) ∗ 1B2δ(0)(x) ≤ vol(B2δ(0))1B4δ(0)(x). (1)

By adding to each Xi an independent random vector with distribution given by a ‘bump function’
with arbitrarily small support around the origin, we may assume that the distributions of all the
random vectors under consideration are absolutely continuous with respect to the Lebesgue measure
on Rd, and thus have densities. For such a random vector Y , we will denote its density with respect
to the d-dimensional Lebesgue measure by fY . Then, for any v ∈ Rd, we have:

Pr [‖Sn − v‖2 ≤ δ] =

∫
x∈Rd

1Bδ(0)(x)fSn(x+ v)dx

≤ vol(Bδ(0))−1

∫
x∈Rd

(
1B(2δ) ∗ 1B(2δ)

)
(x)fSn(x+ v)dx

= vol(Bδ(0))−1

∫
ξ∈Rd

e2πi〈ξ,v〉 (1B(2δ) ∗ 1B(2δ)

)∧
(ξ)f̂Sn(ξ)dξ

= vol(Bδ(0))−1

∫
ξ∈Rd

e2πi〈ξ,v〉
(
1̂B(2δ)(ξ)

)2
n∏
i=1

f̂Xi(ξ)dξ

= vol(Bδ(0))−1

∫
ξ∈Rd

e2πi〈ξ,v〉
n∏
i=1

((
1̂B(2δ)(ξ)

) 2
ai f̂Xi(ξ)

)
dξ

≤ vol(Bδ(0))−1
n∏
i=1

(∫
ξ∈Rd

(
1̂B(2δ)(ξ)

)2 ∣∣∣f̂Xi(ξ)∣∣∣ai dξ) 1
ai
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= vol(Bδ(0))−1
n∏
i=1

(∫
ξ∈Rd

(
1̂B(2δ)(ξ)

)2 (
f̂X̃i(ξ)

)ai
2
dξ

) 1
ai

= vol(Bδ(0))−1
n∏
i=1

(∫
ξ∈Rd

(
1B(2δ) ∗ 1B(2δ)

)∧
(ξ)f̂S̃i,ai/2

(ξ)dξ

) 1
ai

= vol(Bδ(0))−1
n∏
i=1

(∫
x∈Rd

(
1B(2δ) ∗ 1B(2δ)

)
(x)fS̃i,ai/2

(x)dx

) 1
ai

≤ vol(Bδ(0))−1vol(B2δ(0))
n∏
i=1

(∫
x∈Rd

1B(4δ)(x)fS̃i,ai/2
(x)dx

) 1
ai

= 2d
n∏
i=1

(
Pr
[
‖S̃i,ai/2‖2 ≤ 4δ

]) 1
ai ,

where the second line follows from (1); the third line follows from Parseval’s formula; the fourth
line follows from the convolution formula and the independence of X1, . . . , Xn; the sixth line follows
from Hölder’s inequality, along with the fact that 1̂B(2δ)(ξ) is real valued for all ξ ∈ Rd; the seventh
line follows from the fact that |f̂Xi(ξ)|2 = f̂X̃i(ξ) for all ξ ∈ Rd; the ninth line follows again from
Parseval’s formula; and the tenth line follows from (1). Taking the supremum over all v ∈ Rd gives
the desired conclusion.

Remark 2.10. As in Remark 2.8, if X1, . . . , Xn are origin-symmetric, then the same conclusion holds
with S̃i,ai/2 replaced by Si,ai , for any a1, . . . , an ∈ 2N with a−1

1 + · · ·+ a−1
n = 1.

3 Proofs

3.1 Proofs of Halász-type inequalities

By combining the tools from Sections 2.2 and 2.3, we can now prove our Halász-type inequalities.
All of them follow the same general outline. We begin by proving Theorem 1.11.

Proof of Theorem 1.11. Let A1, . . . ,A` be the partition of {a1, . . . , an} as in the statement of the
theorem. For each i ∈ [`], let Ai denote d × |Ai| dimensional matrix whose columns are given by
the elements of Ai. With this notation, we can rewrite the random vector

∑n
i=1 εiai as

∑`
j=1AjYj ,

where Yj is uniformly distributed on {±1}|Aj | and Y1, . . . , Y` are independent.
Since the random vectors X1 := A1Y1, . . . , Xn := AnYn are origin-symmetric, and since ` ∈ 2N,

it follows from Proposition 2.7 and Remark 2.8 that for any u ∈ Rd,

Pr

[
n∑
i=1

εiai = u

]
= Pr

∑̀
j=1

Xj = u


≤

∏̀
i=1

Pr
[
X

(1)
j + · · ·+X

(`)
j = 0

] 1
`
,

where X(1)
j , . . . , X

(`)
j are i.i.d. copies of Xj . Further, since rank(Aj) = rj by assumption, it follows

from Lemma 2.4 that

Pr
[
X

(1)
j + · · ·+X

(`)
j = 0

]
= Pr

[
AjY

(1)
j + · · ·+AjY

(`)
j = 0

]
12



≤
(

2−`
(
`

`/2

))rj
.

Substituting this bound in the previous inequality completes the proof.

By using Remark 2.5 instead of Lemma 2.4, we can use the same proof to obtain the following
more general statement.

Theorem 3.1. Let a1, . . . , an be a collection vectors in Rd which can be partitioned as A1, . . . ,A`
such that dimRd(span{a : a ∈ Ai}) =: ri. Let x1, . . . , xn be independent random variables, and for
each i ∈ [n], let x̃i := xi − x′i, where x′i is an independent copy of xi. Then,

sup
u∈Rd

Pr

[
n∑
i=1

xiai = u

]
≤ 2d inf

(b1,...,b`)∈B

(
C

`λ

)∑`
i=1

ri
2bi

,

where λ := mini∈[n](1− Lx̃i(0)) and B = {(b1, . . . , b`) ∈ (4N)` : b−1
1 + · · ·+ b−1

` = 1}.

We now state and prove the general small-ball version of our anti-concentration inequality.

Theorem 3.2. Let a1, . . . , an be a collection vectors in Rd. Let A1, . . . ,A` be a partition of the set
{a1, . . . , an}, and for each i ∈ [`], let Ai denote the d× |Ai| dimensional matrix whose columns are
given by the elements of Ai. Let x1, . . . , xn be independent random variables, and for each i ∈ [n], let
x̃i := xi−x′i, where x′i is an independent copy of xi. Let δ, λ ≥ 0 be such that mini∈[n](1−L(x̃i, δ)) =
λ. Then, for every M ≥ 1 and ε ∈ (0, 1),

L

(
n∑
i=1

xiai,Mδ

)
≤ inf

(b1,...,b`)∈B

∏̀
i=1

(
CM√

εbiλ‖Ai‖HS

) d(1−ε)rs(Ai)e
bi

,

where rs(Ai) denotes the stable rank of Ai, C is an absolute constant, and B = {(b1, . . . , b`) ∈ (4N)` :
b−1
1 + · · ·+ b−1

` = 1}.

Proof. As before, we begin by rewriting the random vector
∑n

i=1 xiai as
∑`

i=1AiYi. From Proposi-
tion 2.9, it follows that for any (b1, . . . , b`) ∈ B,

L

(
n∑
i=1

xiai,Mδ

)
= L

(∑̀
i=1

AiYi,Mδ

)

≤ 2d
∏̀
i=1

L
(
Ai

(
Ỹ

(1)
i + · · ·+ Ỹ

(bi/2)
i

)
, 4Mδ

) 1
bi .

Next, since 1− L(x̃i, δ) ≥ λ for all i ∈ [n], it follows from Theorem 2.3 that

L
(
x̃1
i + · · ·+ x̃

(bi/2)
i , δ

)
≤ C√

biλ
,

where C is an absolute constant. In particular, all of the (independent) coordinates of the random
vector Ỹ (1)

i + · · ·+ Ỹ
(bi/2)
i have δ-Lévy concentration function bounded by C/

√
biλ. Hence, it follows

from Theorem 2.6 that

L
(
Ai

(
Ỹ

(1)
i + · · ·+ Ỹ

(bi/2)
i

)
, 4Mδ

)
≤
(

CM√
εbiλ‖Ai‖HS

)d(1−ε)rs(Ai)e
,

where C is an absolute constant. Substituting this in the first inequality completes the proof.

13



Remark 3.3. When the xi’s are origin symmetric random variables, we may use Remark 2.10 instead
of Proposition 2.9 to obtain a similar conclusion – with the infimum now over the larger set B′ =
{(b1, . . . , b`) ∈ (2N)` : b−1

1 + · · ·+ b−1
` = 1} – under the assumption that mini∈[n](1− L(xi, δ)) = λ.

In particular, if ` is even, then taking b1 = · · · = b` = ` gives Theorem 1.15.

3.2 Proof of Theorem 1.2

As in Section 1.1.1, let Hk,n denote a k×n matrix with all its entries in {±1} and all of whose rows
are orthogonal. For convenience of notation, we isolate the following notion.

Definition 3.4. For any r, ` ∈ N, a matrix M is said to admit an (r, `)-rank partition if there
exists a decomposition of the columns of M into ` disjoint subsets, each of which corresponds to a
submatrix of rank at least r.

Note that the existence of an (r, `)-rank partition is a uniform version of the condition appearing
in Theorem 1.11. The next proposition shows that any Hk,n with k admits an (r, `)-rank partition
with r and ` sufficiently large.

Proposition 3.5. Let r, ` ∈ N such that 2 ≤ `, r ≤ k and (e2`)k < (n/r)k−r. Then, Hk,n admits an
(r, `)-rank partition.

Proof. The proof proceeds in two steps – first, we show that Hk,n contains many non-zero k × k
minors, and second, we apply a simple greedy procedure to these non-zero minors to produce an
(r, `)-rank partition for the desired values of r and `.

The first step follows easily from the classical Cauchy-Binet formula (see, e.g., [2]), which asserts
that:

det(Hk,nH
T
k,n) =

∑
A∈Mk

det(A)2,

whereMk denotes the set of all k × k submatrices of Hk,n. In our case, Hk,nH
T
k,n = nIdk, so that

det(Hk,nH
T
k,n) = nk. Moreover, since each A ∈ Mk is a k × k {±1}-valued matrix, det(A)2 ≤ kk

(with equality attained if and only if A is itself a Hadamard matrix). Hence, it follows from the
Cauchy-Binet formula that Hn,k has at least (n/k)k non-zero minors.

Next, we use these non-zero minors to construct an (r, `)-rank partition in ` steps as follows: In
Step 1, choose r columns of an arbitrary non-zero minor – such a minor is guaranteed to exist by
the discussion above. Let Ck denote the union of the columns chosen by the end of Step k, for any
1 ≤ k ≤ `− 1. In Step k + 1, we choose r linearly independent columns which are disjoint from Ck.
Then, the ` collections of r columns chosen at different steps gives an (r, `)-rank partition of Hk,n.

Therefore, to complete the proof, it only remains to show that for each 1 ≤ k ≤ `− 1, there is a
choice of r linearly independent columns which are disjoint from Ck. Since |Ck| = rk, this is in turn
implied by the stronger statement that there is a choice of r linearly independent columns which are
disjoint from any collection C of at most r` columns. In order to see this, we note that the number
of k × k submatrices of Hk,n which have at least k − r columns contained in C is at most:

r∑
s=0

(
r`

k − s

)(
n

s

)
≤

(
r`

k

) r∑
s=0

(
n

s

)

≤
(
er`

k

)k (en
r

)r
<

(n
k

)k
,
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where the first inequality uses 2 ≤ ` and the final inequality follows by assumption. Since there are
at least (n/k)k non-zero minors of Hk,n, it follows that there exists a k× k submatrix Ak+1 of Hn,k

of full rank which shares at most k − r columns with Ck. In particular, Ak+1 contains r linearly
independent columns which are disjoint from Ck, as desired.

The previous proposition essentially completes the proof of Theorem 1.2. Indeed, recall from
Section 1.1.1 that it suffices to show the following: there exist absolute constants 0 < c1 < c2 < 1
and C > 0 such that for all k ∈ [c1n, c2n], the number of solutions x ∈ {±1}n to Hk,nx = 0 is
at most 2−(1+C)k. The previous proposition shows that Hk,n admits an (r, `)-rank partition with
r = bk/2c and ` = b

√
n/ke4c. Hence, from Theorem 1.11, it follows that for k ∈ [1, n/15000], the

number of solutions x ∈ {±1}n to Hk,nx = 0 is at most 2n−(1+1/10)k, which completes the proof.
Remark 3.6. For our problem of providing an upper bound on the number of Hadamard matrices,
we could have used the somewhat simpler Proposition 3.8 (instead of Proposition 3.5), which shows
that there are very few Hk,n which do not admit an (r, `)-rank partition for sufficiently large r, `.
However, we used Proposition 3.5 to show that it is easy to find such a rank partition even for a
given k×n system of linear equations A – indeed, the proof of Proposition 3.5 goes through as long
as det(AAT ) is ‘large’ (which is indeed the case for random or ‘pseudorandom’ A), and all k × k
minors of A are uniformly bounded (which is guaranteed in settings where A has restricted entries,
as in our case).

3.3 Proof of Theorem 1.18

In this section, we show how to obtain a non-trivial upper bound on the number of {±1}-valued
normal matrices using our general framework. As mentioned in the introduction, this bound by itself
is not stronger than the one obtained by Deneanu and Vu [4]; however, it can be used in their proof
in a modular fashion to obtain an improvement over their bound, thereby proving Theorem 1.18.
As the proof of Deneanu and Vu is quite technical, we defer the details of this second step to
Appendix A.

Following Deneanu and Vu, we consider the following generalization of the notion of normality:

Definition 3.7. Let N be a fixed (but otherwise arbitrary) n × n matrix. An n × n matrix M is
said to be N -normal if and only if

MMT −MTM = N.

For any n×n matrix N , we let N (N) denote the set of all n×n, {±1}-valued matrices which are
N -normal. In particular, N (0) is the set of all n× n, {±1}-valued normal matrices. The notion of
N -normality is crucial to the proof of Deneanu and Vu, which is based on an inductive argument –
they show that the quantity 2(cDV +o(1))n2 in Theorem 1.17 is actually a uniform upper bound on the
size of the set N (N) for any N . While this general notion of normality is not required to obtain some
non-trivial upper bound on the number of normal matrices, either using our framework or theirs,
we will state and prove the results of this section for N -normality, since this greater generality will
be essential in Appendix A.

We begin by introducing some notation, and discussing how to profitably recast the problem of
counting N -normal matrices as a problem of counting the number of solutions to an underdetermined
system of linear equations. Given any matrixX, we let ri(X) and ci(X) denote its ith row and column
respectively. With this notation, note that for a given matrix M , being N -normal is equivalent to
satisfying the following equation for all i, j ∈ [n]:

ri(M)rTj (M)− ci(M)T cj(M) = Nij . (2)
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In particular, writing M in block form as:

M =

[
Ak Bk
Ck Dk

]
,

where Ak is a k × k matrix, we see that (2) amounts to the following equations:

(i) For all i, j ∈ [k]:

ri(Ak)rj(Ak)
T + ri(Bk)rj(Bk)

T − ci(Ak)T cj(Ak)− ci(Ck)T cj(Ck) = Nij .

(ii) For all i ∈ [k], j ∈ [n− k]:

ri(Ak)rj(Ck)
T + ri(Bk)rj(Dk)

T − ci(Ak)T cj(Bk)− ci(Ck)T cj(Dk) = Ni,k+j .

(iii) For all i, j ∈ [n− k]:

ri(Ck)rj(Ck)
T + ri(Dk)rj(Dk)

T − ci(Bk)T cj(Bk)− ci(Dk)
T cj(Dk) = Nk+i,k+j .

We now rewrite this system of equations in a form that will be useful for our application.
Following Deneanu and Vu, we will count the size of N (N) by constructing N -normal matrices in
n + 1 steps, and bounding the number of choices available at each step. The steps are as follows:
in Step 0, we select n entries d1, . . . , dn to serve as diagonal entries of the matrix M ; in Step k for
1 ≤ k ≤ n, we select 2(n−k) entries so as to completely determine the kth row and the kth column of
M – of course, these 2(n−k) entries cannot be chosen arbitrarily, and must satisfy some constraints
coming from the choice of entries in Steps 0, . . . , k − 1.

More precisely, let Mk denote the structure obtained at the end of Step k. Then,

Mk =


Ak Bk

Ck

dk+1 ∗ ∗

∗ . . . ∗
∗ ∗ dn

 , (3)

where the ∗’s denote the parts of Dk which have not been determined by the end of Step k. Observe
that the matrix Ak, together with the first column of Bk, the first row of Ck, and the diagonal
element dk+1 forms the matrix Ak+1; in particular, the matrix Ak+1 is already determined at the
end of Step k. Moreover, both Bk+1 and Ck+1 are determined at the end of Step k up to their last
row and last column respectively.

In Step k + 1, we choose rk+1(Bk+1) and ck+1(Ck+1). In order to make this choice in a manner
such that the resulting Mk+1 admits even a single extension to an N -normal matrix, it is necessary
that for all i ∈ [k]:

rk+1(Ak+1)ri(Ak+1)T+rk+1(Bk+1)rTi (Bk+1)−ck+1(Ak+1)T ci(Ak+1)−ck+1(Ck+1)T ci(Ck+1) = Nk+1,i.

Since Ak+1 is completely determined by the end of Step k, and since N is fixed, we can rewrite
the above equation as: for all i ∈ [k],

rk+1(Bk+1)rTi (Bk+1)− ck+1(Ck+1)T ci(Ck+1) = N ′k+1,i, (4)

for some N ′k+1,i which is uniquely determined at the end of Step k. Let N ′k be the k-dimensional
column vector whose ith entry is given by N ′k+1,i, let Tk := [U V ] be the k × 2(n − k − 1) matrix
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formed by taking U to be the matrix consisting of the first k rows of Bk+1 and V T to be the matrix
consisting of the first k columns of Ck+1, and let xk be the 2(n− k − 1)-dimensional column vector

given by xk :=

[
rTk+1(Bk+1)
−ck+1(Ck+1)

]
. With this notation, (4) can be written as:

Tkxk = N ′k. (5)

The next proposition is the analogue of Proposition 3.5 in the present setting.

Proposition 3.8. Let 0 < γ < 1 be fixed, and let M be a random m × n′ {±1}-valued random
matrix. Let Eγ,` denote the event that M does not admit a (γm, `)-rank partition. Then,

Pr[Eγ,`] ≤ 2−(1−γ)2mn′+(1−γ)2(m2`+m2)+O(n′).

The proof of this proposition is based on the following lemma, which follows easily from Odlyzko’s
lemma (Lemma 1.5).

Lemma 3.9. Let 0 < γ < 1 be fixed, and let M be a random m ×m {±1}-valued random matrix.
Then,

Pr[rank(M) ≤ γm] ≤ 2−(1−γ)2m2+O(m).

Proof. For any integer 1 ≤ s ≤ m, let Rs denote the event that rank(M) = s. Since

Pr[rank(M) ≤ γm] = Pr

[
m∨
s=1

Rs

]
≤

γm∑
s=1

Pr[Rs],

it suffices to show that Pr[Rs] ≤ 2−(1−γ)2m2+O(m) for all s ∈ [γm]. To see this, note by symmetry
that

Pr[Rs] ≤
(
m

s

)
Pr
[
Rs ∧ I[s]

]
,

where I[s] is the event that the first s rows of M are linearly independent. Moreover, letting
r[s+1,n](M) denote the set {rs+1(M), . . . , rm(M)} of the last m − s rows of M , and Vs denote the
random vector space spanned by the first s rows of M , we have:

Pr
[
Rs ∧ I[s]

]
≤ Pr

[
r[s+1,n] ⊆ Vs

]
=

∑
v1,...,vs∈{±1}m

Pr
[
r[s+1,n](M) ⊆ Vs|ri(M) = vi, 1 ≤ i ≤ s

]
Pr [ri(M) = vi, 1 ≤ i ≤ s]

=
∑

v1,...,vs∈{±1}m

 m∏
j=s+1

Pr [rj(M) ⊆ Vs|ri(M) = vi, 1 ≤ i ≤ s]

Pr [ri(M) = vi, 1 ≤ i ≤ s]

≤
∑

v1,...,vs∈{±1}m
2(s−m)(m−s) Pr [ri(M) = vi, 1 ≤ i ≤ s]

= 2−(m−s)2 ,

where the second line follows from the law of total probability; the third line follows from the
independence of the rows of the matrix M ; and the fourth line follows from Odlyzko’s lemma
(Lemma 1.5) along with the fact that conditioning on the values of r1(M), . . . , rs(M) fixes Vs to be
a subspace of dimension at most s.

Finally, since m− s ≥ (1− γ)m and
(
m
s

)
≤ 2m, we get the desired conclusion.
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Proof of Proposition 3.8. For each i ∈ [t], where t = bn′/mc, let Ai denote the m×m submatrix of
M consisting of the columns c(i−1)m+1(M), . . . , cim(M). Then,

Pr[Eγ,`] ≤ Pr [|{i ∈ [t] : rank(Ai) ≤ γm}| > t− `] .

By Lemma 3.9, we have for each i ∈ [t] that

Pr[rank(Ai) ≤ γm] ≤ 2−(1−γ)2m2+O(m).

Therefore, since the entries of the different Ai’s are independent, the probability of having more
than t− ` indices i ∈ [t] for which rank(Ai) ≤ γm is at most:

t∑
k=t−`+1

(
t

k

)(
2−(1−γ)2m2+O(m)

)k
≤ t2t2−(1−γ)2m2(t−`)+O(tm)

≤ 2−(1−γ)2m2t+(1−γ)2m2`+O(tm)

≤ 2−(1−γ)2mn′+(1−γ)2(m2`+m2)+O(n′),

which completes the proof.

We need one final piece of notation. For 1 ≤ k ≤ n, we define the set of k-partial matrices –
denoted by Pk – to be {±1, ∗}-valued matrices of the form (3). For any n× n {±1}-valued matrix
M , let Mk denote k-partial matrix obtained by restricting M . For any 1 ≤ k ≤ n and any n × n
matrix N , we define:

Sk(N) := {P ∈ Pk : P = Mk for some M which is N -normal}.

In words, Sk(N) denotes all the possible k-partial matrices arising as restrictions of N -normal
matrices. The following proposition is the main result of this section.

Proposition 3.10. There exist absolute constants β, δ > 0 such that for any n× n matrix N ,

|Sβn(N)| ≤ 2(2β−β2)n2−δn2+o(n2).

Given this proposition, it is immediate to obtain a non-trivial upper bound on the number of
{±1}-valued N -normal matrices. Indeed, any N -normal matrix must be an extension of a matrix in
Sβn(N); on the other hand, any matrix in Sβn(N) can be extended to at most 2(1−β)2n2

N -normal
matrices (as Dβn is an n(1− β)× n(1− β) {±1}-valued matrix). Hence, the number of N -normal
matrices is at most 2(2β−β2)n2−δn2+(1−β)2n2

= 2(1−δ)n2+o(n2).

Proof. For any m-partial matrix P and for any 1 ≤ k ≤ m, let Tk(P ) denote the k × 2(n − k − 1)
matrix obtained from P as in (5). We will estimate the size of Sβn(N) by considering the following
two cases.

First, we bound the number of partial matrices P in Pβn such that for some βn/2 ≤ k ≤ βn,
Tk(P ) does not admit a (γk, `k)-rank-partition, where `k = n′/2k, n′ = 2(n− k − 1), and 0 < γ < 1
is some constant to be chosen later. For this, note that Proposition 3.8 shows that there are at most

2kn
′−(1−γ)2kn′+(1−γ)2(k2`k+k2)+O(n′) = 2kn

′−(1−γ)2kn′/4+O(n′)

choices for such a Tk(P ), provided k < n′/4, which holds for (say) β < 1/4. Since the remaining
unknown entries of P which are not in Tk(P ) are {±1}-valued, this shows that the number of βn
partial matrices satisfying this first case is bounded above by

2(2β−β2)n2−n2(1−γ)2β(1−β)/4+o(n2),
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for all β < 1/4.
Second, we bound the number of partial matrices P ∈ Sβn(N) which have the additional property

that Tk(P ) admits a (γk, `k)-rank-partition for all βn/2 ≤ k ≤ βn. In this case, Theorem 1.11 shows
that for any βn/2 ≤ k ≤ βn, the number of {±1}-valued solutions to (5) Tk(P )xk = N ′ is at most

22(n−k−1)`
−γk/2
k ≤ 22(n−k)− γk

2
log2

n
2k , (6)

where in the last inequality, we have used 2(n − k − 1) ≥ n for all k ≤ βn, which is certainly true
for β < 1/4. In other words, for a fixed Tk(P ), there are at most 22(n−k−1)− γk

2
log2

n
2k ways to extend

it to Tk+1(P ′) for some P ′ ∈ Sβn(N). Hence, it follows that the number of matrices in Sβn(N) with
this additional property (stated at the beginning of the paragraph) is at most:

2
(2β−β2)n2−

∑βn
k=βn/2

γk
2

log n
2k ≤ 2(2β−β2)n2−n2γβ2 log2(1/2β)/8+o(n2),

for β < 1/4. Combining these two cases completes the proof.

Remark 3.11. In particular, if we take γ = 3/4, it follows that for β sufficiently small (say β ≤ 2−10),
we can take δ ≥ β2.
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A Completing the proof of Theorem 1.18

We now show how to combine the strategy of Deneanu and Vu with Section 3.3 in order to prove
Theorem 1.18. We begin with a few definitions.

Definition A.1. Let Sn denote the symmetric group on n letters. For any σ ∈ Sn and for any n×n
matrix M , we define

Mσ := PσMP Tσ ,

where Pσ is the permutation matrix representing σ. In other words, Mσ is the matrix obtained from
M by permuting the row and columns according to σ.

The previous definition motivates the following equivalence relation ∼ on the set of n×nmatrices:
given two n × n matrices M and M ′, we say that M ∼ M ′ if and only if there exists σ ∈ Sn such
that M ′ = Mσ. The next definition isolates a notion of normality which is invariant under this
equivalence relation.

Definition A.2. Let N be a fixed n × n matrix. We say that an n × n matrix M is N -normal-
equivalent if and only if there exists some σ ∈ Sn such that MMT −MTM = Nσ.
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By definition, it is clear that for any N and for any M ∼ M ′, M is N -normal-equivalent if
and only if M ′ is N -normal equivalent. On the other hand, as we will see below, one can find a
permutation ρM for any matrix M such that for the matrix M ′ := MρM , the ranks of many of the
matrices Tk(M ′), 1 ≤ k ≤ n are large, where Tk(M ′) denotes the matrix from (5). Therefore, by
Odlyzko’s lemma, we will be able to obtain good upper bounds on the probability of the random
matrix M ′ := MρM being C-normal, for any fixed C, which then translates to an upper bound on
the probability of N -normality of M as follows: for any fixed N ,

Pr [M is N -normal] ≤ Pr [M is N -normal-equivalent]
= Pr [MρM is N -normal-equivalent]

≤
∑
σ∈Sn

Pr [MρM is Nσ-normal]

≤ n! sup
σ∈Sn

Pr [MρM is Nσ-normal]

≤ 2o(n
2) sup
C∈Mn×n

Pr [MρM is C-normal] ,

whereMn×n denotes the set of all n×n matrices, and we have used the fact that n! = 2o(n
2). Hence,

it suffices to provide a good uniform upper bound on the probability that the random matrix MρM

is N -normal for any fixed N .
To make the special property of the matrixMρM precise, we need the following functions, defined

for all integers 1 ≤ s ≤ t ≤ n:

Rs,t(i) :=


i if 0 < i ≤ s
s if s < i ≤ t

s+ t− i if t < i ≤ 2n− s− t
2n− 2i if 2n− s− t < i ≤ n.

The next proposition is one of the key ideas in the proof of Deneanu and Vu.

Proposition A.3 (Permutation Lemma, Lemma 3.5 in [4]). Let M be any (fixed) n × n matrix.
Then, there exist s, t ∈ N and ρM ∈ Sn such that MρM satisfies:

rank(Ti(MρM )) = Rs,t(i) for all 1 ≤ i ≤ n.

For a fixed matrix N , let Ns,t(N) denote the set of {±1}-valued n×n matricesM such thatM is
N -normal, and rank(Ti(M)) = Rs,t(i) for all i ∈ [n]. Then, it follows from the previous proposition
that MρM is N -normal if and only if MρM ∈

⋃
1≤s≤t≤nNs,t(N). This, in turn, can happen only if M

itself is one of the at most n!
∑

s,t |Ns,t(N)| matrices obtained by permuting the rows and columns
of Ns,t(N). Hence, it suffices to provide a good upper bound on |Ns,t(N)| uniformly in N, s and t.

Deneanu and Vu note (Observation 3.7 in [4]) that Ns,t is empty unless the following restrictions
on s and t are met:

• 1 ≤ s ≤ 2n/3, and

• s
2 < n− t < s.

Then, letting
β := sup{c > 0 : |Ns,t(N)| ≤ 2−(c+o(1))n2

for all s, t,N},

and for some small fixed (but otherwise arbitrary) ε > 0, letting

α := β − ε,
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they show (Lemmas 5.1 and 5.4 in [4]) the following:

|Ns,t(N)| ≤ 2n
2 ×

min
(

2g1(n,s,t)+o(n2), 2f(α,n,s,t)+o(n2)
)

s ≤ n
2

min
(

2g2(n,k,t)+o(n2), 2f(α,n,k,t)+o(n2)
)

s ≥ n
2

, (7)

where

f(α, n, s, t) := (1− α)t2 − s2/2− n2 + ns

g1(n, s, t) := t2 − 3s2 + 2sn+ st− 2nt

g2(n, s, t) := n2 + s2 + t2 + st− 2sn− 2nt.

Finally, they analyze (7) to obtain their bound on β. For this, they note that since for fixed s, both
g1 and g2 are decreasing functions of t while f is an increasing function of t, the worst restrictions
on β (i.e. those requiring β to be small) can only be obtained in one of the following six cases:

1. t = n− s and s ≤ n/2, which places the restriction β ≤ 0.425;

2. t = n− s/2 and s ≤ n/2, which places the restriction β ≤ 0.307;

3. t = n− s/2 and s ≥ n/2, which places the restriction β ≤ 0.3125;

4. t = s and s ≥ n/2, which places the restriction β ≤ 0.323;

5. f(α, n, s, t) = g2(n, s, t) and s ≥ n/2, which places the restriction β ≤ 0.307; and finally,

6. f(α, n, s, t) = g1(n, s, t) and s ≤ n/2, which places the worst restriction β ≤ 0.302.

Hence, any improvement in Case 6 translates to an overall improvement in their bound. Moreover,
note that for 1 ≤ s ≤ n

10 , Case 6 only leads to the restriction β ≤ 0.7. Therefore, it suffices to
improve Case 6 for n

10 ≤ s ≤
n
2 . We will do this using Proposition 3.10.

We start by showing how to deduce the upper bound g1(n, s, t), as in [4]. For any 0 ≤ k ≤ n, we
define

Sk,(s,t)(N) := {P ∈ Pk : P = Mk for some M ∈ Ns,t(N)},

where recall that Pk denotes the set of k-partial matrices, and Mk denotes the k-partial matrix
associated to M . By definition, the number of ways to extend any k-partial matrix in Sk,(s,t)(N)
to a (k + 1)-partial matrix in Sk+1,(s,t)(N) is at most the number of {±1}-valued solutions to :
Tkxk = N ′k, which is at most 2max{2(n−k−1)−rank(Tk),0} by Odlyzko’s lemma (Lemma 1.5). Hence, it
follows that the total number of matrices in Ns,t(N) is at most

|Ns,t(N)| ≤ 2o(n
2)

n∏
k=0

2max{2(n−k−1)−rank(Tk),0}

= 2o(n
2)

n∏
k=0

2max{2(n−k)−Rs,t(i),0}

= 2g1(n,s,t)+o(n2),

where the second equality follows from the definition of Ns,t(N) and the last equality follows by
direct computation.

To obtain our improvement, we note that above computation may be viewed in the following
two steps:
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• |Ns,t(N)| ≤ 2o(n
2)|Sβn,(s,t)(N)|

∏n
k=βn+1 2max{2(n−k−1)−rank(Tk),0}, which is true for any 0 <

β < 1

• For 0 < β < 1 such that βn < s,

|Sβn,(s,t)(N)| ≤ 2o(n
2)

βn∏
k=0

2max{2(n−k−1)−rank(Tk),0}

= 2o(n
2)

βn∏
k=0

22(n−k)−rank(Tk)

= 2o(n
2)

βn∏
k=0

22n−3k

= 2(2β−β2)n2−β2n2/2+o(n2)

In particular, by our assumption on s, we know that this holds for (say) β = 2−10.

However, by Proposition 3.10 and Remark 3.11, we already know that for β = 2−10,

|Sβn,(s,t)(N)| ≤ |Sβn(N)|

≤ 2(2β−β2)n2−β2n2+o(n2)

Using this improved bound in the previous computation, we get that |Ns,t(N)| ≤ 2h(n,s,t)+o(n2),
where

h(n, s, t) = g1(n, s, t)− β2n2

2
.

Hence, we have showed that Case 6 can be replaced by the following two cases:

Case 6.1 f(α, n, s, t) = g1(n, s, t) and s ≤ n/10

Case 6.2 f(α, n, s, t) = h(n, s, t) and n/10 ≤ s ≤ n/2,

each of which place a restriction on β which must be larger than the constant cDV obtained in [4].
This completes the proof of Theorem 1.18.
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