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Disclaimer: I’ve started writing these notes when I was teaching Algebraic methods in Combi-

natorics at MIT. The notes are based on many resources that I found online. In particular, I used

notes of Dan Spielman from Yale, Jeff Kahn from Rutgers, Benny Sudakov from ETH, Zurich, László

Babai from University of Chicago, and from some chapters of a book by Richard Stanley from MIT

and more. Apologies to those who I forgot to mention even though that I used their notes. This was

the first time that I was giving such a class and I was preparing it on a weekly base, so the reader

may find the structure of the topics being far from optimal. It is not recommended to follow these

notes in the given order (or in any). If you plan on using these notes in a class that you are giving,

don’t hesitate to email me and I’ll send you the TEX file so you could edit to your convenience (and

of course, I would be very grateful to get a more organized version of it in return after your semester

ends).

My plan is to keep extending/polishing the notes on a regular base until it will become a book

where each chapter is a series of few independent lectures on some topic in advanced combinatorics.

I’ll do my best to cover as many different topics as possible.

1 Some linear algebra and other useful lemmas

The following theorem will be frequently used throughout the course and we will not prove it

here. We refer to it as the Spectral Theorem in these lectures:

Theorem 1.1. 1. The eigenvalues of a graph G are always real (as its adjacency matrix is a real

values, symmetric matrix).

2. AG is diagonalizable.

3. There is an orthonormal basis of eigenvectors.

The following formula seems important enough to memorize as it is going to be used in almost

every proof.

Lemma 1.2. xtAGx =
∑n

i=1 xi
∑n

j=1 aijxj =
∑

ij∈E(G) xixj . In particular, if xS is a characteristic

vector of a subset S ⊆ V (G), then xtSAGx = 2e(S).

The following min-max theorem helps in estimating the eigenvalues of symmetric, real-valued

matrices.

Theorem 1.3 (Min-max). Suppose A is symmetric, real valued matrix and let λ1 ≥ . . . ≥ λn be its

eigenvalues. Then, for all i we have

λi = max
dim(F )=i

min
x∈F,x6=0

xtAx

xtx
= min

dim(F )=n−i+1
max

x∈F,x6=0

xtAx

xtx
.

Remark 1.4. F runs over all subspaces of Rn of the appropriate dimension.

Note that from the above theorem, in particular we have that for all x,

xtAx ≥ λnxtx.

Indeed, there is exactly one F of dim(F ) = n, and therefore

λn = min
x6=0

xtAx

xtx
.
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Moreover, we have

xtAx ≤ λ1x
tx

by using

λ1 = min
dim(F )=n

max
x∈F,x6=0

xtAx

xtx
= max

x 6=0

xtAx

xtx
.

In particular, this shows that

λ1 ≥ 2m/n = d(G)

(just take x = 1).

The next lemma is not from linear algebra, but you may find it as a simple lemma which is useful

in various calculations (maybe even PSET?).

Lemma 1.5. suppose α1, . . . , αr and β1, . . . , βs are non-zero complex numbers such that for all

positive integers ` we have

α`1 + . . .+ α`r = β`1 + . . .+ β`s.

Then, r = s and αi = βi for all i, up to a permutation.

Proof. We use generating functions for it. Multiply the above equation by x` and summing over all

` ≥ 1, we obtain ∑ αix

1− αix
=
∑ βix

1− βix
.

Multiply both equations by 1 − γx and let x → 1/γ. We obtain that LHS is the number of αi
which equal γ and RHS is same just for β. Therefore, we obtain the desired.

The following lemma helps to simplify some calculations:

Lemma 1.6. Let G be a triangle free graph on n vertices with m edges. Then,∑
x∈V (G)

d(x)2 =
∑

xy∈E(G)

(d(x) + d(y)) ≤ mn.

Proof. Note that
∑

xy(d(x) + d(y)) contributes d(x) times d(x) for all x (every edge touching x is

counted d(x) times from x point of view). Therefore, we obtain the first equality. On the other hand,

note that each edge is being counted d(x) + d(y) times, which is at most n (there are no common

neighbors to xy ∈ E(G) as otherwise it results in a triangle). This completes the proof.

The following theorem is version of Perron-Frobenius theorem from linear algebra, tailored for

our purposes.

Theorem 1.7 (Perron-Frobenius). Let A be the adjacency matrix of a connected graph which is not

an isolated vertex. If ρ is the maximum absolute value of the eigenvalues of B, then ρ > 0, and there

is an eigenvalue equal to ρ. Moreover, there is an eigenvector for ρ all of whose entries are positive.

2 Power of linear independence – some classical examples

The following few examples serve as examples for how simple and basic ideas from algebra yield

simple solutions to some problems in combinatorics, for which a combinatorial proof is either very

hard or even unknown.
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2.1 Even and Odd towns

The first problem we describe is the Even and Odd town problem. That is:

Problem 2.1. Suppose that there are n people in some town. We wish to form clubs where each

club is of even size and all the intersections are even. How many possible ways exist?

Apparently, with a small change, the answer becomes completely different.

Problem 2.2. Same question, just this time each club is of ODD size. How many possible ways

exist?

2.2 The 2-distances problem

The second problem is regarding the number of points one can arrange in the plane with some

restrictions on the number of possible pairwise distances. Formally, we can describe it as follows:

Let a1, . . . , at be points on the plane such that all pairwise distances are the same. Then it is quite

clear that t ≤ n+ 1. Now, what if we allow two distances?

Theorem 2.3. Let m(n) be the maximum number of such points. Then,

n(n+ 1)/2 ≤ m(n) ≤ (n+ 1)(n+ 4)/2.

Proof. Lower bound can be obtained by considering eij for all i < j. For the upper bound, assume

the distances are δ1, δ2. For each i define fi : Rn → R:

fi(x) :=
(
‖x− ai‖22 − δ2

1

) (
‖x− ai‖22 − δ2

2

)
.

Note that fi(ai) 6= 0 and fi(aj) = 0 for all j 6= i. Therefore, the fis are linearly independent over

the linear space generated by (
∑
x2
k)

2, (
∑
x2
k)xj , xixj , xi, 1. This gives the upper bound.

Exercise 2.4. obtain something similar for s-distance problem(
n+ 1

s

)
≤ m(n, s) ≤

(
n+ s+ 1

s

)
.

2.3 Graham-Pollak

The following theorem due to Graham and Pollack (1972) gives a bound on the number of edge-

disjoint, complete bipartite graphs needed in order to cover all the edges of Kn.

Theorem 2.5 (Graham and Pollak). Let G1, . . . , Gt be edge disjoint, complete bipartite graphs, such

that ∪Gi = Kn, then t ≥ n− 1.

It’s an easy exercise to prove that this bound is tight.

Proof. For each complete bipartite graph (Xk, Yk) we assign an n× n matrix Ak in which aij = 1 iff

i ∈ Xk and j ∈ Yk. Clearly S :=
∑
Ak satisfies S + St = J − I. We now claim that r(S) ≥ n − 1.

Indeed, otherwise, there exists x with
∑
xi = 0 and Sx = 0 (as S is of rank at most n − 2 we can

consider the n− 1 equations in the linear system Sx = 0 and
∑
xi = 0 so there must be a solution).

Thus, St = −x, and so 0 = xtStx = −‖x‖22.
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2.4 The number of perfect matchings in d-regular graphs

As a last example, we give a simple proof for the fact that every d-regular, bipartite graph with

d being an even integer, has an even number of perfect matchings.

Theorem 2.6. Let G be bipartite graph which is d-regular, for d = even. Then, the number of

perfect matchings is even.

Proof. Let’s work over Z2. Let AG be the (bipartite) adjacency matrix of G. Note that over

Z2 we have Per(AG) = Det(AG) = parity of the number of perfect matchings in G’. Now, as

d is even and the sum of all rows equals the all d vector (which is 0(mod 2), we conclude that

Det(AG) = 0(mod 2).

The following problem is quite embarrassingly open.

Problem 2.7. What is the proportion of d-regular, bipartite graphs which have an odd number of

perfect matchings where d is an odd integer? Some simulations suggests that in case d = 3, the

answer should be roughly 1/2. Any ideas?

3 Some spectral graph theory

3.1 Walks in Graphs

Before we start, let’s first analyze the eigenvalues of a simple matrix that will be used quite often,

that is the n× n matrix, denote by J , consisting of all 1 entries.

Lemma 3.1. Eigenvalues of J are n (with multiplicity 1) and 0 (with multiplicity n− 1).

As an immediate corollary, we obtain the eigenvalues of the adjacency matrix of the complete

graph on n vertices, A(Kn).

Proposition 3.2. Eigenvalues of Kn are n− 1 and −1 (multiplicities 1 and n− 1, respectively).

Proof. Note that A(Kn) = J − I, and the rest is trivial.

Another special graph that we want to analyze its eigenvalues if the graph Cn which is a cycle of

length n.

Proposition 3.3. Eigenvalues of Cn are 2, 2cos(2iπ/n), i = 1, . . . , n− 1.

Proof. Let W be the n × n matrix whose first row 0100000..., and each subsequent row equals

the one above it, but shifted to the right by one position. So the second-to-last row is 00000001,

and the last row is 10000.... Now, note that W k is then the permutation matrix whose first row

has a single 1, in position k + 1 and the rest are shifted to the right. Crucially, observe that

ACn = W +W−1 which will let us determine the eigenvalues of Cn. Clearly, Wn = I and each ω` is

an eigenvalue (with eigenvector 1, ω`, ω2`, . . .). Now, for u` being the eigenvector of W with ω`, note

that ACnu` = Wu` +W−1u` = (ω` + ω−`)u` = 2cos(2π`/n).

Exercise 3.4. Eigenvalues of Kn,m.
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Exercise 3.5. Petersen graph PET can be constructed by taking all 2-elements subsets of {1, . . . , 5}
as vertices, and connecting two by an edge if they are disjoint. It is a 3-regular graph WHY? Compute

the eigenvalues (with multiplicities) of PET.

In the next lemma we show a connection between the largest eigenvalue of A(G), for any G, and

its average/maximal degree.

Lemma 3.6. The largest eigenvalue λ1 of G satisfies:

δ(G) ≤ d(G) ≤ λ1 ≤ ∆(G).

In particular, if G is d-regular, then λ1 = d.

Proof. Start with λ1 ≤ ∆. Let (xv)v∈V (G) be an eigenvector corresponds to λ1 and let xu be an entry

with largest absolute value. Then, for N(u) = {v ∈ V (G) | vu ∈ E(G)} we have:

λ1xu =
∑

v∈N(u)

xv.

Therefore,

|λ1| · |xu| ≤
∑
|xv| ≤

∑
|xu| ≤ ∆(G) · |xu|,

gives the desired (λ1 > 0 as tr(A) = 0).

Now we show d(G) ≤ λ1. Consider 1tA1. On one hand it equals
∑
dv = 2|E(G)|. On the other

hand, if we take an orthonormal basis v1, . . . , vn of eigenvectors of A we get: 1 =
∑

< 1, vi > vi,

Avi = λivi, and
∑

< 1, vi >
2= ‖1‖2 = n. Therefore,

1tA1 =
∑

< 1, vi > 1tAvi =
∑

λic
2
i ≤ λ1

∑
c2
i = λ1n.

This gives the desired.

Now we start connecting what we’ve seen to the title of this section, namely, walks in graphs.

Definition 3.7. A walk of length ` in a graph G is a sequence v1 . . . v`+1 where vivi+1 is an edge

(allowing repeated vertices and edges).

How are walks in G related to A(G)? here we try to give an answer.

Theorem 3.8. Let G be a graph an A(G) be its adjacency matrix. For all ` ≥ 1, the ijth entry of

A(G)` is the number of walks of length ` from vi to vj.

Proof. Note that A(G)`ij =
∑

i1,...,i`−1
aii1ai1i2 . . . ai`−1j . Therefore, it equals to the number of walks

of length ` from i to j.

Our goal is to use the above theorem to obtain explicit formula for the number of walks of length

` between two specified vertices. The formula will depend on the eigenvalues of A(G).

Theorem 3.9. Let G be a graph, A(G) its adjacency matrix and let λ1, . . . , λn be its eigenvalues.

Then, there exist real numbers c1, . . . , cn such that for all ` ≥ 1 and i, j we have

A`ij = c1λ
`
1 + . . .+ cnλ

`
n.

In fact, if U−1AU = D, then ck = uikujk.
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Proof. Clearly, U−1A`U = D(λ`i). Therefore, A` = UDU−1 and the ijth entry is just∑
k

uikλ
`
kujk

as desired.

In order to obtain some value from the above result, we need to compute the eigenvalues of A(G)

and the matrix U .

Definition 3.10. A closed walk is a walk which starts an ends at the same vertex.

Note that the number of closed walks of length ` is trace(A`) WHY?. Recall that for any squared

matrix M , tr(M) =
∑
λi WHY? and therefore we have

Theorem 3.11.
∑
λ`i = number of closed walks of length `.

As an immediate corollary we obtain an explicit formula for the number of closed walks of length

` in the complete graph.

Corollary 3.12. The number of closed walks of length ` in Kn is (n− 1)` + (n− 1)(−1)`.

What about walks which are not closed? that if, what about i 6= j? Note that

(J − I)` =
∑
k=0

(
`

k

)
(−1)`−kJk.

Moreover, Jk = nk−1J and J0 = I. Therefore,

(J − I)` =
∑
k=1

(
`

k

)
(−1)kpk−1 + (−1)`I

and this can be easily computed using binomial formula.

All in all, we get

(AG)`ij =
1

n

(
(n− 1)` − (−1)`

)
.

How can we use some knowledge on certain closed walks in order to upper bound the number of

edges in our graph G? The following proposition upper bounds the number of edges possible in a

C4-free graph.

Proposition 3.13. Suppose G is d-regular on n vertices and contains no C4. What is the largest

possible d?

Proof. Consider tr(A4). On one hand it is at least d4. On other hand it is at most d2n+#C4 = d2n.

Therefore, d ≤
√
n.

Exercise 3.14. Show that x many C4s force C6. (Find the best x that you can).

It is a well known (and quite easy to prove) fact from Graph Theory that a graph G is bipartite

if and only if it contains no cycles of odd length. In the following theorem we give a spectral

characterization of bipartite graphs.
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Theorem 3.15. A graph G is bipartite if and only if its spectrum is symmetric (that is, if λ is an

eigenvalue, then also −λ, and with same multiplicity).

Proof. Suppose G is bipartite with parts S and T of sizes s and t. That is,

A =

(
0ss B

Bt 0tt

)
.

If λ is an eigenvector, then (λv, λu) = λ(v, u) = A(v, u)t = (Bu,Btv). So Bu = λv and Btv = λu.

Then, −λ is also eigenvalue with eigenvector (v,−u).

Conversely, suppose the spectrum is symmetric. Then, for all k odd we have∑
λki = 0.

Therefore, there are no closed walks of odd length, and also no cycles of odd length. This is equivalent

to being bipartite.

3.2 Independence number of a graph

Let α(G) denote the independence number of G. That is, the size of the largest independent set

(a set that induces no edges) in G. Let λ1 ≥ λ2 ≥ . . . ≥ λn be its eigenvalues (note that |λn| is not

necessarily the smallest..), and we prove the following:

Theorem 3.16 (Hoffman’s bound). Suppose G is d-regular. Then,

α(G) ≤ n

1− d
λn

.

Proof. Let S be an independent set and let xS be its characteristic vector. As S is independent, we

obtain

xtSAGxS = 0.

Moreover, as λn is the minimal eigenvalue, we have A − λI has nonnegative eigenvalues. Also,

A1 = d1 so

(A− λI)1 = (d− λ)1 =
d− λ
n

J1.

Define a new matrix

M = A− λnI −
d− λ
n

J.

We just saw that M1 = 0 so 1 is a null-vector. Let v be an eigenvector orthogonal to 1 with eigenvalue

µ. So Jv = 0. Then,

µv = Mv = (A− λnI)v,

hence µ is ev of A− λnI so it is nonnegative.

Clearly, this way we can show that all ev of M are nonnegative. In particular, this implies that

xtSMxS ≥ 0.

On the other hand,

0 ≤ xtSMxs = xtSAxS − λxtSxS −
d− λ
n

xtSJxS = −λ|S| − d− λ
n
|S|2,
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which gives

|S| ≤ −λ n

d− λ
=

n

1− d
λ

.

3.3 Friends and politicians

Imagine a group of n people, where every two distinct guys have exactly one common friend (as-

sume that friendship is a symmetric relation...). It turns out, that there must be a guy (politician...)

who is a friend with everybody else. The following beautiful proof of this theorem was discovered by

Erdős, Renýı and Sós in the 60’s, and is based on a linear algebra trick.

Theorem 3.17. G is such that every two vertices have exactly one common neighbor. Then, there

is a vertex which is adjacent to all other vertices.

Proof. Suppose that G is a counter example, and we will try to get a contradiction in two steps.

1. First, we claim that G is regular. Let us start by showing that every two nonadjacent vertices

have the same degree. Take u, v such that uv /∈ E(G). Let w be the common neighbor of

u, v, and u′ the common neighbor of of u and w, and v′ the common neighbor of v and w

(useful to draw a picture!). Now, each of the remaining neighbors of u is adjacent to exactly

one neighbor of v, which can’t be w or v′ (as otherwise you’ll find a C4). Therefore, we have

a bijection between N(u) \ {w, v′} and N(v) \ {w, v′}, by mapping each vertex of the former

into its unique neighbor in the latter (it’s only a 1 − 1 function, but by symmetry we obtain

the other part). All in all we have d(u) = d(v) = k (for some k). To conclude the regularity,

we show that for any two vertices u, v, there exists a sequence uv1, . . . , vsv (for some s), where

every two consecutive vertices are non-adjacent in G. In other words, we want to show that

the complement of G is a connected graph. Suppose it’s not connected. In particular, one can

partition the vertices into two sets V (G) = A ∪ B where all the pairs ab ∈ A × B are edges

of G. It cannot be that |A| = 1 or |B| = 1 (as otherwise we are done with the theorem), and

every other case will give us a C4.

Before we proceed into the next step, observe, crucially, that

n = k2 − k + 1.

Indeed, since each of the k neighbors of a given v has k − 2 neighbors which are not in the

neighborhood, there are k(k−2) non-neighbors of v. All in all n = 1+k+k(k−2) = k2−k+1

(v plus its neighborhood plus the non-neighbors).

2. Now, observe that k ≥ 3. Consider AG. Any row sums to k and every two rows have exactly

one common column with both entries 1. A moment’s thought now reveals that

A2 = (k − 1)I + J.

WHY? Therefore, Spectrum(A2) : k − 1 + n = k2, k − 1 (where that latter appears with

multiplicity n− 1). Therefore, Spectrum(A) is k (multiplicity 1) and ±
√
k − 1. Suppose r are

11



+ and s are −. As the trace equals 0 we obtain k + r
√
k − 1− s

√
k − 1 = 0, and in particular

s 6= r and
√
k − 1 =

k

s− r
.

Therefore,
√
k − 1 is rational and must be an integer! (think about this old argument, it’s a

nice and simple riddle). All in all, let t =
√
k − 1 (which is an integer!), we can rewrite the

above equation as

t(s− r) = t2 + 1,

and therefore t divides t2 + 1 and therefore t = 1, leading to k = 2, which is a contradiction.

This completes the proof.

Conjecture 3.18 (Kotzig’s Conjecture). Let ` > 2. Then there are no finite graphs with the property

that between any two vertices there is precisely one path of length `.

This is known up to ` = 33. Any idea??

3.4 Turán’s theorem

Given a graph H, one can ask the following natural question:

Question 3.19. What is the maximum number of edges a graph G on n vertices can have without

having a copy of H?

Clearly, if n ≥ |V (H)| and G has
(
n
2

)
edges, then G contains H. The question is whether one can

get a non-trivial upper bound on this number, which from now on we denote by ex(n,H), and refer

to it as the extremal number of H.

As an example, consider the case where H = C3 (that is, H is a triangle). It is obvious that

ex(n,H) ≥ n2

4 (when n is even). Indeed, take the complete bipartite graph with parts of sizes exactly

n/2. It contains n2/4 edges an no odd cycles. To show that it is tight (that is, e(G) ≥ n2/4 + 1

implies existence of triangles) using a graph theoretical arguments, is left as an easy exercise (this is

called Mantel’s theorem).

Before we discuss the more general case, where H = Kk for any k ≥ 3, let us start with a warmup

by giving a spectral proof for Mantel’s theorem (again, there are much simpler ways to prove it).

Theorem 3.20 (Mantel’s Theorem). Let G be a triangle free graph on n vertices. Then, G contains

at most bn2/4c edges. Moreover, equality holds if and only if G = Kbn/2c,dn/2e.

Proof. Let A(G) be the adjacency matrix of G, let λ1 ≥ . . . ≥ λn be its eigenvalues, and let v be the

eigenvector corresponding to λ1. Note that for all u ∈ V (G) we have

λ1vu =
∑

w∈N(u)

vw. (1)

Let x denote the vertex with maximum |vx|, and WLOG we can assume that vx = 1 (if there are

multiple such vertices, then just pick one arbitrarily). Clearly, the above equality becomes

λ1 =
∑

y∈N(x)

vy, (2)

12



and note that this implies that λ1 ≤ d(x). Now, by multiplying both sides of (2) by λ1 and applying

(1), we obtain

λ2
1 =

∑
y∈N(x)

λ1vy =
∑

y∈N(x)

∑
z∈N(y)

vz =
∑

y∈N(x)

∑
z∈N(x)∩N(y)

vz +
∑
y

∑
z∈N(y)\N(x)

vz,

which is at most (recall that each vector entry is at most 1!)

2e(N(x)) + e(N(x), V (G) \N(x)).

Now we can turn to the proof of Mantel’s. Note that since G is triangle free we have e(N(x)) = 0.

Moreover, as λ1 ≥ 2m
n , using the above estimate we obtain

4m2

n2
≤ λ2

1 ≤ e(N(x), V (G) \N(x)) ≤ dn
2
ebn

2
c.

Note that equality can occur only if e(N(x), V (G) \N(x)) = bn2/4c. By rearranging one obtain the

desired.

Now, what happens if instead of taking H = C3 we take H to be a complete graph on k vertices?

(for graphs which are not complete the proofs are a bit more complicated..). Here one can also easily

guess some example which, intuitively, sounds ‘extremal’. That is, suppose that H = Kk+1 and that

n is divisible by k. Take the complete k-partite graph with all parts of sizes exactly n/k. Clearly,

such a graph has no copies of Kk+1 and has(
k − 1

k

)(
n

2

)
many edges.

The following theorem due to Paul Turán from 1941 settles this problem and is a cornerstone in

extremal graph theory. There are many proofs for this theorem (at least 4 that I’m aware of), and

here we give a proof which is based on a spectral approach (most likely it is not the easiest one!).

Theorem 3.21. If a graph on n vertices and m edges has a clique number ω (in particular, it has

no clique of size ω + 1), then

m ≤ 1

2

(
ω − 1

ω

)
n2.

Proof. Let λ1 be its largest eigenvalue. We’ve seen that λ1 ≥ d(G) = 2m/n. So in order to complete

the proof we need to show that

λ1 ≤
ω − 1

ω
n.

Recall that for all vectors x we have

xtAGx =
∑

uv∈E(G)

xuxv.

We first need the following claim:

Claim 3.22. If G = Ks, then for all x ∈ Rs we have

xtAKsx ≤
s− 1

s
· (1tx)2.

13



Now, suppose that G has a complete subgraph H = Ks. Then, for any vector x with support H

we have (by claim)
xtAGx

(1tx)2 =
xtAHx

(1tx)2
≤ s− 1

s
.

We claim that this is true for all vectors.

Claim 3.23. The maximum of xtAGx
(1tx)2

over all x is attained on some vector y with support(y) = a

complete graph.

Assuming this claim, let’s finish the proof of the theorem. Take a unit eigenvector v of λ1. Then,

vtAGv

(1tv)2
=
vtλ1v

(1tv)2
= λ1

vtv

(1tv)2
≥ λ1/n,

using Cauchy-Schwarz (indeed, (1tv)2 ≤ n(vtv) = n). On the other hand, the clique number is ω,

and therefore, for some x with support(x) = H, where H is a complete graph on s ≤ ω vertices, we

have
vtAGv

(1tv)2
≤ xtAHx

(1tx)2
≤ ω − 1

ω
,

as desired.

Now, let’s prove the claims.

Proof of Claim 3.22. Note that

xtAKsx =
∑
u6=v

xuxv =
∑
u

xu

∑
v 6=u

xv

 =
∑
u

xu
(
1tx− xu

)

= 1tx

(∑
u

xu

)
−

(∑
u

x2
u

)
= (1tx)2 − xtx. (3)

Now, using Cauchy-Schwarz we obtain

(1tx)2 ≤ s · xtx,

which yields

xtx ≥ 1

s
(1tx)2.

Therefore, we can upper bound (3) by
s− 1

s
· (1tx)2

as desired.

Proof of Claim 3.23. Let y be a vector maximizing xtAx
(1tx)2

, scaled so that 1ty = 1. We show that if

yu, yv 6= 0 for some uv /∈ E(G), then one can make one of those into 0 without changing ytAy. By

repeating this argument, we end up with y supported on a clique and we’re done. Sounds like a plan!

Suppose that auv = 0 for yu, yv 6= 0 (note that they are both positive! WHY?). Then, in ytAy

the only summands corresponding to these entries are

a =
∑
w 6=v

auwyuyw +
∑
w 6=u

avwyvyw = yu
∑
w 6=v

+yv
∑
w 6=u

.
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WLOG we can assume that
∑

w 6=v ≥
∑

w 6=u. Therefore,

ytAy ≤ ytAy − a+ (yu + yv) · (
∑
w 6=v

auwyw) = ztAz,

if we define zu = yu + yv, zv = 0, and zw = yw for w 6= u, v. Therefore, z also maximizing.

This completes the proof of the theorem.

3.5 K10 is not a union of edge-disjoint Petersen’s graphs

In PSET1 you had to calculate the eigenvalues of Petersen’s graph. Assuming you’ve already

done it, let’s see how to use it in order to prove the following nice proposition.

Proposition 3.24. K10 cannot be decomposed into 3 Petersen’s graphs.

Proof. As we’ve already checked, the eigenvalues of K10 are 9,−1,−1, . . . ,−1 and the eigenvalues of

PET are 3, 1, 1, 1, 1, 1,−2,−2,−2,−2. Now, AK10 = J − I and assume that AG = A+B+C, where

each of the summands is the adjacency matrix of Petrsen’s graph (with some permutation applied to

it). Let VA and VB be the eigenspaces corresponding to the eigenvalue 1 of A and B. They are both

orthogonal to the vector 1. Moreover, each of them is of dimension 5 and therefore dim(VA∩VB) ≥ 1.

Therefore, there exists v ∈ VA ∩ VB. Recall that 1 · v = 0. So, Cv = (J − I − A − B)v = −3v and

hence (−3) is an eigenvalue of C, contradiction.

3.6 Maxcut and another proof for Hoffman’s bound

In this section we show two almost immediate corollaries from the following inequality.

Lemma 3.25. Suppose that G is d-regular graph with d = λ1 ≥ . . . ≥ λn. Then, for x1, . . . , xn we

have ∑
i<j,ij∈E(G)

(xi − xj)2 ≤ (d− λn)
n∑
i=1

x2
i .

Furthermore, if
∑
xi = 0, then

(d− λ2)
∑

x2
i ≤

∑
i<j,ij∈E(G)

(xi − xj)2.

Proof. Note that∑
i<j,ij∈E(G)

(xi − xj)2 = d
∑
i

x2
i − 2

∑
i<j,ij∈E(G)

xixj = d
∑

x2
i −

∑
i,j

aijxixj . (4)

A useful observation is that xtAx =
∑

ij∈E(G) xixj = 2
∑

i<j,ij∈E(G) xixj , and xtAx ≥ λnx
tx. Now,

let x =
∑
αivi where vi is some orthonormal basis with v1 = 1√

n
1 (in particular, αi = x · vi for all

i). Then, ∑
x2
i = x · x =

∑
α2
i .
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Combining the above estimates we obtain∑
i<j,ij∈E(G)

(xi − xj)2 = d
∑

x2
i − xtAx ≤ d

∑
x2
i − λn

∑
x2
i ,

as desired.

For the second part, note that
∑
xi = 0 is equivalent to α1 = xtv1 = 0. Now

∑
aijxixj = xtAx = xt

n∑
i=2

αiλivi =
n∑
i=2

λiα
2
i ≤ λ2x

tx.

Plugging into (4) we obtain the desired.

First, we show how to derive Hoffman’s bound easily from Lemma 3.25.

Corollary 3.26 (Hoffman’s bound). α(G) ≤ 1
1−d/λn · n.

Proof. Let S be an independent set of size s. Define: xi = n − s is i ∈ S, and xi = −s otherwise.

Note that eG(S, Sc) = d|S|, as S is independent. Moreover, the xi’s have been defined in such a way

that ∑
ij∈E(G)

(xi − xj)2 = n2e(S, Sc).

All in all, together with the previous lemma, we obtain

n2ds ≤ (d− λn)
∑

x2
i = (d− λn)(s(n− s)2 + (n− s)s2) = (d− λn)sn(n− s),

which yields

nd ≤ (d− λn)(n− s)

which is equivalent to

s ≤ −λnn/(d− λn).

Definition 3.27. e(A,B) = the number of edges with one endpoint in A and the other in B. The

max cut of a graph G is defined as

max
A∩B=∅,A∪B=V (G)

e(A,B).

As a second application, we show how to upper bound the size of the maxcut using the smallest

eigenvalue of A(G).

Corollary 3.28. For any d-regular graph G, the max cut is at most

n

4
(d− λn) =

e(G)

2
− nλn

4
.
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Proof. Let A ∪ B = V (G) be a partition of V (G) that gives a max cut, and let |A| = a. Define

xi = n − a is i ∈ A and xi = −a otherwise. As in previous corollary,
∑

(xi − xj)2 = n2e(A,B).

Moreover, as a(n− a) ≤ n2/4, we have∑
x2
i = a(n− a)2 + (n− a)a2 = a(n− a)n ≤ n3

4
.

Now, using lemma 3.25 we obtain

n2e(A,B) ≤ (d− λn)
n3

4
.

3.7 Expander mixing lemma

Now we show the power of the second largest eigenvalue (in absolute value). Recall that

λ(G) = max{|λ2|, |λn|}.

Lemma 3.29 (Expander mixing lemma). Let G be a d-regular graph on n vertices, and let λ := λ(G).

Then, for all S, T ⊆ V (G) we have∣∣∣∣e(S, T )− d|S||T |
n

∣∣∣∣ ≤ λ
√
|S|
(

1− |S|
n

)
|T |
(

1− |T |
n

)
.

Remark 3.30. Edges in the intersection of S and T are being counted twice.

Proof. Let S, T ⊆ V (G) and let 1S and 1T be the corresponding characteristic functions. Expand

these vectors in an orthonormal basis of eigenvectors v1, . . . , vn to obtain

1S =
∑

αivi, and 1T =
∑

βivi.

Then,

e(S, T ) = 1tSA1T =
∑

λiαiβi.

Since α1 = 1tS
1√
n

= |S|√
n

, β1 = |T |√
n

, and λ1 = d, we have

e(S, T ) =
d|S||T |
n

+
n∑
i=2

λiαiβi.

Thus, ∣∣∣∣e(S, T )− d|S||T |
n

∣∣∣∣ ≤ λ n∑
i=2

|αiβi|.

By applying Cauchy-Schwarz, we obtain

n∑
i=2

|αiβi| ≤

(
n∑
i=2

α2
i

)1/2( n∑
i=2

β2
i

)1/2

=
√(
|S| − α2

1

) (
|T | − β2

1

)

=

√
|S|
(

1− |S|
n

)
|T |
(

1− |T |
n

)
.

Plugging it into the above inequality we obtain the desired.
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Definition 3.31. A d-regular graph G on n vertices is said to be an (n, d, λ)-graph if λ(G) ≤ λ.

Exercise 3.32. Show that for an (n, d, λ)-graph G we have

α(G) ≤ λn.

Question 3.33. How small can λ(G) be?

Theorem 3.34. Let G be a d-regular graph on n vertices, where d ≤ (1− ε)n. Then,

λ(G) = Ω(
√
d).

Proof. Note that

2e(G) = dn = trA2 ≤ d2 + (n− 1)λ2.

Therefore,

λ2 ≥ dn− d2

n− 1
= Ω(d),

as desired.

Remark 3.35. Alon and Boppana observed that in fact λ ≥ 2
√
d− 1− o(1). Therefore, a graph is

said to be ‘perfect expander’ (or Ramanujan graph) if λ ≤ 2
√
d− 1. There is a fascinating theory

about ramanujan graphs! For example, it is known that for d = o(
√
n), almost every d-regular graph

on n vertices satisfies λ(G) ≤ 2
√
d− 1 + ε (Friedman).

As an application we present the following neat argument due to Krivelevich and Sudakov.

Definition 3.36. A graph G is said to be k-edge-connected if and only if it cannot be made discon-

nected by deleting at most k − 1 edges. In particular, it is equivalent to: in every cut there are at

least k edges WHY?.

We will also need the following theorem due to Tutte.

Theorem 3.37 (Tutte’s Theorem). A graph G has a perfect matching if and only if for every subset

S ⊆ V (G), the number of connected components of odd size in G[V \ S] is at most |S|.

Now we are ready to state and prove the theorem that we wanted.

Theorem 3.38. Let G be an (n, d, λ)-graph with λ ≤ d− 2. Then,

1. G is d-edge-connected, and

2. G contains a perfect matching.

Proof. For 1 we wish to show that for all S ⊆ V (G) we have e(S, Sc) ≥ d. Note that as in every

cut either we have |S| ≤ n/2 or n− |S| ≤ n/2, and therefore it is enough to consider only sets S of

size at most n/2. Now, if |S| ≤ d, then there is nothing to prove WHY?. Therefore, assume that

d < |S| ≤ n/2. Fix such a subset S, and by the expander mixing lemma we obtain

e(S, Sc) ≥ |S|(n− |S|)d
n

− |S|(n− |S|)λ
n

≥ (d− λ)|S|/2 > d

as desired.
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For part 2, let us act as follows. Let S ⊆ V (G) (note that we may assume |S| ≥ 1 as we must

take n to be even). Let C1, . . . , Ct be all the connected components of G[V \S]. Our goal is to show

that the number of indices i for which |Ci| =odd is at most |S|, and then we complete the proof by

using Tutte’s Theorem. In fact, we show something stronger, namely, we show that t ≤ |S|. To this

end, note that as G is d-edge-connected (by 1.), every connected component must send at least d

edges to S WHY?. On the other hand, the total number of edges touching S is at most d|S| (as G

is d-regular). Combining these two bounds we obtain

dt ≤

3.8 Low-rank approximation and spectral partitioning

In this section we discuss ‘low rank approximation’ of a matrix and the problem of recovering a

‘planted’ partitioning in random graphs, using spectral methods. Let us start by defining how would

we like to measure distance between matrices. We usually do it either by the operator norm ‖A−B‖
or the Frobenius norm ‖A−B‖F , where

‖M‖ = max
x

‖Mx‖
‖x‖

and ‖M‖F =

√∑
i,j

M2
ij .

(observe that ‖M‖F =
√
tr(M tM).)

Now, recall from linear algebra that if A is symmetric with eigenvalues λ1 ≥ . . . ≥ λn and a

corresponding orthonormal basis of column vectors v1, . . . , vn, then

A =
∑

λiviv
t
i .

Indeed, U = [v1, . . . , vn] satisfies

U−1AU = D(λ1, . . . , λn),

and therefore

A = UDU t.

It follows that

A =
∑

λiviv
t
i .

Using the Min-max theorem, one can show that for every k, the best approximation of A by a

rank-k matrix is given by summing the terms λiviv
t
i over the largest k values of λi in absolute value,

and this holds for both norms. If the difference is small, it explains why the largest k eigenvalues of

A should provide a lot of information about A.

Let us illustrate why approximations are useful. Consider the problem of a planted partition.

That is, suppose that S ⊆ V (G) which is ‘planted’ in some sense. Our goal is to recover it. Without

loss of generality, one can assume that S is the set of the first |S| vertices. Therefore, A(G) can be

written as

A(G) =

(
A(S) 0

0 A(V \ S)

)
+

(
0 A(S, V \ S)

A(V \ S, S) 0

)
.

19



The set S can be discovered from examining the eigenvectors of the left-hand matrix: it has an

eigenvector which is positive on all the entries of S and 0 otherwise, and an eigenvector which is

positive on V \ S and 0 elsewhere. Therefore, if the right-hand matrix is ‘small’ in some sense, then

we expect similar eigenvectors to remain, and therefore the partition is recovered by finding this

eigenvector, and partitioning the vertices according to the sign in the corresponding entry.

Let’s try to make things a bit more rigorous. The simplest model of this form is the following:

partition [n] into two sets of the exact same size, X ∪ Y . Then, choose probabilities p > q, and

place edges between vertices according to the following rule: if uv ⊆ X or uv ⊆ Y , then add uv with

probability p. Otherwise, probability q. All choices are being made independently at random.

The expected number of edges between X and Y is q|X||Y |. If p is sufficiently larger than q, then

every other partitioning will have more crossing edges. On the other hand, if p is too close to q, then

X ∪ Y doesn’t necessarily have the smallest number of crossing edges. The main question is how to

recover the partitioning in an efficient way (that is, without checking all the 2n possible partitions)?

or even a weaker question: can you recover a (say) 2/3 fraction of the partitioning?

Exercise 3.39. assume that p = 1/2 and q = 1/3. Can you think about an easy way to recover the

partitioning?

Here we present a general strategy that works for various ranges of p, q, but it will be simple for us

just to work with specific values, even if are easy to handle with different methods. Let us consider

the case p = 1/2 and q = p− 100√
n

. Note that if q = p− ε/
√
n for very small ε, then basically there is

no chance to recover the partition (do you see why?).

Our main goal is to show that the partition can mostly be recovered from the eigenvector of the

second eigenvalue of the adjacency matrix of our graph. The idea was introduced by McSherry in

2001. For more details about recent developments and history of the problem, just google ‘Stochastic

Block Model’ (there is a very nice survey of E. Abbe about the problem). The main idea is to

consider the adjacency matrix as a perturbation of one ideal probability matrix. Apparently, in this

ideal matrix (to be defined bellow) the second eigenvector provides a partitioning into two blocks

(according to the sign of the entries). McSherry showed that the difference between the ideal matrix

and the actual matrix is ‘small’, and therefore, using some concentration results, he could show that

the second largest eigenvector of the actual matrix is ‘more or less’ the same like the one of the ideal

matrix. Therefore, one can recover most of the partition.

From now on we can assume that S = {1, . . . , n/2}, and define a matrix

M =

(
pJn/2 qJn/2
qJn/2 pJn/2

)
.

M is our ‘ideal probability matrix’. Note that the adjacency matrix of the planted partition graph

is obtained according to the probabilities in M (minus diagonal of course). Basically, the algorithm

to recover S goes as follows: compute v, the eigenvector of λ2. Then, set X = {x | vx < 0}. As we

show, whp X is mostly one set of the partition.

Let us first consider the eigenvectors of M . Clearly 1 is an eigenvector with eigenvalue n
2 (p+ q).

The second eigenvector of M has two values, one on S and one on Sc. That is, we can take wi = 1√
n

if i ∈ S and wi = − 1√
n

otherwise. Clearly, Mw = n
2 (p − q)w. As M has rank 2, all the other

eigenvalues are 0. Now, let us define a matrix

B = A(G) + pI.
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Note that A and B have the same eigenvectors so it doesn’t change our analysis, but intuitively,

B is a bit ‘closer’ to M . Our goal is to measure the difference R = B−M and to obtain some useful

knowledge out of it.

Note that for xy in the same part, we have Pr[Rxy = 1− p] = p and Pr[Rxy = −p] = 1− p.
For xy in different components we can replace p by q in the above line. At this point we can already

use some concentration bounds to show that ‖R‖ is small. For example, by a simple application of

Talagrand’s inequality, Alon, Krivelevich and Vu showed that (in particular) we can assume that

‖R‖ ≤ 3
√
pn (they have a much more general statement about concentration of all eigenvalues and

for a wide range of p). As here we are more interested in the linear algebra part rather than the

probability part, then from now on, let’s just assume that ‖R‖ is small.

Let α1 ≥ . . . ≥ αn be the eigenvalues of B and let µ1 > µ2 > 0 = . . . = µn be the eigenvalues of

M . It follows from the Min-max theorem (more or less trivially...) that |αi − µi| ≤ ‖R‖ for all i. In

particular, if

‖R‖ < n

4
(p− q),

then
n

4
(p− q) < α2 <

3n

4
(p− q).

Moreover, as q > p/3, we have

α1 > µ1 − ‖R‖ >
n

2
(p+ q)− n

4
(p− q) ≥ 3n

4
(p− q).

Therefore, we can view α2 as a perturbation of µ2. The main question is whether we can see v

(the eigenvector of α2) as a perturbation of w (the one we’ve already discussed)?

To address this question we are going to use the following theorem that says that v will be close

to w, in angle, if the norm of R is significantly less than the distance between µ2 and the other

eigenvalues of M . That is, the eigenvector doesn’t move much if it corresponds to a ‘well separated’

eigenvalue.

Theorem 3.40 (Davis-Kahan). Let B,M be symmetric matrices. Let R = M − B. Let αi be the

eigenvalues of B with eigenvectors vi, and µi of M with corresponding eigenvectors wi. Let θi be the

angle between vi and wi. Then

sin 2θi ≤
2‖R‖

minj 6=i |µi − µj |
.

For simplicity, we’ll only prove a bit weaker version of the theorem soon (and also only use the

weaker version). That is, we prove it with 2θ replaced by θ.

How to continue? Let

δ = v2 − w2.

For every vertex i that is misclassified by v2, we have |δ(i)| ≥ 1√
n

(otherwise it wouldn’t change a

sign). So, if v2 misclassifies k vertices, then

‖δ‖ ≥
√
k

n
.

As w2 and v2 are unit vectors, we may apply the crude inequality

‖δ‖ ≤
√

2 sin θ2.
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(to see this inequality, just expand ‖δ‖2 = ‖w‖2 + ‖v‖2 − 2w · v = 2 − 2 cos θ2. The right hand

side is clearly upper bounded by 2(1− cos2 θ2) = 2 sin2 θ2.)

To combine all, recall that q > p/3 (so α2 is perturbation of µ2) and compute

min
j 6=2
|µ2 − µj | =

n

2
(p− q).

Recall that ‖R‖ ≤ 3
√
pn so we find (by the weaker theorem)

sin θ2 ≤
2 · 3√pn
n
2 (p− q)

=
12
√
p

√
n(p− q)

.

Therefore, the number of misclassified vertices satisfies√
k

n
≤
√

2 · 12
√
p

√
n(p− q)

,

which implies k ≤ 288p
(p−q)2 .

In particular, if p and q are both constants, we expect to misclassify at most constant number of

vertices. For our choice of parameters, we get constant fraction of the vertices (and we can control

it by weaker restriction on p− q).
It thus remain to prove some version of the Davis-Kahan Theorem.

Proof. By considering the matrices M − µiI and B − µiI instead of M and B, we can assume that

µi = 0. The theorem is vacuous if µi has multiplicity more than 1 so we can assume the multiplicity

is 1 and that wi is a unit eigenvector in the nullspace of M . Note that our assumption µ = 0 also

gives |αi| ≤ ‖R‖.
Now, expand vi in the eigenvector-basis of M as

vi =
∑

cjwj ,

where cj = wtjvi. For

δ = min
j 6=i
|µj |,

we can compute

‖Mvi‖2 =
∑
j

c2
jµ

2
j ≥

∑
j 6=i

c2
jδ

2 = δ2(1− c2
i ) = δ2 sin2 θi.

On the other hand,

‖Mvi‖ ≤ ‖Bvi‖+ ‖Rvi‖ = αi + ‖Rvi‖ ≤ 2‖R‖.

Therefore, we obtain

sin θi ≤
2‖R‖
δ

,

as desired.
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3.9 Random walks on graphs

Let G be a graph on n vertices, and consider a random walk on it. That is, start with some

vertex u0, chosen according to some distribution. Now, in each Step i, where you are at vertex ui,

choose one of its neighbors, ui+1, uniformly at random, and move towards it. The basic question to

be asked is the following:

Question 3.41. What is the probability to be at a given vertex after ` steps?

For simplicity, throughout our discussion, we assume that our graph G is d-regular and simple

(both requirements can be dropped, for more details just read Chapter 3, or follow the hints at the

end of this section to rewrite the proofs). Consider the matrix M = 1
d · A(G), and observe that one

can view each entry Muv of M as ‘the probability that in the next step our walk will end at v, given

that it currently ends at u’. Clearly, M `
uv is just the probability that one ends up at vertex v after `

steps, assuming that we started at vertex u. Now, suppose that the starting vertex is not specified,

but given as a probability distribution. Let P = (ρ(v1), . . . , ρ(vn)) be the corresponding vector of

this distribution. Again, it is quite obvious to see that for σ(`) := (PM `), σ
(`)
v is the probability to

land at v after ` steps, given the probability distribution P . Therefore, as it should be clear by now

(see Theorem 3.9), if we can compute the eigenvalues and eigenvectors of M , then we can actually

compute all the crucial probabilities.

As a simple example, imagine that one starts with P = π being the uniform distribution (that

is, all entries are 1/n). It is quite obvious to see that in this case, for all ` we have (πM `)v = 1/n.

Indeed, πM = π, so by induction we obtain the desired. We say that π is the stationary distribution

of the random walk (what if G was not d regular?). The next theorem shows that no matter how do

we pick P , the process will always converge to π.

Theorem 3.42. If G is a connected nonbipartite graph, then σ(`) → π for every P .

(can you see why this theorem is not true for bipartite?).

Before proving the theorem, let us discuss the statement a bit. Suppose that we want to sample

an object uniformly at random from a large collection of objects. Apparently, this is not as simple

as it sounds... One way of doing it, is to construct a connected nonbipartite regular graph on this

set, and start a random walk on this graph. By the above theorem, after sufficiently many steps,

we get an object which is essentially uniformly distributed. Clearly, in order to make it efficient,

it is important to know what ‘sufficiently many steps’ is, or in other words, what is the rate of

convergence to π? this is usually referred to as the mixing rate. As it turns out (hopefully this is no

longer a surprise for you by now..), this relates to the eigenvalue gap.

Theorem 3.43. Let G be a connected, non-bipartite, d-regular graph on n vertices, and let M =
1
d · A(G). Let λ1 ≥ . . . ≥ λn be the eigenvalues of M and let λ := max{|λ2|, |λn|}. Then, for every

starting vertex u, any vertex v, and any ` ≥ 0, we have∣∣∣∣Pr[u` = v]− 1

n

∣∣∣∣ ≤ λ`.
Exercise 3.44. While reading the proof, try to think how to state and prove the analogous theorem

for the non-regular case!
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Proof. As M is symmetric (what if not?), one can write

M =
∑

λkvkv
t
k,

where the vis form an orthonormal basis of eigenvectors. Clearly, one can take v1 = 1√
n
·1. It follows

that

Pr[u` = v] = (M `)uv = etuM
`ev =

∑
λ`ke

t
u(vkv

t
k)ev

=
n∑
k=1

λ`kvkuvkv =
1

n
+

n∑
k=2

λ`kvkuvkv.

It thus remains to bound the absolute value of the second summand:∣∣∣∣∣
n∑
k=2

λ`kvkuvkv

∣∣∣∣∣ ≤ λ`
n∑
k=1

|vkuvkv| ≤ λ`
(

n∑
k=1

v2
ku

)1/2( n∑
k=1

v2
kv

)1/2

= λ`.

This completes the proof.

Clearly, as smaller λ is, the better rate of convergence we obtain!

Another natural problem arises is about the first time ‘visiting’ a particular vertex. That is,

suppose that G is a connected graph and let u, v be two of its vertices. Define H(u, v) to be the

expected number of steps needed for a random walk, starting at u, to ‘hit’ v at the first time. This

is called the hitting time. Let pm be the probability that we hit v for the first time after m steps,

then

H(u, v) =
∑

mpm.

Let us consider some easy example. Suppose G is the path of length two uwv. To compute

H(u, v) is quite simple: after one step we are at w. Then, with probability 1/2 we move to v or u.

Therefore,

H(u, v) =
1

2
· 2 +

1

2
· (2 +H(u, v)).

Solving it gives H(u, v) = 4.

The question we are interested at is how to get such a formula (for more complicated graphs of

course..) using linear algebra? Before answering it we need some preparation.

A matrix B is called nonnegative if all its entries are nonnegative. We say that B is irreducible if

it is not the 1× 1 matrix [0] and if there is no permutaion matrix such that PBP−1 =

(
C D

0 E

)
,

where C and E are square matrices of size greater than 0. In terms of an adjacency matrix of

a graph, A(G) is irreducible if and only if G is connected and is not an isolated vertex (WHY?).

The following version of Perron-Frobenius theorem (from linear algebra) will be crucial in order to

complete the proof of the theorem that appears bellow (I’ll be a bit hand-wavy here, but a detailed

explanation appears in Chapter 3 of Stanley’s book).

Theorem 3.45 (Perron-Frobenius). Let B be a nonnegative, irreducible, square matrix. If ρ is the

maximum absolute value of the eigenvalues of B, then ρ > 0, and there is an eigenvalue equal to ρ.

Moreover, there is an eigenvector for ρ all of whose entries are positive.
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Now, let M = 1
dA(G). Let M [v] denote M with the row/column corresponding to v deleted.

Let T [v] be the column vector of length n − 1, indexed by w 6= v, where in each entry w we have

T [v]w = 1/d if vw ∈ E(G) and 0 otherwise. The following theorem gives an explicit formula for

H(u, v).

Theorem 3.46. In−1 −M [v] is invertible, and

H(u, v) =
(
(In−1 −M [v])−2T [v]

)
u
.

Proof. The probability that when we take s steps from u, we never reach v and end up at some vertex

w is (M [v]s)uw WHY?. The probability that once we reach w, the next step is to v, is
1wv∈E(G)

d .

Therefore, by definition of expectation we have

H(u, v) =
∑
w 6=v

∑
s≥0

(s+ 1)
1wv∈E(G)

d
· (M [v]s)uw.

Using the equality ∑
(s+ 1)xs = (1− x)−2

in a quite suspicious way, we obtain

H(u, v) =
∑
w 6=v

(I −M [v])−2
uw

1wv∈E(G)

d
=
(
(I −M [v])−2T [v]

)
u

as desired.

Let’s convince ourselves that our last move was legal. We had a matrix (say) B and a term of

the form
∑

s(s+ 1)(Bs)uw. Note that
∑

s(s+ 1)Bs = C if and only if
∑

n(s+ 1)(Bs)uw = Cuw for

all u,w.

Now, observe that for all m we have

(I −B)2(I + 2B + 3B2 + . . .+mBm−1) = I − (m+ 1)Bm +mBm+1.

Suppose that B is diagonalizable and that all its eigenvalues are smaller than 1 in absolute value.

Then, by Theorem 3.9 we obtain

(Bm)uv = c1λ
m
1 + . . .+ crλ

m
r ,

where the ci’s are some complex numbers independent of m. Therefore, from the above equality, we

see that as m tends to infinity, it tends to I, and therefore (I −B)−2 tends to
∑

(s+ 1)Bs.

It thus remain to show that M [v] is diagonalizable and all its eigenvalues are smaller than 1

in absolute value. Diagonalizability is trivial as M [v] is symmetric. For the eigenvalues, we need

some computational trick. Let N be a submatrix of M [v] consisting of a connected component of

the graph G − v. Clearly (WHY?) M [v] has the same eigenvalues as in the union of all N ’s. By

Perron-Frobenious, there is a positive eigenvector u of the largest eigenvalue in absolute value of N ,

say call it λ. Now, expand in two ways the expression

1tM [v]u = λ
∑

ui =
∑
i

sum of column i ui,

and observe that all summands are at most ui, and at least one of the summands is strictly smaller

than ui. This completes the proof.
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3.10 The Matrix Tree Theorem

In this section we want to prove Cayley’s formula for the number of labeled, spanning trees in the

complete graph Kn. In fact, we prove something much stronger. Let G be a graph on n vertices,

and let t(G) denote the number of spanning trees in G. Consider the incidence matrix B of G. That

is, B is an n by e(G) matrix, with Bij = 1 if and only if vi ∈ ej . EXAMPLE?

Now, replace one of the two 1’s in each column by a −1 (arbitrarily), to obtain a matrix C with

all column sums 0, and define M = CCt. That is, M is an n× n symmetric matrix, which is

D(d(1), . . . , d(n))−A(G).

(this is sometimes called the Laplacian matrix of a graph G)

The following theorem is due to Kirchoff and is known as the matrix-tree theorem.

Theorem 3.47. The number of spanning trees in G is

t(G) = detMii,

where Mii is the ith minor of M (the formula holds for all i).

A key ingredient in the proof is the following theorem of Binet and Cauchy, that we will prove

later in this section.

Theorem 3.48. If P is an r × s matrix and Q is an s× r matrix with r ≤ s, then

detPQ =
∑
Z

detPZ detQZ ,

where PZ is the r × r submatrix of P with column set Z, and QZ is the r × r submatrix of Q with

the corresponding rows Z, and the sum is over all r-subsets Z of [s].

Let us now present the proof of the Matrix Tree Theorem.

Proof of Theorem 3.47. Note that C has at least n−1 columns, because G is connected (and therefore

has at least n− 1 edges). This means that we can apply Theorem 3.48 to Mii and get

detMii =
∑
N

detN detN t =
∑

(detN)2 ,

where N runs over all (n − 1) × (n − 1) submatrices of C \ { row i }. The n − 1 columns of N

correspond to a subgraph of G with n− 1 edges on n vertices. Therefore, it remains to show that

detN = ±1 if these edges span a tree ,

and

detN = 0 otherwise .

Suppose the n− 1 edges do not span a tree. In particular, a graph on n vertices with n− 1 edges

which is not a tree is not connected. Therefore, one can find a connected component that does not

contain the vertex i. Clearly, the corresponding rows of the matrix sum to 0 and therefore dependent.

This shows that det(N) = 0 in this case.
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Now suppose that the columns of N span a tree. Then, there is a vertex j1 6= i of degree 1. Let

e1 be the incident edge. Deleting j1, e1 we obtain a tree with n− 2 edges. Again, one can find such a

vertex j2 6= i and an edge e2. Continue until j1, . . . , jn−1 and e1, . . . , en−1 with ji ∈ ei are determined.

Now, permute the rows and columns to bring jk into the kth row and ek into the kth column. Since

by construction, jk /∈ e` for all k < `, we see that the new matrix N ′ is lowertriangular with all

elements on the main diagonal equal to ±1. Therefore, detN ′ = ±detN = ±1. This completes the

proof.

3.11 Binet-Cauchy

Recall that

detM =
∑
σ∈Sn

sign(σ)
n∏
i=1

miσ(i).

Let us now define a graph where the vertices a1, . . . , an stand for rows and b1, . . . , bn for columns

of M . For each pair i, j, draw an arrow from ai to bj and assign it with a weight mij . In terms of

graphs we have the following interpretation:

• each entry mij corresponds to the weight of the unique directed path from ai to bj .

• the determinant is the weighted sum over all vertex-disjoint path systems from A = {ai} to

B = {bi}. Such a system Pσ is just aibσ(i), for all i, and the weight is the product of all weights.

In this language we can rewrite

detM =
∑
σ

sign(σ)ω(Pσ).

A natural generalization from bipartite to arbitrary graphs was found by Gessel and Viennot.

This widely applicable result has a very simple and elegant proof, as we will see bellow.

Before stating the result we need some preparation. Let G be a finite acyclic directed graph.

Every edge e carries a weight ω(e). If P is a directed path from a to b (we include all self loops),

then we define the weight of P as

ω(P ) =
∏
e∈P

ω(e).

(this is defined as 1 for loops).

Now, let A = {a1, . . . , an} and B = {b1, . . . , bn} be two sets of n vertices, not necessarily disjoint.

To A and B we associate the path matrix M with

mij =
∑

P :ai→bj

ω(P ).

A path system P from A to B consists of a permutation σ together with n paths Pi : ai → bσ(i)

for all i. We write sign(P) = sign(σ). The weight of P is the product of the path weights

ω(P) =
∏
P∈P

ω(P ).

Finally, we say that the path system P := {P1, . . . , Pn} is vertex disjoint if the paths Pi’s are

such.
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Lemma 3.49 (Gessel-Viennot). Let G be a finite weighted acyclic directed graph, A = {a1, . . . , an}
and B = {b1, . . . , bn} two subsets of vertices, and M be the path matrix from A to B. Then,

detM =
∑

P vertex-disjoint path system

sign(P)ω(P).

Proof. Note that a typical summand of detM is of the form

sign(σ)
∏
i

miσ(i),

which can be written (by definition of M) as

sign(σ)

n∏
i=1

 ∑
Pi:ai→bσ(i)

ω(Pi)

 .

Summing over all σ we get that

detM =
∑
P
sign(P)ω(P),

where P runs over all path systems from A to B (vertex-disjoint or not). Hence, in order to complete

the proof we have to show that ∑
P∈N

sign(P)ω(P) = 0,

where N is the set of all path systems which are not vertex-disjoint. To this end, we define a bijection

π : N → N without fixed points such that for P and πP

ω(πP) = ω(P) and sign(πP) = −sign(P).

This will clearly give us the desired.

Let P ∈ N with paths Pi : ai → bσi . By definition, some pair of paths will intersect. Let i0 be

the first index such that Pi0 intersect with some path in P. Let x be the first such common vertex

on Pi0 , and let j0 be the minimal index such that Pj0 has the vertex x in common with Pi0 . Now

just swap between the subpaths ai0Pi0x and aj0Pj0x to obtain new paths P ′i0 and P ′j0 and define πP ′
be the path system obtained by replacing Pi0 and Pj0 by the P ′-s. Note that

P ′i0 : ai0 → bσ(j0) and Pj0 : aj0 → bσ(i0),

and therefore sign(P ′) = −sign(P). Clearly, we also have π (πP) = P and therefore π is a bijection.

Moreover, as both systems contain the exact same edges, their weights are the same. This completes

the proof.

The Gessel-Viennot Lemma can be used to derive basic properties of determinants just by looking

at appropriate graphs. For us, it will serve as a tool to prove the Cauchy-Binet formula:

Proof. Let A and B be the vertex sets corresponding to the rows and columns of the matrix P .

Similarly, let B and C correspond to the matrix Q. Consider now the 3 levels graph with A =TOP,

B =MIDDLE and C =BOTTOM, where all edges directed from top to bottom. The ij-entry mij of

the path matrix M from A to C is precisely mij =
∑

k pikqkj , thus M = PQ.

The vertex-disjoint path systems from A to C in this graph correspond to pairs of systems from

A to Z and Z to C, where Z is any r-element subset of B. Therefore, the result follows immediately

from Lemma 3.49.
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4 Nearly orthogonal vectors

First, let us introduce the following useful lemma.

Lemma 4.1. For any symmetric matrix A we have

rank(A) ≥ (trA)2

trA2
.

Proof. Let r = rankA and let λ1, . . . , λr all A’s non-zero eigenvalues. Then,

trA =
∑

λi,

and

trA2 =
∑

λ2
i .

Now, using Cauchy-Schwarz we conclude that

(trA)2 =
(∑

λi

)2
≤ r

∑
λ2
i = r · trA2

as desired.

Now, let us define what a set of nearly orthogonal vectors actually means.

Definition 4.2. A set X of unit vectors in Rd is said to be nearly orthogonal if for every 3 distinct

vectors in X there is some pair of vectors which are orthogonal.

The following theorem is obtained as a nice corollary from Lemma 4.1.

Theorem 4.3. [Rosenfeld] Let X be a set of nearly orthogonal vectors in Rd. Then,

|X| ≤ 2d.

Before proving it, we also need to recall Parseval’s inequality:

Lemma 4.4. if X is a set of orthogonal, unit vectors, then for all v we have∑
(x · v)2 ≤ v · v.

Proof. Extend X into an orthonormal basis B of Rd. Now, take v and write it as∑
x∈B

(x · v)x.

Observe that

v · v =
∑
x∈B

(x · v)2 ≥
∑
x∈X

(x · v)2.

This completes the proof.

Finally, we are ready to prove Theorem 4.3.
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Proof. Let X = {v1, . . . , vn} be a set of nearly orthogonal vectors in Rd and let A the Gram matrix

of these vectors (that is, Aij = vi · vj). Note that if we take M to be the matrix consisting of all vi’s

as its column vectors, then A = MTM , and in particular we have

rank(A) ≤ rank(M) ≤ d.

Therefore, it will be enough for us to show that rank(A) ≥ n/2. To this end, observe that

trA =
∑

vi · vi = n,

and

trA2 =
∑
i

∑
j

(vj · vi)2.

Now we need to use the nearly orthogonal property: if i, j, k are distinct numbers, then at least

one pair of v is orthogonal. In particular, for all i we have that the set of vj ’s for which vi · vj 6= 0 is

a set of orthogonal unit vectors! Therefore, fixing an i, by Parseval’s inequality we have∑
j 6=i:vj ·vi 6=0

(vj · vi)2 ≤ vi · vi = 1.

Thus, for all i we have
n∑
j=1

(vj · vi)2 ≤ 1 + vi · vi = 2

and hence

trA2 ≤ 2n.

Applying Lemma 4.1 to A we conclude that

rankA ≥ (trA)2

trA2
≥ n2/2n = n/2.

This completes the proof.

5 The Sperner Property

In this section we discuss some extremal problems related (maybe indirectly) to chains/antichains

in posets. Let us first refresh our memory about what a poset is.

Definition 5.1. A poset is a finite set, also denoted by P , together with a binary relation ≤ which

is: reflexive, antisymmetric, and transitive.

For example, consider all subsets of [n] with the relation ⊆. If P consists of all subsets of [n],

then we call it a boolean algebra of rank n, and denote it by Bn.

To present small posets visually, one can draw their Hasse diagram. Roughly speaking, we draw

all the elements such that the smaller ones bellow large ones, and we draw an edge between two

consecutive elements. For example, draw the Hasse diagram of B3.

Two posets P,Q are isomorphic if there is a bijection between them that preserves the binary

relation.
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A chain C in a poset is a totally ordered subset of P . If C has n + 1 elements, we say it is of

length n (like paths in graphs). We say that a poset is graded of rank n if every maximal chain is

of length n. For example, Bn is such. A chain C is said to be saturated if every two consecutive

elements in the chain are consecutive in P . If P is graded of rank n, then an element x ∈ P is said

to be of rank j, if the length of the largest saturated chain ending at x is j. If x is of rank j we

set ρ(x) = j. For example, the rank of every element x in Bn is exactly its size. Clearly, one can

partition P into n+ 1 ‘levels’, P0, . . . , Pn according to the rank of its elements. Moreover, note that

every maximal chain is touching each Pj in exactly 1 element. Let us define pj = |Pj |, and define

the rank generating function

F (P, q) =

n∑
i=0

piq
i =

∑
x∈P

qρ(x).

For example, note that F (Bn, q) = (1 + q)n WHY?

A graded poset of rank n is said to be rank symmetric if pi = pn−i for all i, and rank unimodal

if for some j we have p0 ≤ . . . ≤ pj ≥ pj+1 ≥ . . . ≥ pn. If P is both rank symmetric and rank

unimodal, then we clearly have that j = m if n = 2m or n = 2m+ 1 and in the latter we also have

pm = pm+1. We also say that the sequence (pi) itself or the rank generating function is symmetric

or unimodal, depends on P . A subset A of P is called an antichain if no two elements in A are

comparable. For example, all the level sets are also antichains. The problem we are considering in

this section is about finding/copmuting the size of a largest antichain.

Let’s focus at the beginning at Bn. In this case, the problem of finding the largest antichain is

equivalent to the problem of finding the largest family of subsets of [n] such that no set is contained

in the other. An intuitive guess should be the the level set Pn/2 is also a maximal antichain, which

gives a lower bound of
(
n
n/2

)
. The question is how to show that there are no larger antichains? The

main theorem that we want to present is due to E. Sperner from 1927 and is known as Sperner’s

Theorem. We give three proofs of this theorem, two are tailored for Bn and another one, based on

linear algebra, that can be applied in a more general setting. Before stating the theorem we need

the following definition:

Definition 5.2. Let P be a graded poset of rank n. We say that P has the Sperner property if the

maximum size of an antichain equals to the largest size of a level set.

5.1 Sperner’s theorem

Now we are ready to state Sperner’s theorem.

Theorem 5.3 (Sperner’s theorem). Bn has the Sperner’s property.

Note that it doesn’t prove uniqueness of a maximal antichain!

The first proof was obtained in 1966 by David Lubell

Proof 1. Given a subset X ⊆ [n] and a permutation π ∈ Sn, we say that π contains X as an initial

segment if {π(1), . . . , π(|X|)} = X. Now, let A be an antichain and take a permutation π ∈ Sn
uniformly at random. For every X ∈ A, let EX be the event ‘π contains X as an initial segment’.

Clearly, as A is an antichain, we have that for all X 6= X ′ ∈ A the events EX and EX′ are disjoint!

Therefore, ∑
X∈A

Pr[EX ] ≤ 1.
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Now, fix some X ∈ A of size |X| = x. Clearly,

Pr[EX ] =
x!(n− x)!

n!
=

1(
n
x

) .
As
(
n
x

)
≥
(
n
n/2

)
holds for all x, we conclude that

|A|(
n
n/2

) ≤ ∑
X∈A

Pr[EX ] ≤ 1.

Rearranging the above inequality gives the desired bound.

Proof 2. Fix an integer 0 ≤ k ≤ n. Consider a bipartite graph with parts A =
(
n
k

)
and B =

(
n
k−1

)
,

where a ∈ A and b ∈ B are adjacent if and only if b ⊆ a. Note that each vertex in A has degree k

and each vertex in B has degree n− k + 1. Therefore, for a fixed subset X ⊆ B, we have

|X|(n− k + 1) = e(X,N(X)) ≤ |N(X)|k.

Now, if k ≤ n+1
2 , we obtain that |N(X)| ≥ |X|. Therefore, there exists a matching of size |B| for all

k = 1, . . . , n/2. Similarly, one can show that if k > n+1
2 , then there is a matching of size |A|. Next,

fix such a matching for each k, and observe that their union consist of saturated, disjoint, chains,

covering all the subsets of [n]. Observe that in every obtained chain, there must be an element

(unique...) from the the level set n/2 WHY?. Since each antichain can intersect every chain at most

once, we obtain the desired.

5.2 Application – the Erdős-Littlewood-Offord inequality

Before diving into the more complicated (but much more general though) proof of Sperner’s

theorem, let us give two, similar in nature, applications.

In 1938, Littlewood and Offord, in considering the distribution of zeroes in random polynomials,

raised the following question. Suppose that a1, . . . , an are given, real numbers, with absolute value

at least 1. How many sums of the form
∑

i εiai having εi ∈ {−1, 1} can lie within an open unit

interval? They proved that this number is at most c logn√
n

2n for some fixed constant c. Later on,

Erdős found an elegant way to obtain an optimal bound using Sperner’s theorem. This result is now

known as the Erdős-Littlewood-Offord inequality and has tons of applications and extensions.

Theorem 5.4 (Erdős, 1945). Let a1, . . . , an be real numbers of absolute value at least one. For all

open unit intervals I, there are at most
(

n
bn/2c

)
vectors (εi)

n
i=1 ∈ {−1, 1}n such that

∑
εiai ∈ I.

Proof. Note that by changing signs of the ais we do not change the distribution, and therefore

we are allowed to assume that they are all positive. Now, fix an open, unit interval I, and let

SI = {(εi)ni=1 ∈ {±1}n :
∑

i εiai ∈ I}. For each vector ε = (εi) ∈ S, let Aε ⊆ [n] be the set of all

indices i for which εi = 1, and let A := {Aε : ε ∈ SI}. In order to complete the proof, it is enough

to claim that A is an antichain, and then to apply Sperner’s theorem. Indeed, suppose that there

are ε 6= ε′ with Aε ⊂ Aε′ . As all the ais have absolute value at least 1, it follows that∣∣∣∑ εiai −
∑

ε′iai

∣∣∣ ≥ 1

and therefore they cannot both lie in I. This completes the proof.
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Note that the above theorem is best possible as the sequence ai = 1 for all i shows. Clearly, the

number of vectors ε can be large only if there are many cancelations. That is, intuitively, it means

that the sequence ai has some ‘nice’ additive properties. What if, for example, we enforce all the

ai’s to be distinct integers? can we do better? The following beautiful argument is due to Erdős and

Moser, and was later improved by Sarkozy and Szemeredi, and was also proven in full generality by

Halasz, using Fourier analysis.

Theorem 5.5 (Erdős-Moser). Suppose that all the ai’s are distinct integers. Then, the number of

vectors ε ∈ {0, 1}n for which
∑

i εiai = m is O(log3/2 n/n3/2).

Proof. I’ll leave it to you as an exercise to prove that by switching to {0, 1} instead of {±1}, and

assuming that all ai’s are positive don’t change the conclusion. So from now on, we assume the

above and reenumerate in such a way that a1 ≤ a2 ≤ . . . ≤ an. Let m ∈ N be any integer, and let

Bm = {I ⊆ [n] :
∑
i

ai = m}.

We wish to show that Bm is small. To this end, we need the following two claims.

Claim 5.6. Suppose that there are i1 < i2 < . . . < it for which

2aij ≤ aij+1

for all 1 ≤ j ≤ t− 1. Then,

|Bm| ≤ 2n−t.

Proof. Give any assignment to the εi’s for i 6= ij . In order to make the full sum be equal m, there

is a unique assignment on the indices ij . This gives the desired.

Claim 5.7. Suppose that b1, . . . , bs is a sum-free subset (that is, no partial sum gives an element bi).

Then, the number of solutions to
∑
εibi = m′ is at most 10·2s

s3/2
.

Proof. Let Bm′ defined as before with respect to the sequence bi. One can assume that every I ∈ Bm′
is of size at least s/4, as otherwise there are much less than 1/s2 such solutions. Now, for each I ∈ Bm′
let SI be its 1-shadow. That is, SI consists of all subsets J ⊆ I of size |I| − 1. Observe that for

I 6= I ′ we have SI ∩ SI′ = ∅. Indeed, as
∑

i∈I ai =
∑

i∈I′ ai = m, if we delete only one element from

each, this element can be recovered in a unique way.

Now to the key observation: The set S := ∪SI is a Sperner family. Indeed, suppose that there

are J ⊂ I and J ′ ⊂ I ′ with J ⊂ J ′. Then, by definition we have∑
j∈J

bj +
∑
j∈I′\J

bj =
∑
j∈J

bj + b∗,

where b∗ is the unique element in I \ J . In particular, we obtain
∑

j∈I′\J bj = b∗ which contradicts

the sum-free assumption. To complete the proof, we need to upper bound the size of Bm′ . To this

end, let us first observe that one can make the assumption that all the sets in Bm′ are of size at least

s/10, as otherwise we get a much better bound WHY?. Moreover, as the SI ’s are disjoint, we clearly

have that every SI consists of at least s/10 sets and |mathcalS| ≥ |Bm′ |s/10. Moreover, as S is a

Sperner family, we obtain that

|Bm′ |s/10 ≤
(
s

s/2

)
,
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yielding

|Bm′ | ≤ 10 · 2s/s3/2.

This completes the proof.

Finally, let us show how to deduce the proof of the theorem from the claims. Let us consider the

disjoint intervals Ik := [2k−1, 2k), k = 1, . . .∞. Clearly, N = ∪Ik and they are all disjoint. Moreover,

crucially observe that every interval Ik is a sum-free set WHY?. Therefore, if the sequence ai intersect

at least (say) 2 log n distinct intervals, then by Claim 5.6 we are done. So, we can assume that it

touches at most 2 log n intervals, and therefore, there must be Ik for which s := |{a1, . . . , an}∩ Ik| ≥
n

2 logn . By claim 5.7, we conclude that for every assignment on the complement of this set (2n−s such

assignments), there are at most 10 ·2s/s3/2 completions for a solution. This completes the proof.

5.3 Sperner’s theorem – Stanley’s proof

The main question we want to deal with now is: which combinatorial condition guarantees that

certain graded posets P have the Sperner property? Two sections ago we showed that the boolean

algebra has it, but what if we work with other posets?

One natural property is similar to the approach we used in Proof 2. That is, the existence of

matchings between any two consecutive level sets. More formally, define an ordered matching from

Pi to Pi+1 to be a one-to-one function f : Pi → Pi+1 satisfying x < f(x) for all x ∈ Pi. Clearly, if

such f exists then |Pi| ≤ |Pi+1|. Similarly, one can define an ordered matching from Pi to Pi−1 (here

we want f(x) < x for all x). The proof of the following proposition is easy (see the previous proof)

and is left as an exercise.

Proposition 5.8. Let P be a graded poset of rank n. Suppose that there exists an integer j and

ordered matchings

P0 → P1 → . . .→ Pj ← Pj−1 ← . . .← Pn.

Then P is rank unimodal and Sperner.

Now we want to add some linear algebra into the discussion. Note that working in Bn is quite

easy as it is a quite simple poset and we know everything about it. What if we replace it by a general

and more abstract one? We clearly won’t have the same luxury of using Hall’s theorem in an easy

way, so we need a new idea. For any finite set S, let RS denote the real vector space consisting

of all formal linear combinations (with real coefficients) of elements of S. Thus, S is a basis for it.

The next lemma is the linear-algebra ingredient that we need in order to prove the assumptions of

Proposition 5.8.

Lemma 5.9. Suppose there are linear transformation U : RPi → RPi+1 satisfying

• U is one-to-one, and

• for all x ∈ Pi, U(x) is a linear combination of elements y ∈ Pi+1 with x < y (we say that U is

an order raising operator).

Then, there exists an order-matching f : Pi → Pi+1.

Similarly, suppose that there exists linear transformation U : RPi → RPi+1 satisfying:

• U is onto, and

34



• U is an order raising operator.

Then, there exists an order-matching f : Pi+1 → Pi

Proof. Suppose U : RPi → RPi+1 is a one-to-one order raising operator. Let [U ] denote the matrix

representing U with respect to the bases Pi of RPi and Pi+1 of RPi+1. Thus, the rows are indexed by

the elements {yi} = Pi+1 and the columns by {xj} = Pi. Since U is one-to-one we have rank[U ] = pi
and therefore there are pi linearly independent rows. By relabeling if necessary, we may assume that

the first pi (out of pi+1) rows are independent. Let A be the pi × pi submatrix consisting of these

rows. Since the rows of A are linearly independent, we have

det(A) =
∑
π∈Spi

sign(π)a1π(1) . . . apiπ(pi) 6= 0.

Therefore, we can pick a π ∈ Spi with a1π(1) . . . apiπ(pi) 6= 0, and observe that since U is an order-

raising operator, we have that yk > xπ(k) for all k. Indeed, consider eπ(k) (the coordinates vector

representing xπ(k) in the corresponding basis), Ueπ(k) has a yk term in one of its coordinates. Hence,

the map f : Pi → Pi+1 defined by f(xk) = yπ−1(k) is an ordered matching as desired. The second

part of the lemma is similar so we omit it. This completes the proof.

Finally, we want to apply Proposition 5.8 and Lemma 5.9 to the boolean algebra Bn in order to

conclude Sperner’s theorem.

To this end, we need to find a linear transformation Ui : R(Bn)i → R(Bn)i+1 for all 0 ≤ i < n,

and then prove it has the desired properties. We can define Ui in the most natural way as:

Ui(x) =
∑

y∈(Bn)i+1,y>x

y.

By definition Ui is order-raising operator and we need to show it is a one-to-one for i < n/2 and

onto for i ≥ n/2. In order to do so, let us introduce a ‘dual’ operator Di : R(Bn)i → R(Bn)i−1 as

follows:

Di(y) =
∑

x∈(Bn)i−1,x<y

x.

Let [Ui] denote the matrix of Ui with respect to the bases (Bn)i and (Bn)i+1, and similarly let [Di]

denote the matrix od Di with respect to the bases (Bn)i and (Bn)i−1. Observe that

[Di+1] = [Ui]
t.

Let us set Un = 0 and D0 = 0. The following lemma states the property that we need from Bn in

order to make everything work.

Lemma 5.10. Let 0 ≤ i < n. Then

Di+1Ui − Ui−1Di = (n− 2i)Ii.

Proof. Let x ∈ (Bn)i, and observe that

Di+1Ui(x) =
∑

|y|=i+1,x≤y

∑
|z|=i,z≤y

z.
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Note that if x, z ∈ (Bn)i satisfy |x ∩ z| < i− 1, then there is no y ∈ (Bn)i+1 with x ∪ z ⊆ y, so the

corresponding coefficients of such zs are 0. If |x ∩ z| = i − 1, then there is a unique y containing

them both, namely, y = x ∪ z. Finally, if x = z, then there are n− i options to choose y. All in all,

Di+1Ui(x) = (n− i)x+
∑

|z∩x|=i−1

z.

Similarly, one can show

Ui−1Di(x) = ix+
∑

|z∩x|=i−1

z,

and we obtain the desired.

Theorem 5.11. Ui is one-to-one if i < n/2, and onto otherwise.

Proof. As we observed before, [Di] = [Ui−1]t. Moreover, for every matrix A, we know that AtA is

a positive semidefinite matrix, and therefore it has only real, non-negative eigenvalues. By Lemma

5.10 we have

Di+1Ui = Ui−1Di + (n− 2i)I.

Thus, the eigenvalues of the LHS are shifted eigenvalues of RHS. By assumption we have n− 2i > 0

so all the eigenvalues are strictly positive! Therefore, we obtain that Ui is one-to-one. The case

i ≥ n/2 is left as an exercise.

5.4 Group actions on the Boolean Algebras

Suppose that X is an n-element set and that G is a group. We say that G acts on the set X if

for every element π of G we associate a permutation π of X, such that for all x ∈ X and π, σ ∈ G
we have

π(σ(x)) = (πσ)(x).

This gives us a homomorphism ϕ : G→ SX .

Example 5.12. Let a real number α act on the xy-plane by rotating counter clockwise around the

origin by an angle of α radians.

Recall the notion of an orbit of a group G on a set X. Namely, we say that x, y ∈ X are G-

equivalent if π(x) = y for some π ∈ G. This is clearly an equivalence relation WHY? and each

equivalence class is called an orbit. The orbits partition X and are disjoint. The orbit containing x

is denoted by Gx. The set of all orbits is denoted X/G.

Let us consider now the case where X is the boolean algebra Bn. An automorphism of a poset P

is an isomorphism ϕ : P → P . The set of all automorphisms forms a group, denoted by Aut(P ) and

called the automorphism group of P , under the operation of composition of functions. Note that any

permutation of [n] acts on Bn as follows: π{i1, . . . , ik} = {π(i1), . . . , π(ik)}. This action is clearly an

automorphism. In particular, any subgroup G of Sn acts on Bn like above.

We now define the class of posets which will be of interest to us here. Let G be a subgroup of

Sn, and define the quotient poset Bn/G as follows: the elements are the orbits of G. If o′ and o′′ are

orbits, then define o′ ≤ o′′ if there exist x ∈ o′ and y ∈ o′′ such that x ≤ y in Bn. Check that this is

indeed a partial order.
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Proposition 5.13. The quotient poset Bn/G defined above is graded of rank n and rank-symmetric.

Proof. Graded of rank n is easy. We show rank-symmetric. Observe that the rank of each orbit is

just the same as the rank of each of its elements in Bn (see that?). Therefore, the number of elements

in the ith level set of Bn/G is just the number of orbits o′ ∈ (Bn)i/G. If x ∈ Bn, let x̄ denote its

complement ([n] \ x). Then {x1, . . . , xj} is an orbit of i-element subsets if and only if {x̄1, . . . , x̄j} is

an orbit of n− i-element subsets. Therefore we obtain the symmetry property.

Let π ∈ Sn. We associate π with a linear transformation

π : R(Bn)i → R(Bn)i

defined as

π

 ∑
x∈(Bn)i

cxx

 =
∑

cxπ(x).

Clearly, this defines an action of Sn on the vector space R(Bn)i. The matrix of π with respect to

the basis (Bn)i is just a permutation matrix. We will be interested in elements of R(Bn)i which are

fixed by every element of a subgroup G of Sn. The set of all such elements is denoted R(Bn)Gi and

is consisting of all v ∈ R(Bn)i with π(v) = v for all π ∈ G.

Lemma 5.14. A basis for R(Bn)Gi consists of all elements

vo′ :=
∑
x∈o′

x,

where o′ ∈ (Bn)i/G.

Proof. First note that if o′ is an orbit and x ∈ o′, then by definition we have π(x) ∈ o′ for all

π ∈ G. Since π permutes the elements of (Bn)i, it follows that π permutes the elements of o′. Thus,

π(vo′) = vo′ and vo′ ∈ R(Bn)Gi . Moreover, all the vo′s are linearly independent as each element

x ∈ (Bn)i appears with a non-zero coefficient in exactly one of them.

It thus remains to show that they span R(Bn)Gi . That is, we want to show that every v =
∑

x cxx ∈
R(Bn)Gi can be written as a linear combination of the vo′s. Given x ∈ (Bn)i, let Gx = {π | π(x) = x}
be the stabilizer of x. Recall that π(x) = σ(x) if and only if πGx = σGx. It follows that in the

multiset {π(x) | π ∈ G}, every element y in the orbit Gx appears |Gx| times, and no other element

appears. Therefore, ∑
π∈G

π(x) = |Gx| · vGx.

Now, apply π to v and sum on all π ∈ G. Since π(v) = v, we obtain

|G| · v =
∑
π∈G

π(v) =
∑
π∈G

 ∑
x∈(Bn)i

cxπ(x)

 =
∑

x∈(Bn)i

cx

(∑
π∈G

π(x)

)
=

∑
x∈(Bn)i

cx|Gx|vGx.

This completes the proof.

Now we analyze the affect of applying the order-raising operator Ui to an element v ∈ R(Bn)Gi .
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Lemma 5.15. If v ∈ R(Bn)Gi then Ui(v) ∈ R(Bn)Gi+1.

Proof. Note that since π ∈ G is an automorphism of Bn, we have x < y iff π(x) < π(y). Therefore,

if v ∈ (Bn)i we obtain

π(Ui(v)) = Ui(π(v)),

which equals Ui(v) for all v ∈ R(Bn)Gi . Therefore, Ui(v) ∈ R(Bn)Gi+1, as desired.

Now we are ready to state and prove the main result on the Sperner’s property, and this is

basically the main tool to obtain all the more complicated results about general posets which satisfy

the Sperner’s property.

Theorem 5.16. Let G be a subgroup of Sn. Then, Bn/G is graded of rank n, rank-symmetric,

rank-unimodal, and Sperner.

Proof. Let P = Bn/G. We’ve already seen in Proposition 5.13 that P is graded of rank n and

rank-symmetric. We want to define order-raising operators Ûi : RPi → RPi+1 and order-lowering

operators D̂i : RPi → RPi−1. Let us first consider just Ûi. The idea is to identify the basis elements

vo′ of RBG
n with the basis element o′ of RP and to let

Ûi : RPi → RPi+1

correspond to the usual order raising operator

Ui : R(Bn)i → R(Bn)i+1.

That is, for the order-raising operator as defined in the previous section, suppose that

Ui(vo′) =
∑

o′′∈(Bn)i+1/G

co′,o′′vo′′

(observe that by Lemma 5.15 Ui(vo′) indeed has this form, as vo′ ∈ (Bn)Gi and Ui(vo′) ∈ (Bn)Gi+1,

and the vo′′ form a basis for this vector subspace). Now, define the linear operator

Ûi(o
′) =

∑
o′′∈(Bn)i+1/G

co′,o′′o
′′.

We claim the Ûi is order-raising operator. That is, we need to show that if co′,o′′ 6= 0, then o′ < o′′

in Bn/G. Since

vo′′ =
∑
x′′∈o′′

x′′,

the only way co′,o′′ 6= 0, by definition of Ui, is to some x′′ ∈ o′′ to satisfy x′′ > x′ for some x′ ∈ o′.
But this is the definition of o′′ > o′, as we wanted to show.

Finally, to complete the proof we need to show that Ûi is one-to-one for i < n/2 and D̂i is one-to-

one order-lowering for i ≥ n/2. As the latter can be handled similarly to the Ûi’s, we omit the proof.

We’ve already seen in the previous section that Ui is one-to-one for i < n/2. Thus, the restriction of

Ui to the subspace R(Bn)Gi is one-to-one. Note that Ui and Ûi are the exact same transformations

(in terms of their representative matrix), and therefore Ûi is one-to-one as well. This completes the

proof.
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An application: let n =
(
m
2

)
and let M = {1, . . . ,m}. Set X =

(
M
2

)
. Think about X as the set of

all possible edges of a graph on vertex set M . Let BX be the boolean algebra on X, then x ∈ BX
is a collection of edges. Define a subgroup G of SX as follows: G consists of all permutation which

are obtained by permuting vertices. That is, if π ∈ Sm, then define π̂{i, j} = {π(i), π(j)}. Thus, G

is isomorphic to Sm. Now, observe that two elements x, y ∈ BX are in the same orbit iff they are

isomorphoc graphs. Therefore, the elements of BX/G are the isomorphism classes of simple graphs

on m vertices. In particular, |BX/G| is the number of non-isomorphic such graphs, and |(BX/G)i| is
the number of non-isomorphic graphs with exactly i edges. In BX we have x ≤ y iff x is a subgraph

of y. This immediately gives us the following theorem:

Theorem 5.17. (a) Fix m ≥ 1. Let pi be the number of non-isomorphic graphs on m vertices and

exactly i edges. Then, the sequence pi is symmetric and unimodal.

(b) Let T be a collection of simple graphs with m vertices such that no element of T is isomorphic

to a spanning subgraph of another element of T . Then |T | is maximized by taking T to consists

of all nonisomorphic simple graphs with b1
2

(
m
2

)
c edges.

6 Combinatorial nullstellensatz

6.1 Chevalley-Warning

In this section we discuss a classical theorem which is based on a similar idea like the nullstellensatz

one that will appear in the next section. Throughout the section we consider q = pk, where p is

prime and k ∈ N.

Theorem 6.1 (The Chevalley-Warning Theorem). Let f1, . . . , ft ∈ Fq[x1, . . . , xn]. If
∑
deg(fi) < n,

then ∣∣{x ∈ Fnq : fi(x) = 0 for all i}
∣∣ = 0(mod q).

This theorem was proved by Warning in 1935, extending the following result due to Chevalley:

Theorem 6.2 (Chevalley’s Theorem). Same assumptions as before. If the fis have a common zero,

then they have at least two.

The theorems are quite easy to understand in case that all the fis are linear functions WHY?

Let us give a quick application of Theorem 6.1 before proving it. Define

s(p, n) := min{m : for every a1, . . . , am ∈ Znp ∃∅ 6= I ⊆ [m] s.t.
∑

ai = 0(mod p)}.

In other words, s(p, n) is the minimal m such that any n ×m matrix in Zp, M , satisfy Mx = 0

for some 0/1 vector.

It is easy to check that s(p, n) ≥ (p− 1)n+ 1 as you can just take p− 1 copies of some basis. We

prove the following theorem

Theorem 6.3 (Olson). For any prime p and any n, s(p, n) = (p− 1)n+ 1.

In general the Davenport constant of a finite abelian group G, denoted s(G), is the least m

such that for any a1, . . . , am ∈ G, there’s a nonempty I ⊆ [m] for which
∑

i∈I a
i = 0. Thus

s(p, n) = s(Znp ). Olson and D. Kruyswijk independently (and by different methods) determined the

Davenport constants for all p-groups. In general, it is not even known whether the above theorem is

true if p is not a prime. That is, is it true that s(Znk) = (k − 1)n+ 1 for every k and n?
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Proof. Let m = (p− 1)n+ 1. Suppose a1, . . . , am ∈ Znp , and for each j let fj ∈ Zp[y1, . . . , ym] be

fj(y) =
∑
i

aijy
p−1
i .

Note that
∑
deg(fj) = (p − 1)n < m and fj(0) = 0 for all j. Therefore, by Theorem 6.1 we have

that there exists y 6= 0 which is a common zero of the fj ’s. Then, we can take as I the support of y

and observe that xp−1 = 1 for all x 6= 0 in Zp. This completes the proof.

Now let’s prove the theorem. We say that g ∈ Fq[x1, . . . , xn] is reduced if degi(g) ≤ q − 1 for

every i ∈ [n] (degi(g) is the degree of xi in g). Then for f ∈ Fq[x1, . . . , xn], the reduced polynomial

corresponding to f is the reduced polynomial f̄ obtained from f by iterating until no longer possible:

replace some term x`i with ` ≥ q by x`−q+1
i . Observe that f and f̄ both agree on Fnq . Note that in

finite fields, f(x) = 0 for all x doesn’t imply all coefficients are 0! (for example, consider xq − x).

But the reduced polynomials imply that (the proof is obtained by a simple induction on the number

of variables):

Lemma 6.4. If g is reduced, then

g(x) = 0∀x ∈ Fnq if and only if g = 0.

Now we are ready to prove the theorem:

Proof. Let Z be the set of common zeros of the fi’s. It is easy to check that each of the following is

a polynomial representing the function 1Z :

f(x) =

t∏
j=1

(1− fj(x)q−1),

h(x) =
∑
a∈Z

n∏
i=1

(1− (xi − ai)q−1).

Note that h is reduced, and therefore f̄ = h and

deg(h) = degf̄ ≤ deg(f) ≤ (q − 1)
∑

deg(fj) < (q − 1)n.

BUT then the leading term in h, |Z|
∏n
i=1(−xi)q−1 must vanish! that is, we must have |Z| =

0(mod p). This completes the proof.

6.2 Combinatorial nullstellensatz

In this section we are going to focus on the ‘theory of zeros’. In general, our tools are the following

two theorems that we will prove later.

Theorem 6.5. Let F be an arbitrary field, and let f(x1, . . . , xn) be a polynomial in F [x1, . . . , xn].

Let S1, . . . , Sn be nonempty subsets of F and define gi(x) =
∏
s∈Si(xi − s). If f vanishes over all

the common zeros of g1, . . . , gn (that is, f(s1, . . . , sn) = 0 for all si ∈ Si), then there are polynomials

h1, . . . , hn ∈ F [x1, . . . , xn] satisfying deg(hi) ≤ deg(f)− deg(gi) so that

f =
∑

higi.

Moreover, if f, g1, . . . , gn lie in R[x1, . . . , xn] for some subring R of F then there are polynomials as

above with hi ∈ R[x1, . . . , xn].
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As a corollary of the above theorem we obtain the following:

Theorem 6.6. Let F be an arbitrary field, and let f(x1, . . . , xn) ∈ F [x1, . . . , xn]. Suppose that

deg(f) =
∑
ti, where each ti is a nonnegative integer, and suppose the coefficient of

∏n
i=1 x

ti in f is

nonzero. Then, if S1, . . . , Sn are subsets of F with |Si| > ti, there are si ∈ Si for which

f(s1, . . . , sn) 6= 0.

These two theorems are known as Combinatorial Nullstellensatz and where introduced by Alon

(based on the so called Hilbert Nullstellensatz Theorem).

Before proving the above theorems, let us start with some simple applications. The first applica-

tion gives us a short proof for a famous theorem by Cauchy and Davenport, and it has numerous of

applications in Additive Number Theory.

Theorem 6.7. If p is a prime, and A,B are two nonempty subsets of Zp, then

|A+B| ≥ min{p, |A|+ |B| − 1}.

Cauchy proved this theorem in 1813 and applied it to give a new proof to a lemma of Lagrange

which asserts that any integer is a sum of four squares. Davenport, having other applications in mind,

rediscovered it in 1835. Here we give a very short proof for this theorem due to Alon, Nathanson

and Ruzsa.

Proof. If |A| + |B| > p then the result is trivial, as for all g ∈ Zp, the set g − B intersects A.

Assume therefore that |A| + |B| ≤ p and suppose that the result is false. That is, assume that

|A + B| ≤ |A| + |B| − 2. Let C be a subset of Zp satisfying A + B ⊆ C and |C| = |A| + |B| − 2.

Define

f(x, y) =
∏
c∈C

(x+ y − c).

By definition, we have that

f(a, b) = 0 for all a ∈ A and b ∈ B.

Let t1 = |A| − 1, t2 = |B| − 1 and note that the coefficient of xt1yt2 is
(|A|+|B|−2
|A|−1

)
which is nonzero in

Zp, since |A|+ |B| − 2 < p. Therefore, by applying Theorem 6.6 with S1 = A and S2 = B we obtain

a contradiction.

As a second application we prove the Erdős-Ginzburg-Ziv theorem from 1961. One of the first

exercises in pigeonhole principle tells us that of a1, . . . , an is any sequence of integers (not necessarily

distinct), then there is a non-empty subset summing to 0 mod n. A natural question that one can

ask is about the size of this subset. This is the aim of the next theorem.

Theorem 6.8 (Erdős-Ginzburg-Ziv). For any a1, . . . , a2n−1 ∈ Zn, there is an I ⊆ [2n − 1] with∑
i∈I ai = 0(mod n) and |I| = n.

Exercise 6.9. Show that 2n− 2 is not enough.

It turns out that it is enough to prove this theorem when n is a prime (do you see how is it related

to one of the problems in PSET3?). So, we only prove it for this case.

Before proving the theorem, we need the following immediate corollary from the Cauchy-Davenport

theorem which can be easily obtained by induction.
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Corollary 6.10. For any t, a prime p and nonempty A1, . . . , At ⊆ Zp,

|A1 + . . .+At| ≥ min{
∑
|Ai| − t+ 1, p}.

Now we are ready to prove the theorem.

Proof. Let Ai = {a2i−1, a2i} for all 1 ≤ i ≤ n − 1, and An = {a2n−1}. Then, the above corollary

gives us

|
∑

Ai| ≥ min{
∑
|Ai| − n+ 1, n} = n.

That is, ∑
Ai = Zn,

so in particular we have 0 ∈
∑
Ai and we are done. Clearly, the above argument is wrong! as it can

be that some of the Ai contain two elements which are the same... In order to fix the proof, we need

the following:

Claim 6.11. If no a ∈ Zn appears more than n times in the sequence a1, . . . , a2n−1, then we can

reindex in such a way that all the Ai are of size 2 (except of the obvious An).

Proof. If no ai appears twice, then we are done. Otherwise, delete one appearance of an ai that

appears at least twice and label it a2n−1. To complete the argument – we are left with 2n − 2

numbers (with multiplicities) and consider a graph with those ais as vertices and edges between

two ai’s which are non-equal. This graph has minimum degree at least n− 1 (by assumption), and

therefore it is quite straightforward to find a perfect matching in it.

In order to complete the proof, just observe that if some ai appears n times then it is trivial to

find such an index set I.

The next application is in graph theory:

Theorem 6.12 (Alon-Friedland-Kalai). For any prime p, any loopless graph G with average degree

bigger than 2p− 2 and maximum degree at most 2p− 1 contains a p-regular subgraph.

Proof. Let (av,e)v∈V (G),e∈E(G) be the incidence matrix of G defined by av,e = 1 if v ∈ e and 0

otherwise. Associate each edge e with a variable xe and consider the polynomial

F =
∏

v∈V (G)

1− (
∑

e∈E(G)

av,exe)
p−1

− ∏
e∈E(G)

(1− xe),

over Zp. Note that deg(F ) = |E| since the degree of the first product is (p − 1)|V (G)| < |E|.
Moreover, the coefficient of

∏
e∈E(G) xe in F is (−1)|E|+1 6= 0. Therefore, there are values xe ∈ {0, 1}

with F (x) 6= 0. Note that the vector x is not the zero vector! Now, since
∑

e∈E av,exe = 0(mod p)

for every v (otherwise F will vanish), it follows that the subgraph consisting of all edges e ∈ E with

xe = 1 is p regular.

We will see many more applications later on in this class.
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6.3 Proof of the main theorems

Before proving Theorem 6.5 we need the following lemma.

Lemma 6.13. Let P (x1, . . . , xn) be a polynomial in n variables over an arbitrary field F . Suppose

that the degree of P as a polynomial in xi is at most ti, and let Si ⊂ F be a set of ti + 1 distinct

elements of F . If P (x1, . . . , xn) = 0 for all n-tuples (x1, . . . , xn) ∈ S1 × . . .× Sn, then P = 0.

Proof. We apply induction on n. For n = 1, the lemma is simple. Suppose it holds for n − 1 and

let’s prove it for n. Given P and sets Si as in the lemma, let us write

P =

tn∑
i=0

Pi(x1, . . . , xn−1)xin.

For each such fixed (n − 1)-tuple (x1, . . . , xn−1) ∈ S1 × . . . × Sn−1, the polynomial in xn obtained

from P by substituting the values of x1, . . . , xn−1 vanishes for all xn ∈ Sn, and therefore is 0. Thus,

Pi = 0 for all such (n− 1)-tuples. All in all, by induction, Pi = 0 for all i.

Now we can prove Theorem 6.5.

Proof. Let ti = |Si| − 1 for all i. By assumption, for every (x1, . . . , xn) ∈ S1 × . . .× Sn we have

f(x1, . . . , xn) = 0.

For each i let

gi(x) =
∏
s∈Si

(xi − s) = xti+1
i −

ti∑
j

gijx
j
i .

Observe that if xi ∈ Si, then gi(xi) = 0. That is, x
ti+1

i =
∑
gijx

j
i .

Let f̄ be the polynomial obtained by writing f as a linear combination of monomials and replacing,

repeatedly, each occurrence of xfii , where fi > ti, by a linear combination of smaller powers of xi as

above. This gives a polynomial of degree at most ti in xi, for each i. Clearly, f̄ is obtained from

f by subtracting from it a product of the form higi, where the degree of each hi does not exceed

deg(f)− deg(gi). Moreover, as f̄(x) = f(x) for all x ∈ S1× . . .×Sn, by Lemma 6.13 we have f̄ = 0.

This implies that f =
∑
higi as desired.

Now we can prove Theorem 6.6.

Proof. By deleting elements if necessary, we may assume that |Si| = ti+1 for all i. Suppose the result

is false and define gi(xi) as before. By Theorem 6.5 there are polynomials h1, . . . , hn ∈ F [x1, . . . , xn]

satisfying deg(hj) ≤
∑
ti − deg(gj) so that

f =
∑

higi.

By the assumption, the coefficient of
∏
xtii in f is nonzero, and so is the coefficient of this monomial

in the right hand side. BUT, the degree of higi = hi
∏
s∈Si(xi − s) is at most deg(f), and if there

are monomials of degree deg(f) in it, they are divisible by xti+1
i ! this shows that the coefficient of∏

xtii in RHS must be 0, which gives us a contradiction.
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6.4 More applications of the combinatorial nullstellensatz

6.4.1 Latin transversals

Suppose that M is a k × k matrix with entries from a set S of symbols. A Latin transversal of

M is a set of k cells, no two sharing a row/column/symbol. EXAMPLE. That is, a latin transversal

is a permutation π ∈ Sk with all entries miπ(i) being distinct.

We are interested in the case that M is a submatrix of the addition table of some abelian group

G. That is, we fix A,B ⊂ G and consider the submatrix (ma,b)a∈A,b∈B where ma,b = a+ b.

Conjecture 6.14 (H. Snevily, 1999). If G is abelian group of odd order, then any square submatrix

of the addition table of G has a Latin transversal.

An equivalent way to say it: given A,B ⊂ G of sizes |A| = |B| = k, there are orderings A =

{a1, . . . , ak} and B = {b1, . . . , bk} for which a1 + b1, . . . , ak + bk are all distinct. Observe that this is

false if |G| is even! the easiest way to see it is is considering Z2, but one can also easily find examples

for larger sizes.

Snevily’s conjecture is still open but has been proven for the cyclic groups Zn. It was proved in

two steps

Theorem 6.15 (Alon 2000). True for Zp where p is prime.

Theorem 6.16 (Dasgupta, Károlyi, Serra and Szegedy, 2000). True for all odd n.

As the latter relies on the former we need to prove them both. A related conjecture which is

worth mentioning is the following:

Conjecture 6.17. If k is odd and no symbol appears more than once in any row/column of M , then

M has a Latin transversal.

We now prove the following theorem, which is slightly stronger than Theorem 6.15

Theorem 6.18. Suppose p is prime and k < p. Then for any (not necessarily distinct) a1, . . . , ak ∈
Zp and B ⊆ Zp of size k, there is an ordering b1, . . . , bk of the elements of B for which a1+b1, . . . , ak+

bk are all distinct.

Note that this is false for k = p. Indeed, one can take a1 = . . . = ap−1 = 0 and ap 6= 0. It is also

false for any p which is not prime (WHY?). On the other hand, it implies Theorem 6.15 as the case

k = p is easy to verify.

Proof. Let us define the following polynomial:

f(x) =
∏
i<j

(xi − xj)
∏
i<j

(xi + ai − xj − aj) ∈ Zp[x1, . . . , xn].

Note that an ordering as in the theorem is the same as an x ∈ Bk with f(x) 6= 0. Note that

deg(f) = 2
(
k
2

)
= k(k − 1) and therefore we need to prove that the coefficient of

∏
xk−1
i is not 0.

Now, note that the coefficient is also the same as the coefficient of
∏
xk−1
i in

∏
(xi−xj)2 = (detM)2,

where M is the Vandermonde matrix V (x1, . . . , xk). RECALL WHAT IS IT?

We have

detM =
∑
σ∈Sk

sign(σ)
∏
i

x
σ(i)−1
i ,
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and therefore, the coefficient of
∏
xk−1
i in (detM)2 is∑

σ

sign(σ)sign(σ′)

where σ′ is given by

σ′(i) = k + 1− σ(i).

The key observation is that x = sign(σ)sign(σ′) is the same for all σ. WHY?

Therefore, the coefficient is k!x which is not 0 mod p. This completes the proof.

Now we prove the more general Theorem 6.16

Proof. The new idea here is to write the group multiplicatively. That is, we write Cn instead

of Zn and embed it in the multiplicative group of an appropriate field (and then we can use the

Nullstellensatz). For the field we choose Fq with

q = 2ϕ(n),

where ϕ is Euler’s totient function. As you’ll see soon, the choice of characteristic 2 is crucial. The

exponent is chosen to guarantee that Cn is indeed a subgroup of F×q : since 2 ∈ Z×n (since n is odd)

and |Z×n | = ϕ(n), we have q = 2ϕ(n) = 1 in Zn. That is, n | (q − 1). So, since the multiplicative

group of any finite field is cyclic (IF YOU DON’T SEE IT, IT IS A NICE EXERCISE!), we have

Cn ≤ Cq−1
∼= F×q .

So, we are given distinct a1, . . . , ak ∈ Cn ≤ F×q and B ⊂ Cn of size k, and should find an ordering

b1, . . . , bk for which the products aibi are all distinct. Define

f(x) =
∏

(xi − xj)
∏

(aixi − ajxj) ∈ Fq[x].

As before, we’re looking for an x ∈ Bk with f(x) 6= 0. The degree of f is k(k − 1) (same as in the

previous proof), so existence of the desired x will follow from the nullstellensatz theorem if we can

show that the coefficient of
∏
xk−1
i is non-zero. Here, the ai’s do play a role! note that we can write

f(x) = V (x1, . . . , xk)V (a1x1, . . . , akxk).

Therefore,

f(x) =

(∑
σ

sign(σ)
∏

x
σ(i)−1
i

)(∑
τ

sign(τ)
∏

(aixi)
τ(i)−1

)
.

The desired coefficient in this expression is∑
sign(σ)sign(σ′)

∏
a
σ′(i)−1
i = ±per(V (a1, . . . , ak)),

where σ′ is as in the previous proof. In order to complete the proof we need to show that per(V (a1, . . . , ak)) 6=
0. Here we use the fact that the chracteristic is 2 and the xi’s are distinct! that is, per = det 6= 0.

This completes the proof.
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6.4.2 Graceful labeling of certain trees

7 Working over the reals – integer rounding

7.1 Shannon Capacity

Let’s start with few definitions. For a graph G, define its independence number, α(G), to be the

size of the largest independent set in G. For two graphs H,G, the product of G and H, denoted

G×H is the graph with vertex set V (G)× V (H) and

(x, y) ∼ (x′, y′)⇔
(
x = x′ or x ∼ x′

)
and

(
y = y′ or y ∼ y′

)
.

(where (x, y) and (x′, y′) are distinct vertices of course.) More generally, for graphs G1, . . . , Gn, the

product G1 × . . .×Gn is defined as a graph on

V (G1)× . . .× V (Gn)

with

x ∼ y ⇔ (xi = yi or xi ∼ yi for every i) .

Note that G×H ×K = (G×H)×K = G× (H ×K) (very simple exercise).

We are interested in α(Gn), where Gn = G×G× . . .×G (n times). Let us first observe that we

trivially have α(G × H) ≥ α(G)α(H). (Indeed, if I is an ind. set of G and J of H, then I × J is

an ind. set of G×H). As one can easily check, for (very) small graphs the lower bound is actually

tight. The smallest graph for which it’s not tight for is C5, which is convenient to think about as Z5

with edges of the form (i, i+ 1) (where addition is being made modulo 5). It is quite simple to show

that α(C5) = 2 but α(C2
5 ) ≥ 5 (check for example the set {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}), so the

above inequality is a strict one for C5.

The following quantity was introduced by Shannon in 1956:

Definition 7.1. The Shannon capacity of G is

θ(G) = sup
n
α(Gn)1/n.

Let us give some motivation for the above definition. Shannon was interested in error-free com-

munication over noisy channels. That is, imagine you have alphabet, denote by V , in which some

pairs of letters are indistinguishable. A message is just a string of letters from V , and the question

is, what is the largest size of a set of messages of length n, any two of which are distinguishable.

That is, you want the largest collection of strings of length n such that for all x 6= y we have that xi
is distinguishable from yi for some i.

Now, define a graph G on V with x ∼ y if and only if x and y are indistinguishable. Then, clearly,

one want to find independent sets of Gn as large as possible. The Shannon capacity then measures

the rate of transmission (which is defined as log θ(Gn)), and this quantity can be thought of the

number of bits sent per unit of time.

Before stating the bounds we wish to prove, let us show that the sup is actually the lim.

Lemma 7.2. For any G, limn→∞ α(Gn)1/n exists and is at least α(Gn)1/n for every n.

To prove the lemma we need the following form of Fekete’s Lemma (the proof is a simple exercise):
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Lemma 7.3. (Fekete’s Lemma) If f : N→ N satisfies f(m+ n) ≥ f(m) + f(n) for all m,n. Then

lim f(n)
n exists (it may be ∞) and is at least f(k)

k for any particular n.

In order to prove Lemma 7.2, simply apply Fekete’s Lemma on bn = logα(Gn) and use the

inequality above. To conclude, the lemma shows that any lower bound on α(Gn) for a particular

n implies a lower bound α(Gn)1/n (which is at least α(G)) on θ(G). For example, we have that

α(C2
5 ) ≥ 5 and therefore

θ(C2
5 ) ≥

√
5.

Our main goal in this section is to show that this is tight, but to do so we still need some preparation.

Let C(G) denote the set of all cliques in G. A clique cover of G is a collection of cliques whose

union is V (G), and the clique cover number, which here we denote by ρ(G), is the smallest size of a

clique cover. This is trivially an upper bound on the independence number as distinct vertices in an

independent set must belong to different cliques.

Let us show that

α(G×H) ≤ ρ(G)α(H).

Indeed, suppose that I is independent set of G×H and K is a clique of G. Then, if x 6= x′ ∈ K and

(x, y), (x′, y′) ∈ I, then y and y′ are nonadjacent. Therefore, for each such I and a clique cover K of

G we have

|I| ≤
∑

x∈V (G)

|I ∩ ({x} × V (H))| ≤
∑
K∈K

∑
x∈K
|I ∩ ({x} × V (H))|

where the latter equals ∑
K∈K
|I ∩ (K × V (H))| ≤ |K|α(H).

The key point here is that

θ(G) ≤ ρ(G).

Indeed, from the above bound we get α(Gn) ≤ ρ(G)α(Gn−1) ≤ ρ(G)n and we are done.

This is already enough to determine the capacities of all graph with α(G) = ρ(G) (this includes

for example, complete graphs, bipartite graphs and more). The first graph for which this argument

is not helpful is C5 so we need new ideas.

One possible idea is to define a fractional clique cover of G. This is just a function t : C(G)→ R+

satisfying ∑
x∈K

t(K) ≥ 1, ∀x ∈ V (G).

Note that a clique cover is also a fractional cover with t(K) ∈ {0, 1}. Therefore, ρ(G) is lower

bounded by the fractional clique cover number which is

ρ∗(G) = min{
∑

t(K) : t a fractional clique cover of G}.

For example, one can easily show that

ρ∗(C2k+1) = k + 1/2.

(you have it in PSET4). Do you see what is the clique cover number of C2k+1?

Proposition 7.4. For any G and H,
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1. α(G×H) ≤ ρ∗(G)α(H).

2. ρ∗(G×H) = ρ∗(G)ρ∗(H).

We won’t prove 2. as is required to define duality in linear prgramming but it is a relatively simple

exercise.

Proof. We only prove 1. For any independent set I in G×H and a fractional clique cover t of G,

|I| =
∑

x∈V (G)

|I ∩ ({x} × V (H))| ≤
∑

x∈V (G)

∑
x∈K

t(K)|I ∩ ({x} × V (H))|

which equals ∑
K

t(K)|I ∩ (K × V (H))| ≤
∑
K

t(K)α(H).

This completes the proof.

Clearly the above gives

θ(G) ≤ ρ∗(G).

In particular, this improves what we know for C5 to

√
5 ≤ θ(C5) ≤ 5/2,

which was the best known bound for this problem for more than 20 years until

Theorem 7.5. (Lovász 1979) θ(C5) =
√

5.

The problem is still widely open for θ(C2k+1) for all k ≥ 3. For proving the theorem, we work

with the tensor product of u ∈ Rm and w ∈ Rn, defined as

u⊗ w = (uiwj : i ∈ [m], j ∈ [n]).

(note that this is a vector of length mn). The following easy property is crucial to us

〈u⊗ w, u′ ⊗ w′〉 = 〈u, u′〉〈w,w′〉.

Definition 7.6. An (orthonormal) representation of a graph G with vertex set V is a list (ux : x ∈ V )

of unit vectors in some space Ra satisfying

〈x, y〉 = 0 for all distinct, non adjacent x, y ∈ V.

The value of the representation is

min
c

max
x∈V
〈c, ux〉−2,

where c runs over all unit vectors in Ra.

It is not hard to see in the definition above that there is a unique c achieving the minimum.

This is called the handle of the representation. Finally, the Lovász theta function of G, ϑ(G), is the

minimum value of a representation, and an optimal representation is one with value ϑ(G).

Now we are ready to prove the theorem:
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Proof. Let us start with the following claim that will make the above definition look a bit more

natural:

Claim 7.7. For any G we have α(G) ≤ ϑ(G).

Proof. Let I be an indepedent set of G. Then, for any representation (ux : x ∈ V (G)) and unit

vector c, by orthonormality we obtain:

1 = ‖c‖2 ≥
∑
x∈I
〈c, ux〉2 ≥ |I|min

x
〈c, ux〉2.

Next, we show:

Claim 7.8. For all G and H we have ϑ(G×H) ≤ ϑ(G)ϑ(H)

Proof. Suppose (ux) and (vy) are optimal representations of G and H, respectively, with handles c

and d. It is immediate to see that (ux ⊗ vy : (x, y) ∈ V (G ×H)) is a representation of G ×H and

c⊗ d is a unit vector. Moreover, for all (x, y) ∈ V (G×H) we have

〈c⊗ d, ux ⊗ vy〉−2 = 〈c, ux〉−2〈d, vy〉−2 ≤ ϑ(G)ϑ(H).

Therefore, ϑ(G)ϑ(H) is an upper bound on the value of this representation and we obtain the

desired.

Note that combining both claims give us

θ(G) ≤ ϑ(G).

Therefore, in order to complete the proof, it is enough to show that ϑ(C5) ≤
√

5. To this end, take an

umbrella with unit handle c and unit ribs u1, . . . , u5. Open it until ui and ui+2 are all orthogonal, and

by the spherical cosine theorem one can hsow that 〈c, ui〉 = 5−1/4. This completes the ‘proof’.

Lovász result was the beginning of what is now an area. Here we give one of several ways of

defining ϑ(G) and use (either in the notes or in a pset) this alternate definition to determine ϑ for

some graphs.

Theorem 7.9. For G on vertex set [n],

ϑ(G) = minλ1(A),

where the minimum is over all real symmetric n× n matrices A with aij = 1 if i = j or i � j.

Proof. First, we show that the minimum in the theorem, say λ, is an upper bound. Let A be a

matrix as in the theorem with λ1(A) = λ. Then, λI −A is positive semidefinite, so there are vectors

x1, . . . , xn (in some space) with

xi · xj = λδij − aij

(this follows from the fact that every real values, symmetric, positive semidefinite matrix is a gram

matrix of some n vectors – exercise).
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Let c be a unit vector orthogonal to all the xi’s (there is no constraint on the space in which the

xi’s and c lie and therefore the existence of such a c is not an issue), and set

ui = λ−1/2(c+ xi).

Then,

ui · uj = λ−1(1 + xi · xj)

which equals 1 if i = j and 0 if i � j. In particular, (ui) is a representation, and therefore, as

c · ui = λ−1/2, ϑ(G) is at most λ.

Now we wish to show that λ ≤ ϑ(G). To this end we more or less reverse the above construction.

Let (ui) be a representation of G with handle c, and set

xi =
ui
c · ui

− c.

Then,

xi · xj = (c · ui)−2 − 1 ≤ ϑ− 1

if i = j and −1 if i � j. Now, let A be given by

aij = 1 if i = j

and

aij = −xi · xj otherwise.

Then A satisfies the conditions in the theorem. So,

λ ≤ λ1(A).

On the other hand, observe that

ϑI −A is positive semidefinite .

Indeed, note that (ϑI − A)ij is at least xi · xj if i = j and equals xi · xj otherwise. And since

the Gram matrix is positive semidefinite and we only added positive values on the diagonal, then it

follows. All in all, we get

λ ≤ λ1(A) ≤ ϑ

as desired. This completes the proof.

Note that once we know λ = ϑ, the construction in the first part of the argument shows that

there is an optimal representation (ui) with handle c such that (c · ui)−2 = λ for every i.

A graph G is vertex transitive if Aut(G) acts transitively on V (G). Edge transitivity is defined

similarly.

Theorem 7.10. If G is d-regular and d = λ1 ≥ . . . ≥ λn, then,

ϑ(G) ≤ −nλn
d− λn

.

Equality holds whenever G is edge-transitive.
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Does it look familiar?

Proof. Let A = J − γAG with the value γ to be chosen later. Then, A satisfies the condition in

Theorem 7.9, so by this theorem, its largest eigenvalue is an upper bound on ϑ(G). We would like

to choose γ to minimize the upper bound. The eigenvalues of A are n− γλ1 and −γλi, for all i ≥ 2.

The maximum eigenvalue of A is the maximum of n−γλ1 and −γλn, and is minimized at γ = n
d−λn ,

where both of these are qual to the RHS of the inequality stated in the theorem. This proves the

first part of the theorem.

For the second part, we show that

Claim 7.11. For any G on vertex set [n],

ϑ(G) = minλ1(A),

where the minimum is over all matrices as defined in Theorem 7.9 and which satisfy

aσ(i)σ(j) = aij

for all i, j ∈ [n] and σ ∈ Aut(G).

Note that the second part of the theorem now follows immediately. Indeed, for an edge transitive

graph G, any A satisfying the condition is of the form J − γAG, and we have already seen that the

minimum of λ1(A) for such matrices is equal the right hand side of the theorem. We therefore need

to prove the claim.

Proof. For σ ∈ Aut(G), let P be the corresponding permutation matrix. Then

(P−1MP )σ(i)σ(j) = Mij

for any M ∈Mn(R). Let Γ = {Pσ : σ ∈ Aut(G)}. Let A be a matrix that achieves the minimum in

Theorem 7.9 (that is, λ1(A) = ϑ) and

B = |Γ|−1
∑
P∈Γ

P−1AP.

Clearly B is symmetric and satisfies the assumptions in the claim. Indeed, for σ ∈ Aut(G) and

i, j ∈ [n],

Bij = (P−1
σ BPσ)σ(i)σ(j) = |Γ|−1

∑
P∈Γ

(P−1
σ P−1APPσ)σ(i)σ(j)

which equals

= |Γ−1|
∑
P∈Γ

(P−1AP )σ(i)σ(j) = Bσ(i)σ(j).

Therefore, the claim follows from

λ1(B) ≤ ϑ.

Note that this is just a consequence from the minmax theorem that we have and the fact that all

P−1
σ APσ have the same spectrum. That is,

λ1(A) = max
‖x‖=1

xtBx
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which equals

= maxxt(|Γ|−1
∑
P∈Γ

P−1AP )x ≤ |Γ|−1 maxxtP−1APx = ϑ.

This completes the proof.

Application: cycles of odd length (all are edge-transitive so it follows immediately after calculating

the eigenvalues).

Application: Peterson graph. Here the upper bound is also the independence number so it is

tight.

7.2 Discrepency and Beck-Fiala

Let’s continue with more examples of attacking combinatorial problems by looking at related real

problems.

Recall that a hypergraph H is just a collection of subsets of vertices (not necessarily of size 2). If

all hyperedges are of size k, then H is called k-uniform.

Definition 7.12. The discrepancy of H is

disc(H) = min
V=L∪R

max
E∈E(H)

||L ∩ E| − |R ∩ E|| .

WRITE IT IN TERMS OF ±1 ASSIGMNMENTS TO VERTICES.

To understand the definition it may be useful to consider few simple examples:

• Imagine that n points in the plane are given. For every line ` which is parallel to one of the

axis, let E` be the hyperedge consisting of all the given points which lie on `. This gives a

hypergraph H. Show that disc(H) ≤ 1.

• for a given connected graph G, let H be the hypergraph on vertex set E(G) be the vertex stars

of G. Show that disc(H) = 1 if some vertex of G has odd degree. disc(H) = 0 if all degrees

are even and |E(G)| is even. 2 if all degrees are even and |E(G)| is odd.

Let’s give an alternative definition for the discrepancy that will sometimes be easier to work with

and which leads to some nice generalizations of the problem. The discrepancy of a real matrix M

with columns indexed by a set V is

disc(M) = min
ε∈{±1}V

‖Mε‖∞.

Note that if M is the incidence matrix of H then the above definition is exactly disc(H). As

the problem of computing the discrepancy of a specific H is quite hard, it make sense to restrict

ourselves to certain families. Aa natural thing to do is to consider hypergraphs with some bounds

on their maximal degree. Having said that, for a positive integer t, let

f(t) = sup{disc(H) : ∆(H) ≤ 2}.

Is it clear that f(t) <∞?? Can you compute f(t)? what about f(3)?
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Theorem 7.13. (Beck-Fiala 1981) For every positive t we have f(t) ≤ 2t− 1.

The actual conjecture though is that f(t) = O(
√
t).

Before proving the above theorem, let us mention one of the most famous conjectures in this area

Conjecture 7.14 (Komlós). There exists a consitant K > 0 such that every matrix M with all

columns of Euclidean length at most 1 has discrepency at most K.

MAYBE WORTH MENTIONING THE 6 S.D THEOREM OF SPENCER.

Proof. Let M be the incidence matrix of H. We want to show that there exists ε ∈ {±1}n with

‖Mε‖∞ ≤ 2t− 1.

We obtain ε via a sequence of approximations in [−1, 1]n. We start with

ε0 = 0,

which clearly gives ‖Mε‖ = 0. We try to reach a corner of the cube without making too much

damage. We do this a step at a time. At the end of step i we will have εi and define

Si = {j ∈ [n] : ε(j)i ∈ (−1, 1)},

T i = [n] \ Si,

and

H i = {E ∈ E(H) : |E ∩ Si| > t}.

It will be convenient to think about Si as the set of live variables, and H i is the set of live edges.

Define M i to be the submatrix of M indexed by H i × Si, and we wish to maintain the following

properties:

1. εi ≡ εi−1 on T i−1;

2. T i ⊃ T i−1;

3. E ∈ H i implies
∑

j∈E ε
i
j = 0.

2. means that we are actually making progress and 3. means that as long as an edge is alive, it is

perfectly balanced.

Assume we can maintain the above properties, we stop when there are no more live variables.

That is, we stop at stage k = min{i : T i = [n]}, and set ε = εk.

Claim 7.15. ε is the desired.

Intuitively it’s obvious. An edge is perfectly balanced until it is no longer alive. At this point it

has at most t live variables and changing the values of these variables can affect by less than ±2t.

Making it formal is also easy and is left as an exercise.

It thus remains to show that we can indeed maintain Properties 1 − 3. That is, given εi−1 and

the associated Si−1 6= ∅, T i−1 and H i−1 satisfying 1− 3 (with i replaced by i− 1), we wish to show

that there is an εi that also has these properties.

53



The main point (which is just a relatively trivial observation) is that

|H i−1| < |Si−1|.

Indeed, this follows immediately since M i−1 has more columns than rows (column sums are at

most t by the degree assumption, and row sums are greater than t by definition of H i). It follows

that there is some yi ∈ Rn \ {0} with

support(yi) ⊆ Si−1

and ∑
j∈E

yij = 0 ∀E ∈ H i−1.

(that is, y is in the orthogonal complement of the row space).

Take α to be the smallest positive number for which there is some j ∈ Si−1 with

εi−1
j + αyij ∈ {±1}

and set

εi = εi−1 + αyi.

Intuitively, we are choosing a direction that does not involve coordinates in T i−1 and, starting

from εi−1, follow yi until we hit some face of [−1, 1]n that was not among the facets containing εi−1.

We now need to check that εi satisfies the properties. Note that 1 and 2 are trivial. For 3, note

that for all E ∈ H i−1, ∑
j∈E

εij =
∑
j∈E

εi−1 + α
∑
j∈E

yij .

This is clearly 0. Indeed, the second sum is 0 by the choice of y, and the first is 0 because E ∈ H i−2

and induction.

7.3 A vector balancing problem

Given any norm, one can define its unit ball

B1 = {x ∈ Rd : ‖x‖ ≤ 1}.

Proposition 7.16. The unit ball of any norm is a compact, convex set with the origin in its interior.

The following proposition can be see as the ‘reverse’ implication.

Proposition 7.17. Let K ⊆ Rd be compact, convex set with the origin in its interior. Define

‖x‖ = min{α > 0 : α−1x ∈ K},

and ‖0‖ = 0. Then ‖ · ‖ is a norm.
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The only interesting part of the above proposition is the triangle inequality and is left as an

exercise.

A set K of special interest to us is the regular simplex centered at the origin of Rd. For simplicity

of representation, we can add a dimension and take

K = {x ∈ Rd+1 : xi ≥ 0,
∑
i

xi = 1}.

This is a d-dimensional simplex contained in the affine hyperplane
∑
xi = 1. It has a center

c = 1
d+1(1, 1, . . . , 1) which plays the role of 0, and vertices e0, . . . , ed. Note that the corresponding

norm is quite ‘asymmetric’. For example, the vector vi = ei − c has norm 1 (WHY?) ad its negative

has norm d WHY?

Before stating the theorem we would like to prove in this section, let us start with the following:

Theorem 7.18 (Steinitz 1914). For any d, there is a cd such that: for any norm on Rd and v1, . . . , vn
with ‖vi‖ ≤ 1 and

∑
vi = 0 there exists a permutation σ ∈ Sn for which

‖
t∑
i=1

vσ(i)‖ ≤ cd ∀t ∈ [n].

That is, one can reorder the vectors such that all initial sums are small (depends on d, not on the

number of vectors). Note that if we don’t assume that they sum to 0 so clearly it cannot be true

WHY?. Knowing this theorem, what is the next most natural question to ask? Hint: what is the

minimal possible cd? Grinberg and Sevastyanov found in 1979 the precise answer:

Theorem 7.19. The above theorem is true with cd = d.

To show that it is best possible take the norm with unit ball a regular simplex K. Indeed, let

n = d+ 1 and take v1, . . . , vn to be the vertices of K, then no matter how we choose σ we have

‖
n−1∑
i=1

vσ(i)‖ = ‖ − vσ(n)‖ = d.

We thus only need to prove the upper bound. As you will see shortly, the proof is based on the same

principle as in the Beck-Fiala theorem so maybe it is about time to write the hidden argument in a

more formal way.

A linear constraint on the real variables x1, . . . , xn is an inequality of one of the forms

a · x ≤ b, a · x ≥ b, a · x = b,

where a ∈ Rn and b ∈ R. Note that the last two can be covered by the first (≤) so general set of

constraints can be put in the form

aix ≤ bi, i ∈ [m],

or equivalently

Ax ≤ b.

The rank of the set of constraints indexed by I ⊆ [m] is the rank of AI (the submatrix with the

corresponding rows).

A constraint a · x ≤ b is saturated if it holds with equality at x. The following lemma, which

is getting close to the basic ideas of linear programming, says that if the system Ax ≤ b can be

satisfied, then it can be satisfied with ‘many’ constraints saturated.

55



Lemma 7.20. If there exists x for which Ax ≤ b, then there is such x for which the rank of the

saturated constraints is the rank of A.

The proof is based on the same idea as the proof of the Beck-Fiala theorem so we won’t do it here

(think about it as an exercise).

Now we turn into the proof of Theorem 7.19.

Proof. It will be convenient to start with the full set Vn = {v1, . . . , vn} and remove one element at a

time, producing a sequence

Vn ⊃ Vn−1 ⊃ . . . ⊃ Vd.

We then take vσ(i) to be the unique vector in Vi\Vi−1 so that Vi = {vσ(1), . . . , vσ(i)} and our condition

is

‖
∑
v∈Vt

v‖ ≤ d, ∀t.

Note that we don’t care what happens beyond Vd as the norms are upper bounded by 1. The key

idea is to find the ‘correct’ hypothesis that enables us to continue.

Lemma 7.21. There are Vn, . . . , Vd and λi : Vi → [0, 1] for i = n, . . . , d satisfying∑
v∈Vi

λi(v)v = 0

and ∑
v∈Vi

λi(v) = i− d.

Note that the above lemma gives us the desired. Indeed,

‖
∑
v∈Vt

v‖ = ‖
∑
v∈Vt

(v − λt(v)v)‖ ≤
∑
v∈Vt

(1− λt(v))‖v‖ = d.

It thus remains to prove the lemma.

Proof. We begin with Vn = V and λn(v) = n−d
n which clearly satisfies the conditions.

Given Vi and λi (with i > d), we wish to show that we can extend to Vi−1 and λi−1. To this end

set

λ∗i−1 =
i− 1− d
i− d

λi.

Then, λ∗i−1 : Vi → [0, 1] satisfies ∑
v∈Vi

λ∗i−1(v)v = 0

and ∑
v∈Vi

λ∗i−1(v) = i− 1− d.

Therefore, we just need to ‘shrink’ the domain. That is, it is enough to find λ∗∗i−1 : Vi → [0, 1]

satisfying the above conditions with λ∗∗i−1(w) = 0 for some w ∈ Vi. We then let Vi−1 = Vi \ {w} and

take λi−1 to be the restrictions of λ∗∗i−1 to Vi−1.
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To do so, we wish to use Lemma 7.20. Working in RVi , we are given a solution, λ∗i−1 of the system∑
v∈Vi

x(v)v = 0;

∑
v∈Vi

x(v) = i− 1− d;

0 ≤ x(v) ≤ 1, ∀v ∈ Vi.

This is a system with rank i = |Vi| (because of the constraints x(v) ≥ 0 which are linearly in-

dependent). Therefore, by Lemma 7.20 there is some solution, λ∗∗i−1, saturating at least i linearly

independent constraints. Note that there are at most d + 1 linearly independent constraints in the

first two conditions, therefore, λ∗∗i−1 must saturate at least i − 1 − d of the constraints in the third

condition. This already gives as a w ∈ Vi with λ∗∗i−1(w) = 0. Indeed, assume otherwise, then there

are i− 1− d w’s with λ∗∗i−1(w) = 1. Therefore we already have
∑
x(w) = i− 1− d so the sum of the

rest is 0 (in particular, as all of them non negative, there is one vanishing term).

This completes the proof.

7.4 Baranayai’s Theorem

As was promised in class, in this section we (finally) going to show that the complete k-uniform

hypergraph admits a 1-factorization, up to some trivial divisibility conditions. This result was

actually the original inspiration for the Beck-Fiala theorem. We will make use of the following

consequence of Lemma 7.20.

Lemma 7.22. For any real m× n matrix M with integer row and column sums, there is an integer

m× n matrix M ′ having the same row and column sums as M and satisfying:

|mij −m′ij | < 1, ∀i, j.

Proof. We prove it by induction on m+ n. We’re looking for an integer solution for the system∑
j

xij =
∑
j

mij ∀i;

∑
i

xij =
∑
i

mij ∀j;

bmijc ≤ xij ≤ dmije ∀i, j.

The individual constraints show that the rank of the system is mn and the mij themselves provide a

real solution. Therefore, by Lemma 7.20, there is a solution, say x, where the rank of the saturated

constraints is mn. Since the rank of the first two conditions of constraints is m + n − 1 (DO YOU

SEE WHY?), x must saturate at least mn −m − n + 1 linearly independent constraints from the

third condition. That is, at most m + n − 1 of the xij ’s are not integers. Now, note that we can

finish it by induction if all the xij ’s in some line (that is, same row or column) are integers (then

just ignore this line and apply induction). On the other hand, clearly no line can have exactly one

noninteger entry, so we may assume that each line has at least two. But this says that at least m+n

of the xij ’s are not integers, which is a contradiction.
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Let us restate the problem that we are interested at. Is it true that whenever k | n, then there is

a partition of Hk
n into perfect matchings? Note that numerically it makes sense as(

n
k

)
n/k

=

(
n− 1

k − 1

)
.

Theorem 7.23. [Baranayai, 1973] yes!

To begin, consider a more general problem. Given n and nonegative integers k1, . . . , kr, set Hi to

be the complete ki-uniform hypergraph on vertex set [n].

Question 7.24. For which k1, . . . , kr and n is there a partition of ∪Hi into perfect matchings?

Note that the above union is a multiset union (in case that there are ki’s which are the same).

Suppose we do have such a partition into perfect matchings F1, . . . ,F`. For each i, j set

|Hi ∩ Fj | = αij .

Then, the αij ’s satisfy ∑
j

αij =

(
n

ki

)
∀i;

and ∑
i

αijki = n ∀j.

So, a reasonable definition of ‘numerical feasibility’ might be the existence of αij satisfying these

two conditions. Apparently, this is enough!

Theorem 7.25 (Baranayai 1973). For any n and k1, . . . , kr, if there are nonnegative integers αij
satisfying the above conditions, then there is a partition as in the question (with intersections αij as

defined above).

Easy exercise: assuming that and prove Theorem 7.23.

Proof. We proceed by induction on n (base case n = 0 is trivial). A useful trick that we’re going to

use is the following (essentially, dividing the edges of each Hi into those that contain n and those

which don’t): For i = 1, . . . , r define

H ′i = {A \ {n} : n ∈ A ∈ Hi},

and

H ′′i = {A ∈ Hi : n /∈ A}.

We also set k′i = ki − 1 and k′′i = ki, so that H ′i is a copy of
([n−1]

k′i

)
and H ′′i is a copy of([n−1]

k′′i

)
. We thus have a new instance of the problem with n replaced by n − 1 and H1, . . . ,Hr

by H ′1, . . . ,H
′
r, H

′′
1 , . . . ,H

′′
r . Observe that a solution to the original problem is the same thing as a

partition of
⋃
iH
′
i ∪
⋃
H ′′i into perfect matchings of [n − 1], each containing exactly one element of

∪H ′i (so we can add n to this unique element).
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With a bit more details, we should find α′ij and α′′ij satisfying the appropriate modification of the

‘numerical feasible’ definition we had so that finding F∗j ’s with

|H ′i ∩ F∗j | = α′ij

and

|H ′′i ∩ F∗j | = α′′ij

is equivalent to finding Fj ’s with

|Hi ∩ Fj | = αij .

Formally, we have

Claim 7.26. To prove the theorem it is enough to show that there are α′ij ∈ {0, 1} satisfying

∑
j

α′ij =

(
n− 1

ki − 1

)
∀i;

∑
i

α′ij = 1 ∀j;

and

αij = 0⇒ α′ij = 0 ∀i, j.

Let’s prove the claim.

Proof. Given αij as described, set

α′′ij = αij − α′ij .

Then,

α′′ij ≥ 0

WHY? and we have ∑
j

α′′ij =
∑
j

αij −
∑
j

α′ij =

(
n

ki

)
−
(
n− 1

ki − 1

)
=

(
n− 1

k′′i

)
for all i, and ∑

i

α′ijk
′
i +
∑
i

α′′ijk
′′
i =

∑
i

αijki −
∑
i

α′ij = n− 1 ∀j.

The existence of the desired F∗j ’s now follows by induction as the α′ and α′′ satisfy the condition of

the theorem with n− 1.

Observe that according to the assumption of the claim, we do have the desired property that each

F∗j contains exactly one set from ∪H ′i, and therefore by adding the element n back to it, one obtain

the desired Fj ’s.

Finally, we need to prove that it is possible to find α′ij ’s as in the claim. For every i, j let us define

xij =
ki
n
αij .
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Then, ∑
j

xij =
ki
n

∑
j

αij =
ki
n

(
n

ki

)
=

(
n− 1

ki − 1

)
;

∑
i

xij =
∑
i

αijki/n = 1;

αij = 0⇒ xij = 0;

and

xij ∈ [0, 1].

The existence of α′ij now just follows by Lemma 7.22.

8 A brief introduction to the polynomial method

Let F be a field. Let PD(Fn) be the space of polynomials in n variables over F with all monomials

of degree at most D. Observe that PD(Fn) is a vector space over F (and a sub vector space of

F[x1, . . . , xn]). Suppose that S ⊆ Fn is a finite set. We would like to know if there is a non zero

polynomial P ∈ PD that vanishes over S. As you can guess, we can do it using some dimensional

arguments.

Proposition 8.1. If dim(PD) > |S|, then there is a non-zero polynomial P ∈ PD which vanishes on

S.

Proof. Suppose that S = {t1, . . . , t|S|} and define f : PD → F|S| as follows:

f(P ) = (P (t1), . . . , P (t|S|).

Observe that f is a linear map. Note that the kernel of f consists of all P ∈ PD for which P vanishes

on S. In order to complete the proof, recall from linear algebra that for a linear transformation

L : V → U we have

dim(V ) = dim(Ker(L)) + dim(Im(L)),

which in our case translates to

dim(PD) ≤ dim(Ker(f)) + |S|.

Finally, as dim(PD) > |S| we obtain that Ker(f) 6= 0. This completes the proof.

A natural question now to ask is: what is the dimension of PD? Note that a basis for PD is given

by all monomial of the form ∏
i

xtii ,

with
∑

i ti ≤ D. In particular, by counting solutions to

n∑
i=1

ti ≤ D

we obtain
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Lemma 8.2. The dimension of PD is
(
D+n
n

)
. In particular, we have

dim(PD) ≥ Dn

n!
.

As an immediate corollary from the previous two lemmas we obtain

Corollary 8.3. Is S ⊆ Fn is of size |S| <
(
D+n
n

)
, then there exists a non-zero P ∈ PD which vanishes

on S.

Or, a little bit less sharp but easier to work with, we have

Corollary 8.4. For any finite set S ⊆ Fn, there exists a non-zero polynomial P that vanishes on S

with degree at most n|S|1/n.

Proof. Choose D = n|S|1/n and observe that(
D + n

n

)
> |S|.

Now apply the previous corollary.

The following lemma plays a central role in what we will see today.

Lemma 8.5. If P ∈ PD(F) (that is, a polynomial of one variable) and if P vanishes at D+1 points,

then P is the 0 polynomial.

A line ` in Fn is a 1-dimensional affine subspace.

Lemma 8.6 (The vanishing lemma). If P ∈ PD(Fn) and P vanishes over D+ 1 points on some line

`, then P vanishes at every point of `.

Proof. We can write `(t) = at+ b for some vectors a, b ∈ Fn with a 6= 0. Then, define

Q(t) = P (`(t)).

Clearly, Q is a polynomial of degree at most D with only one variable that vanishes on D+ 1 points,

so by previous lemma it is the zero polynomial.

8.1 The finite-field Nikodym problem

Let Fq be a finite field with q elements. A set N ⊂ Fnq is called a Nikodym set if, for every points

x ∈ Fnq there is a line `x containing x so that `x \ {x} ⊆ N . A trivial example for such a set is Fnq .

Can one find a significantly smaller Nikodym set?

Theorem 8.7 (Dvir, 2009). Any Nikodym set is of size at least cnq
n, with cn = (10n)−n.

Proof. Suppose that N is a Nikodym set with |N | < cnq
n. By Corollary 8.4 can find a non-zero

polynomial P that vanishes on N with degree bounded by

2n|N |1/n < q − 1.

Next, we claim that P vanishes at any point of Fnq which is clearly absurd (the degree is smaller

than q so it has at most q − 1 0’s. Don’t get confused with the fact that xq − x is 0 on Fq, we are

talking about a ‘reduced’ polynomial). Let x be any point in Fnq . By definition, there exists a line `x
containing x for which `x ⊂ N . The polynomial P vanishes on `x \ x, so it vanishes on at least q− 1

points of `x. Since deg(P ) < p− 1, it means that P vanishes on `x, so in particular, P (x) = 0.
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8.2 The finite field Kakeya problem

A set K ⊆ Fnq is called a Kakeya set if it contains a line in every direction. In other words, for

every vector a ∈ Fnq \ {0} there is a vector b so that the line at+ b is fully contained in K. Again, a

trivial example for a Kakeya set is the whole space, and we should ask for how small does a Kakeya

set can be?

Theorem 8.8 (Dvir, 2009). A Kakeya set has at least cnq
n many elements, where cn = (10n)−n.

Proof. Suppose K is a Kakeya set with less than cnq
n elements. Therefore, there exists a non-zero

polynomial P ∈ PD(Fnq ) that vanishes on K, for D ≤ n|K|1/n < q. Write P as a sum of two

polynomial P = Q + S where Q is the set of all monomial of max degree in P (say D). Now, let

a be any non-zero vector in Fnq and choose b in such a way that the line at + b is contained in K.

Consider the polynomial in one variable R(t) = P (at+ b). This polynomial vanishes on the line but

has degree smaller than q. Therefore, R is the 0 polynomial. That is, all coefficients of R are 0.

BUT, the coefficient in R of td is exactly Q(a). So we see that Q vanishes for all a ∈ Fnq \ {0}. Since

Q is homogeneous of degree D ≥ 1, Q also vanishes at 0 and therefore is the 0 polynomial. This

gives a contradiction.

8.3 The joints problem

Let L be a collection of lines in R3. A joint of L is a point which lies in three non-coplanar lines

of L. The joint problem asks what is the maximal number of joints that can be formed from L lines?

This problem was posed in the 90’s by Chazelle, Edelsbrunner, Guibas, Pollack, Seidel, Sharir

and Snoeyink. They proved that the number of joints formed by L lines is at most (around) L7/4.

Let’s look at few examples.

• Consider an S×S×S grid of points, and let L be the set of all axis-parallel lines that intersect

the grid. The number of lines in L is 3|S|2 = L. Each point in the grid is a joint for L, so there

are S3 joints. Therefore, the number of joints is roughly L3/2.

• Consider the edges of a tetrahedron. A tetrahedron has six edges and for vertices. Each vertex

lies in three non-coplanar edges, and so tetrahedron gives a set of six lines with four joints.

This example can be generalized to large numbers of lines in the following way: Let S ≥ 3 be

some parameter. Consider S planes in R3 in a general position (that is, every two intersect in

a line and every three intersect in a point). Let L be the set of all these lines. The number of

lines in L is L =
(
S
2

)
. Note that as each three planes intersect in a point, every such point is

a joint for L. Therefore, L has
(
S
3

)
joints. If we take S = 4, we recover the tetrahedron case.

Note that in this example we still have around L3/2 joints, but the constant is better. This is

actually the best known example!

Theorem 8.9 (Guth and Katz, 2010). Any L line in the space determine at most 10L3/2 joints.

To prove the theorem we need the following main lemma

Lemma 8.10 (Main Lemma). If L is a set of lines in R3 that determines J joints, then one of the

lines contains at most 3J1/3 joints.
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Before proving the lemma, let’s see how to use it in order to prove the theorem. Let J(L) be the

maximum number of joints that can be formed by L lines. If L is a set of L lines, then the main

lemma tells us that one of the lines contains at most J(L)1/3 many joints. The number of joints not

on this line is at most J(L− 1), and therefore we obtain a recurrence relation:

J(L) ≤ J(L− 1) + 3J(L)1/3.

By iterating we obtain

J(L) ≤ L · 3J(L)1/3,

which gives us

J(L) ≤ 33/2L3/2 ≤ 10L3/2

as desired. Now we can prove the main lemma.

Proof. Let P be a non-zero polynomial that vanishes at every joint of L and with degree as small as

possible. By Corollary 8.4 its degree is at most 3J1/3. Now, suppose that every line contains more

than 3J1/3 joints. By the vanishing lemma, P must vanish on every line of L. Next, we study the

gradient of P at each joint of L.

Claim 8.11. If x is a joint of L, and if a smooth function F : R3 → R vanishes on the lines of L,

then ∇F vanishes at x.

Proof. Note that x lies in three non-coplanar lines of L. Let v1, v2, v3 be tangent vectors for these

three lines. The directional derivative of F in the direction vi must vanish at x. So we have

∇F (x) · vi = 0 for each i. Since the vi are a basis of R3, we have ∇F (x) = 0.

By Claim, we see that the derivatives of P vanish at each joint. The derivatives have smaller

degree than P . Since P was a minimal degree non-zero polynomial that vanishes at each joint,

each derivative must be identically 0. Then P must be constant. Since P is non-zero, it gives us a

contradiction.

8.4 The capset problem

A capset in the vector space Zn3 over Z3 is a collection of vectors where no three of them lie on

the same line. That is, for no x, y, z there exists r for which {x, y, z} = {x, x+ r, x+ 2r} and r 6= 0.

A basic problem in combinatorics is to determine the size of the largest capset.

Trivially, if A is a capset, then |A| ≤ 3n. Using Fourier methods (a beautiful proof by the

way), Meshulam (1995) obtained the bound |A| = O(3n/n). In 2012 this bound was improved to

O(3n/n1+c) by Bateman and Katz (JAMS, 28 pages long paper). In a quite recent paper, Ellenberg

and Gijswijt, based on a week earlier result by Croot, Lev and Pach, obtained an exponential

improvement |A| = O(2.756n), using a version of the polynomial method. There is also a construction

of Edel that gives a lower bound around (2.2174)n.

The proof is very short (the paper is around 3 pages long) and the goal of this section is to present

its proof, based on the very elegant exposition of Terry Tao from his blog. The starting point is the

following: if A is a capset, then

δ0(x+ y + z) =
∑
a∈A

δa(x)δa(y)δa(z)
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for all x, y, z ∈ A3. Indeed, x + y + z = 0 exactly when x, y, z form a line or are all equal and the

former is ruled our by the assumption on A.

The basic idea is to bound the ‘rank’ (in some form) of the above equality. Intuitively, imagine

that one can write a matrix with Ω as its row and columns, and suppose that we are restricting our

attention to a principal submatrix of the form A × A. If this sub matrix is invertible, then clearly

the rank of the all matrix is at least as large as the size of A. On the other hand, if we can obtain

a non-trivial upper bound on the rank of the full matrix, then we clearly obtain an upper bound on

|A|.
A function F : A× A→ F is of rank one if it is non-zero and of the form F (x, y) = f(x)g(y) for

some f, g : A → F. The rank of a general function is the minimum number of rank one functions

needed to represent F as a linear combination of. More generally, if k ≥ 2, we define the rank of a

function F : Ak → F as the least number of rank one functions of the form

F (x1, . . . , xk) = f(xi)g(x1, . . . , xi−1, xi+1, . . . , xk)

that are needed to represent F as a linear combination. For example, if k = 3, the tank one functions

take the form f(x)g(y, z), f(y)g(x, z), and f(z)g(x, y).

It is standard from linear algebra that diagonal matrices are of full rank (assuming that all diagonal

elements are non-zero). We would like to extend it to higher dimensions.

Lemma 8.12. Let k ≥ 2, let A be a finite set, let F be a field, and for each a ∈ A, let ca ∈ F
be a coefficient. Then, the rank of the function

∑
a∈A caδa(x1) . . . δa(xk) is equal to the number of

non-zero ca’s.

Proof. The proof goes by induction on k, where the case k = 2 is standard. Suppose now that k > 2

and that we already know it for k − 1. Since every summand on the right hand side is of rank one,

it is clear that the rank is at most the number of non-zero coefficients. Therefore, WLOG we can

assume that all the ca’s are not zero (if few of them are, then just delete them and the corresponding

elements from A). Assume towards a contradiction that the rank is at most |A| − 1. Then, we can

write ∑
a∈A

caδa(x1) . . . δa(xk) =
k∑
i=1

∑
α∈Ii

fi,α(xi)gi,α(x \ {xi}) (5)

for some sets I1, . . . , Ik of cardinalities adding up to at most |A| − 1.

Consider the space of functions h : A→ F that are orthogonal to all the fk,α, α ∈ Ik in the sense

that ∑
x∈A

fk,α(x)h(x) = 0

for all α ∈ Ik. This is a vector space with dimension d ≥ |A| − |Ik|. A basis for this space generates

a d × |A| coordinate matrix of full rank, which implies that there is at least one non-singular d × d
minor. This implies that there exists a function h : A → F which is non-vanishing on some subset

A′ of A of cardinality at least |A| − |Ik| WHY?

If we multiply (5) by h(xk) and sum in xk, we conclude that

∑
a∈A

cah(a)δa(x1) . . . δa(xk−1) =
k−1∑
i=1

∑
α∈Ii

fi,α(xi)ḡi,α(x− {xi, xk})
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where ḡi,α =
∑

xk∈A gi,αh(xk). The right hand side has rank at most |A| − 1 − |Ik|, since all the

summands are rank 1 functions (we assumed that the rank is at most |A|−1 and deleted |Ik| terms).

On the other hand, by induction we know that the left hand side has rank at least |A| − |Ik|, which

gives us the desired contradiction. This completes the proof.

To finish off the proof we need the following (surprisingly simple!) lemma.

Lemma 8.13. Over Zn3 , the function δ0(x+ y + z) has rank at most (3− c)n.

Proof. Using the identity δ0 = 1− x2 for x ∈ Z3, we have

δ0(x+ y + z) =
n∏
i=1

(
1− (xi + yi + zi)

2
)
.

The right hand side is a polynomial of degree 2n in x, y, z, which is a linear combination of monomials

of the form (
∏
xikk )(

∏
yjkk )(

∏
z`kk ), with all ik, jk, `k ∈ {0, 1, 2} and the sum i1 + . . .+ in + j1 + . . .+

jn + `1 + . . .+ `n ≤ 2n. In particular, by pigeonhole principle, at least one of the partial sums
∑
is,∑

js, or
∑
`s is at most 2n/3.

Consider the contribution of the monomials for which
∑
is ≤ 2n/3. For each such possibility,

one can regroup all the y, z terms together to form a rank 1 function of the form
∏
xikk g(y, z). To

complete the proof, note that if we focus on the is for example. Then for a random choice one

expects to have sum n. But, we only consider sums which are at most 2n/3 so one can obtain an

exponential improvement by using (some version of) Chernoff’s bounds.

Let’s try to do sunflowers of size 3. A sunflower of size 3, is three vectors x, y, z ∈ {0, 1}n for which

in every coordinate either all agree or there exists exactly one 1. Therefore, if one has a sunflower

free set, there must be a coordinate i where xi + yi + zi = 2.

9 Cayley graphs

Let us first give a short backgroung necessary for this section. Let G be a finite group. The

elements of a subset S of G are called generators of G, and S is called a generating set of G, if every

element of G can be expressed as a finite product of elements of S. Usually, we denote the identity

group element by e and the operation as a multiplication (unless stated otherwise). A subset S ⊆ G
is called symmetric if s ∈ S implies that s−1 ∈ S.

Example: Sn is generated by by the transpositions {(1, 2), (2, 3), . . . , (n− 1, n)}. WHY?

Let S ⊆ G be an identity free and symmetric subset of a finite group G. The Cayley graph

Γ = Cay(G,S) is a graph with vertices correspond to the elements of G, and the edges correspond

to multiplication on the right. That is, E(Γ) = {{g, gs} : g ∈ G, s ∈ S}. Note that the identity free

assumption excludes self loops and the symmetric assumption makes Γ an undirected graph.

A permutation σ of the vertex set of a graph Γ is called an automorphism if {u, v} ∈ E(Γ) if and

only if {σ(u).σ(v) ∈ E(Γ)}. A graph is called vertex-transitive if for any two vertices u and v, there

exists an automorphism σ with σ(u) = v. Clearly, any vertex-transitive graph must be regular, and

it is very simple to build examples of regular graphs which are not vertex-transitive CAN YOU SEE

ONE?.

A graph is edge-transitive if for any two edges xy, uv ∈ E(Γ), there exists an automorphism σ for

which {σ(x)σ(y)} = {u, v}.
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Exercise: try to think about a vertex-transitive graph which is not edge-transitive and about an

edge-transitive graph which is not vertex-transitive.

Exercise: Petersen graph is both!

Proposition 9.1. Let S be a set of generators for a group G. The Cayley graph Γ = Cay(G,S) has

the following properties:

1. Γ is a connected, regular graph of degree equal to |S|.

2. Γ is vertex transitive.

Proof. As S is a generating set of G, it is clear that Γ is connected. Moreover, as the neighborhood

of every vertex v is of the form {{v, vs} : s ∈ S} it is clearly |S|-regular.

To prove vertex-transitivity, let us fix any element g ∈ G. Define a permutation σg of G as follows:

σg(x) = gx. This is an automorphism as every edges {v, vs} is being mapped to {gv, gvs} which is

also an edge of Γ. Moreover, for every h ∈ G there exists a unique y for which σg(y) = gy = h, and

we are done.

Proposition 9.2. Not every vertex-transitive graph is a Cayley graph.

Proof. The simplest example is the Petersen graph which is a vertex-transitive graph but not a

Cayley graph. To see this, recall that it has order 10, it is 3-regular, and it has a diameter 2. To

convince ourselves that this is a valid counter example, one should consider all pairs (G,S) where

G is a group of order 10 and the sized of S is 3. There are only two nonisomorphic groups of order

10 and by some case analysis one can convince himself that it is impossible to obtain the Petersen

graph.

Exercise: Convince yourself that for a Cayley graph, the diameter is the maximum (over g ∈ G)

of the length of a shortes expression for g as a product of generators.

Let us now give some examples of Cayley graphs:

• The complete graph Kn is a Cayley graph on the additive group Zn with S = Zn \ {0}.

• The circulant is the Cayley graph Cay(Zn, S), where S is an arbitrary generating set. Note

that if S = {1,−1} then it is Cn.

• The n-dimensional hypercube Qn is a Cayley graph. Indeed, take G = Zn2 and S to be all the

vectors consisting of exactly one 1.

9.1 Hamiltonicity of Cayley graphs

In this section we discuss some sufficient conditions for a Cayley graph to contain a Hamiltonian

cycle. In general, testing whether a graph is Hamiltonian is an NP-hard problem, so the search for

‘nice’ sufficient conditions is natural.

One easy example is to show that Qn contains a Hamiltonian cycle for all n. This can be proven

by induction on n, noting that one can write Qn as a disjoint union of two copies of Qn−1 plus a

specific perfect matching between them (for example take all the vertices that start with a 0 to be

one copy and all the vertices that start with a 1 to be the other copy.

A famous conjecture of Lovász from 1970 states:
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Conjecture 9.3. Every connected, vertex-transitive graph with more than two vertices has a Hamil-

tonian path.

A weaker conjecture is also widely open:

Conjecture 9.4. Every connected Cayley graph on a finite group has a Hamiltonian cycle.

There is no consensus what on the correctness of the above conjectures. In particular, Babai

conjectured in 1996 that:

Conjecture 9.5. For some ε > 0, there exist infinitely many connected, vertex-transitive graphs

(also Cayley graphs) Γ without cycles of length at least (1− ε)|V (Γ)|.

For abelian groups though, it was proved by Marusic in 1983 that:

Theorem 9.6. A Cayley graph of an abelian group with at least three vertices contains a Hamiltonian

cycle.

The proof is quite simple and is left as an exercise.

Another result which is worth mentioning is one obtained in 2009 by Pak and Radoicic and which

we are going to prove shortly:

Theorem 9.7. Every finite group with at least 3 elements has a generating set of size at most log2 |G|
such that the corresponding Cayley graph has a Hamiltonian cycle.

The bound on the size is obtained by G = Zn2 for which the size of its smallest generating set is

exactly log2 |G|. The following conjecture is stronger than the above theorem (if ε ≤ 1):

Conjecture 9.8. There exists ε > 0, such that for every finite group G and every k ≥ ε log2 |G|,
the probability that the Cayley graph Γ, obtained by picking a random set of generators S of size k

contains a Hamiltonian cycle, tends to 1 as |G| goes to infinity.

The best known bound is due to Krivelevich and Sudakov, where they proved the conjecture for

k ≥ ε log5 |G|.
Now we turn into the proof of Theorem 9.7. For this we need some preparation. Suppose that G

is a group of size n and let H ⊂ G be a subgroup of G. For g ∈ G the sets

gH := {gh : h ∈ H} and Hg := {hg : h ∈ H}

are left and right cosets of H in G. A subgroup H is called normal (and we denote it by H / G)

if the sets of left and right cosets of this subgroup are the same for any g ∈ G. A simple group

is a nontrivial group which only normal subgroups are the trivial group and the group itself. A

factor group G/H of a group G with a normal subgroup H is the set of all cosets of H such that

(aH)(bH) = (ab)H. A composition series of a group G is a series such that

e = H0 / H1 / . . . / Ht = G,

where each Hi is a maximal normal subgroup of Hi+1 for all i. Equivalently, each factor group

Hi+1/Hi is simple. The factor groups are called composition factors.

Let us start with the following lemma:
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Lemma 9.9. Let G be a finite group generated by two elements α, β such that (αβ)2 = 1. Then the

Cayley graph Γ = Cay(G, {α, β}) has a Hamiltonian cycle.

Proof. For every z ∈ G and every X ⊂ G, denote

ϑz(X) = {g ∈ G−X : g = xz, x ∈ X}.

Let H =< β >, X1 = H, and construct a Hamiltonian cycle in Γ by induction. At step i we obtain

a cycle which spans a set Xi ⊂ G for which ϑβ(Xi) = ϑβ−1(Xi) = 0. We also assume by induction

that the restriction of Γ to Xi contains a Hamilton cycle Ci which contains only labels β and α−1.

The base of the induction is obvious. Namely, ϑβ(X1) = ϑβ−1(X1) = 0 and X1 contains a

Hamiltonian cycle using only β and α−1 (only β actually...). For the induction step, consider y =

xα ∈ ϑα(Xi) − Xi or y = xα−1 ∈ ϑα−1(Xi) − Xi. If such a y does not exists, then we are done.

WLOG assume that y = xα (not exactly WLOG, but the second case is similar). Note that the edge

oriented towards x ∈ Xi in Ci cannot have label α−1 (as otherwise it is {y, x} but y /∈ Xi), and also

not the labels α or β−1 (by assumption). Therefore, this edge has label β, and {xβ−1, x} ∈ Ci. Now,

consider a cycle R on yH with labels β on all edges, and observe that

x→ xα = y → xαβ = yβ → xβ−1 = xαβα→ x

is a square which connects R and Ci. Formally, let

Ci+1 = Ci ∪R+ {x, y}+ {yβ, xβ−1} − {xβ−1, x} − {y, yβ}

and observe that Ci connects Ci to R into a Hamiltonian cycle of Xi+1 = Xi∪ yH. Let it inherit the

orientation from Ci and check that it satisfies the conditions with respect to the orientation.

We also need the following lemma:

Lemma 9.10. Let G be a finite group and let H /G be a normal subgroup. Suppose S = S1∪S2 is a

generating set of G such that S1 ⊂ H1 generate H, and the projection S′2 of S2 onto G/H generates

G/H. Suppose both Γ1 = Cay(H,S1) and Γ2 = Cay(G/H,S′2) contain Hamiltonian paths. Then,

Γ = Cay(G,S) also contains a Hamiltonian path.

Proof. Let k = |G/H| and let g1 = e ∈ G. Consider a Hamiltonian path in the Cayley graph Γ2:

H := Hg1 → Hg2 → . . .→ Hgk.

Now proceed by induction. Fix a Hamiltonian path in the coset Hg1 so that 1 ∈ G is its starting

point. Suppose h1g1 is its endpoint. Add an edge {h1g1, h1g2} ∈ Γ (such an edge exists by the

assumption that Γ2 is hamiltonian). Suppose h2g2 is its endpoint, and repeat until getting a path

that ends at hkgk. This completes the proof.

Let `(G) be the number of composition factors of G. Let r(G) and m(G) be the number of abelian

and non-abelian composition factors, respectively. Clearly, `(G) = r(G) +m(G).

Theorem 9.11. Let G be a finite group and let r(G) and m(G) as above. Then, there exists a

generating set S of G with |S| ≤ r(G) + 2m(G) such that the corresponding Cayley graph Γ =

Cay(G,S) contains a Hamiltonian path.

68



Proof. It is well known (wasn’t to me if you wonder..) that every non-abelian finite simple group can

be generated by two elements, one of which is an involution (that is x2 = 1). Therefore, Lemma 9.9

applies (with S = {α−1, αβ}) and gives a generating set of size 2 for which the corresponding Cayley

graph is Hamiltonian. If the group is cyclic though (that is, the abelian case), then it trivially has

such a cycle.

Now we want to use Lemma 9.10. Observe that (using the notation from the lemma) any gener-

ating set S′2 of G/H can be lifted to S2 ⊂ G, so that S = S1 ∪S2 is a generating set of G. Therefore,

if H and G/H have generating sets of sizes k1 and k2, respectively, so that the corresponding Cayley

graphs contain Hamiltonian paths, then G contains such a generating set of size k1 + k2. To com-

plete the proof, fix any composition series of a finite group G. By Lemma 9.10 we can construct

a generating set of size r(G) + 2m(G), so that the corresponding Cayley graph has a Hamiltonian

path. This completes the proof.

Now we are ready to prove Theorem 9.7.

Proof. Fix a composition of G. Let r,m as before, and let K1, . . . ,Kr, L1, . . . , Lm be the abelian and

non-abelian composition factors of G, respectively. Since the smallest simple non-abelian group has

order 60 (CHECK IN WIKIPEDIA IF YOU DON’T REMEMBER IT), then |Lj | ≥ 60 > 4 for all

j ∈ [m]. Therefore, we have

2r+2m = 2r4m ≤
r∏
i=1

|Ki|
m∏
j=1

|Li| = |G|.

Therefore, r + 2m ≤ log2 |G|, and equality actually holds only if G = Zn2 . Note that in the latter

it’s easy to prove existence of a Hamilton cycle by induction, and in any other case one can add one

more generator in order to close the Hamiltonian path into a cycle. This completes the proof.

9.2 Eigenvalues of Cayley graphs

In this section, how not, we are going to consider the problem of finding the eigenvalues of a Cayley

graph from a finite abelian group. In this case, as we will see, the eigenvalues are the characters

of the group, and the eigenvalues have a very simple description. Before stating the results we are

interested at, let us give a brief reminder of characters.

Definition 9.12. A character of a finite abelian group G is a group homomorphism χ : G→ C.

As we usually write groups multiplicatively, we have χ(gh) = χ(g)χ(h), and χ(1) = 1.

Exercise 9.13. It might be useful to know the following few facts:

• If χ and φ are characters, then so χ̄, χ · φ and χ · φ̄.

• If G is a finite group and χ is a character for G, then |χ(g)| = 1 for all g ∈ G. (In particular,

one can view χ : as a function from G to the unit sphere of C.)

• If χ is a character of a finite group G and χ is not the identically 1 function, then
∑

g∈G χ(g) =

0. (Note that one can view χ(g) as a random variable, where g is being chosen uniformly at

random from G. Then, we basically show that Eχ = 1
|G|
∑

g∈G χ(g) = 0.)
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• The set of all characters of a finite group G is orthonormal (the inner product is defined as

< χ, φ >= 1
|G|
∑

g∈G χ(g)φ(g).)

Indeed,
∑

g∈G χ(g) ¯χ(g) =
∑

g∈G |χ(g)| = |G|. Moreover, χ · φ̄ is a character which is not

identically 1, and therefore, < χ, φ >= E[χ · φ̄] = 0

Let us also prove the following useful-to-know lemma.

Lemma 9.14. Let G be a finite cyclic group of size n with a chosen generator g. Then, there are

exactly n characters of G, each determined by sending g to a different nth root of unity.

Proof. Since g generates G, a character is determined by its value on g, which is clearly root of unity.

Therefore, there are at most n characters (could also obtain it from the fact that they are linearly

independent). As clearly all characters χj(g) = e2jπi/n are distinct, we are done.

Next we see how to determine the eigenvalues/eigenvectors all Cayley graphs of any finite abelian

group.

Lemma 9.15. Let G be a finite abelian group, χ : G→ C be a character of G, S ⊆ G be a symmetric

set. Let M be the normalized adjacency matrix of the Cayley graph Γ = Cay(G,S). Consider the

vector x ∈ CG such that xa = χ(a). Then, x is an eigenvector of G with eigenvalue

1

|S|
∑
s∈S

χ(s).

Proof. Consider the a-th entry of Mx:

(Mx)a =
∑
b

Ma,bxb =
1

|S|
∑

b:b·a−1∈S

χ(b) =
1

|S|
∑
s∈S

χ(as) = xa ·
1

|S|
∑
s∈S

χ(s).

The eigenvalues are of the form
1

|S|
∑
s∈S

χ(s)

where χ is a character. This completes the proof.

Observe that

• Every character is an eigenvector;

• The characters are linearly independent (as functions from G to C, or equivalently, as vectors

in CG);

• There are as many characters as group elements, and so many characters as nodes in the

corresponding Cayley graphs.

To conclude, we have a ’recipe’ how to find all of the eigenvalues/eigenvectors.

Let’s see two examples, one we already know (hopefully...) and the other is new to us:

• The cycle: The cycle Cn is a Cayley graph of Zn with S = {−1, 1}. Recall that every m ∈
{0, . . . , n − 1} has a character χm(x) = e2πimx/n. This means that for every m we have the

eigenvalue

λm =
1

2
e2πim/n +

1

2
e−2πim/n = cos(2πm/n).
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• The hypercube: For every r ∈ Zn2 we have a character

χr : Zn2 → {−1, 1},

defined as

χr(x) = (−1)
∑
i rixi .

Let S be the set of the generators e1, . . . , en (CHECK THAT THE ABOVE ARE INDEED

CHARACTERS!). This means that, for every r ∈ Zn2 , the hypercube has the eigenvalue

1

n

∑
j

χr(ej) =
1

n

∑
(−1)rj =

1

n
(n− 2s),

where s is the number of 1’s in r.

Corresponding to r = 0 we have the eigenvalue 1. For each of the n vectors with exactly one

1, we have the eigenvalue 2/n, and more. In particular, the multiplicity of n− 2s is
(
n
2s

)
.

9.3 A random set of generators

To continue the fun, let’s also add some probability into the picture. Our goal here is to show

that if we choose the set of generators at random, for some constant multiplication of the dimension,

then we obtain a graph which is a ‘good’ approximation of the complete graph (in a spectral way).

Let us set, say, k = 100d (where d is the dimension. It will be convenient here to denote n = 2d so

we can compare the bound to those of Kn). For a vector b ∈ {0, 1}d which is not all 0 and for g

which is chosen uniformly at random from {0, 1}d, btg mod 2 is a uniformly distributed number in

{0, 1}, and so

(−1)b
tg

is uniformly distributed in {±1}. So, pick g1, . . . , gk independently at random from {0, 1}d, the

eigenvalues corresponding to the eigenvector χb is

λb =
∑
i

(−1)b
tgi .

This is a sum of independent, uniformly chosen ±1 random variables. Therefore, we know it is

concentrated around 0! To determine how concentrated it is, we can use Chernoff’s bounds.

10 Some extremal graph theory

Recall that the extremal number of a graph H, denoted by ex(n,H) is the maximum number of

edges in a graph G on n vertices that contains no copies of H. For example, as we’ve already seen

before, ex(n,C3) = n2

4 (Mantel’s theorem). In general, Erdős and Stone proved that for every graph

H with chromatic number χ(H) = k we have

ex(n,H) =

(
1− 1

k − 1

)(
n

2

)
+ o(n2).

Note that even though the above bound captures most of the graphs H, it doesn’t give a clue on

the actual extremal number of bipartite graph H (that is, when k = 2). Let us prove the following

theorem due to Kővari, Sós and Turán:
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Theorem 10.1. For any natural numbers s and t with s ≤ t, there exists a constant c such that

ex(n,Ks,t) ≤ cn2−1/s.

Proof. Let G be a graph on n vertices with at least cn2−1/s edges, and we wish to show that G

must contain a copy of Ks,t. Assume not, and let us count the number of pairs (v, S) consisting of

v ∈ V (G) and S ⊆ N(v) of size exactly s. The number of such pairs is

∑
v

(
d(v)

s

)
≥ n

( 1
n

∑
d(v)

s

)
≥ n

(
2cn1−1/s

s

)
≥ csns

s!
.

On the other hand, every subset of size S is being counted at most t− 1 times (otherwise one can

find a copy of Ks,t) so we have
csns

s!
≤
(
n

s

)
(t− 1),

and this is a contradiction in case that c is a sufficiently large constant (depending on s and t).

For example, if we take K2,2 (which is just a cycle of length four), the above theorem tells that

ex(n,K2,2) = O(n3/2). Let us show that this is tight (up to a constat factor). To this end, let us

build a graph on n = q2 vertices (where q is some arbitrarily large prime) which is K2,2-free and

contains Ω(n3/2) edges. The vertex set consists of all vectors in F2
q , and we put an edge (x, y) ∼ (s, t)

if and only if s+yt+x = 0 (note that this is a symmetrical relation). There is a simple intuitive way

to think about why this relation works, but we will not discuss it here. First, let’s count the number

of edges in the graph we’ve just defined. Fix an (x, y), The number of solutions to s+ yt+ x = 0 is

exactly q (choose t arbitrarily, and there is a unique s to satisfy this equation). That is, the graph

is q regular and therefore there are exactly q3

2 = 1
2n

3/2 many edges (among them there might be few

self loops, then we can just delete them as there are not too many such). Finally, let us convince

ourselves that there are no copies of K2,2. Suppose there are. In particular, there are (x, y), (x′, y′)

that have at least two common neighbors. We distinguish between two cases and show that in each

of them this is impossible. First, if y 6= y′, then

s+ yt = −x

and

s+ y′t = −x′

has more than one solution. As the rank of the coefficient matrix is 2 (because y 6= y′), it cannot be.

Second, assume y = y′ and x 6= x′. Then we are looking for s, t such that

yt+ s = −x

and

yt+ s = −x′

which is clearly absurd. This completes the argument.

A nice corollary which is obtained by the special structure of our graph is the following:

Theorem 10.2. For sufficiently large n we have that one can decompose the edges of Kn into

(1 + o(1))
√
n edge-disjoint C4-free graphs.
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Proof. Suppose that n = q2, where q is some prime. If not, then there exists a prime
√
n ≤ q ≤ (1 +

o(1))
√
n, choose such and let n′ := q2 = (1+o(1))n. For all i ∈ [q], define Fi(x, y, s, t) = x+yt+s+ i

and define Gi on vertex set Z2
q with edge set consists of all pairs (x, y) ∼ (s, t) if and only if

Fi(x, y, s, t) = 0. Clearly the Gi’s are edge disjoint, and by a similar argument like before, each of

them is C4 free. This completes the proof.

11 Introduction to discrete Fourier analysis

Suppose f : G→ C, where G is any set. Then, Exf(x) means the average over all x. That is,

Exf(x) =
1

|G|
∑
x∈G

f(x).

Moreover, for f : Gk → C we write

Ex1,...,xkf(x̄) =
1

|G|k
∑
x̄∈Gk

f(x̄).

Another easy thing that we will use a lot so it is nice to recall: e2πix = cos(2πx)+i sin(2πx). Since

both cos and sin are 2π-periodic, it follows that e2πix = e2πi(x+k) for any integer k. In particular, if

we take x = y
n , then all the distinct values e2πix are obtained by values of x of the form y/n, where

0 ≤ y ≤ n− 1.

11.1 Working in Zn
Let us start by defining all of our notation over Zn, and later we repeat the whole thing by

doing the same over any abelian group G (the reason for that, as will be clear later, is that there

is a relatively simple isomorphism between Zn and Ẑn – the set of all characters of Zn – a notion

which will be introduced bellow). Suppose f : Zn → C. We define its discrete Fourier transform

f̂ : Zn → C by the formula

f̂(r) = Exf(x)ω−rx,

where ω = exp(2πik/n) is any (but fixed) primitive nth root of unity. For those which are familiar

with Fourier transform, note that it is more correct to think about f̂ as a function from Ẑn instead

of from Zn. The main difference which is important for us between Zn and Ẑn (except of being

completely different sets, but will turn out to be isomorphic as groups...) is in the measure we put

on these sets. For Zn we use the uniform probability measure (that is, an averaging), and for the latter

we use the counting measure (summing). This is illustrated in the following few definitions/reminders

(here you can assume that Zn = Ẑn as it won’t matter for the discussion): suppose f, g : Zn → C.

a. 〈f, g〉 = Exf(x)g(x). (Inner product)

b. ‖f‖p = (Ex|f(x)|p)1/p . (p-norm)

c. (f ∗ g)(x) = Ey+z=xf(y)g(z). (convolution)

The corresponding definitions for functions f̂ , ĝ : Ẑn → C are:

(a) 〈f̂ , ĝ〉 =
∑

x f̂(x)ĝ(x). (inner product)
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(b) ‖f̂‖p =
(∑

x |f̂(x)|p
)1/p

. (p-norm)

(c) (f̂ ∗ ĝ)(x) =
∑

y+z=x f̂(y)ĝ(z). (convolution)

The following few rules are going to be our bread and butter:

1. 〈f, g〉 = 〈f̂ , ĝ〉 (Parseval’s identity)

2. ‖f‖2 = ‖f̂‖2 (also Parseval’s)

3. f(x) =
∑

r f̂(r)ωrx (the inversion formula)

4. f̂ ∗ g(r) = f̂(r)ĝ(r) (the convolution identity)

5. If a is invertible mod n and g(x) = f(ax) for all x ∈ Zn, then ĝ(r) = f̂(a−1r) for every r (the

dilation rule).

The proofs are easy exercises so we will only sketch them:

Proof. 1. Note that

〈f̂ , ĝ〉 =
∑
r

f̂(r)ĝ(r) =
∑
r

(
Exf(x)ω−rx

) (
Eyg(y)ωry

)
which equals

ExEyf(x)g(y)
∑
r

ω−rxωry.

Note that
∑

r ω
−rxωry is either n (if x = y) or 0 otherwise. Therefore, we obtain that the

above equals

Exf(x)g(x) = 〈f, g〉,

as desired.

2. Trivial from 1.

3. The set ωrx forms an orthonormal basis to CZn .

4. Note that

f̂ ∗ g(r) = Ex
[
(f ∗ g)(x)ω−rx

]
= ExEy+z=xf(y)g(z)ω−rx = Ey,zf(y)g(z)ω−r(y+z) = f̂(r)ĝ(r).

5. Note that

ĝ(r) = Exg(x)ω−rx = Exf(ax)ω−rx

which, by a change of variable is

Exf(x)ω−ra
−1x = f̂(a−1r).

This completes the argument.
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We often want to use characteristic functions of subsets A of Zn. That is, for a subset A we define

A : Zn → C as follows:

A(x) = 0 if x /∈ A, and A(x) = 1 otherwise.

Given a subset A, we let α = |A|/n be its density. The following three observations are going to be

useful:

• Â(0) = α. Indeed, Â(0) = ExA(x)ω−0 = α.

•
∑

r |Â(r)|2 = α. To see this, note that by Parseval’s we have
∑

r |Â(r)|2 = ExA(x)A(x) = α.

• Â(−r) = Â(r). This is a trivial exercise.

As an illustrative example, we show how to approach the following theorem by Roth (here over

Zn, but the proof can be easily adopted to Z):

Theorem 11.1 (Roth’s Theorem for finite fields). Let α > 0 and n be a sufficiently large prime.

Then, every subset A ⊆ Zn of density at least α contains an arithmetic progression of length 3.

We won’t prove this theorem in full here but only show why Fourier’s analysis is useful in it.

Later we provide a full proof using slightly different arguments as was recently obtained by Croot

and Sisask. Before diving into the details, let us define the function A2(x) as A(x/2) (we assume here

that 2 is invertible mod n, and hence we take n to be an odd integer). The key observation is that

the number of arithmetic progressions in A can be expressed in terms of convolutions, inner products

and dilations. Indeed, as a triple (x, z, y) of distinct numbers forms an arithmetic progression if and

only if x+ y = 2z, the expected number of arithmetic progressions in A can be written as

Ex+y=2zA(x)A(y)A(z) = Ex+y=zA(x)A(y)A(z/2).

Note that this equals (by Parseval’s inequality)

Ez(A ∗A)(z)A2(z) = 〈A ∗A,A2〉 = 〈Â ∗A, Â2〉 = 〈Â2, Â2〉.

By definition we obtain that the latter equals:∑
r

Â(r)2Â2(r) =
∑
r

Â(r)2Â(2r) =
∑
r

Â(r)2Â(−2r).

To make use of the above calculations, let us write the last expression (by isolating the r = 0

term from the rest) as

α3 +
∑
r 6=0

Â(r)2Â(−2r),

and obtain that

Ex+y=2zA(x)A(y)A(z) = α3 +
∑
r 6=0

Â(r)2Â(−2r).

Intuitively, α3 is exactly the probability that a fixed 3-term arithmetic progression will be part

of A if the set A is being chosen at random (among all sets of density α). Therefore, the ugly sum
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will be a measure for the ‘pseudo-randomness’ of the set A. Our main goal is to show that the sum

is not ‘too large’– this will clearly imply the desired. To obtain a useful upper bound note that

|
∑
r 6=0

Â(r)2Â(−2r)| ≤ max
r 6=0
|Â(r)|

∑
r 6=0

|Â(r)||Â(−2r)| ≤ αmax
r 6=0
|Â(r)|,

where the last inequality is obtained by Cauchy-Schwarz.

In particular we obtain that

Ex+y=2zA(x)A(y)A(z) ≥ α3 − αmax
r 6=0
|Â(r)|.

To complete the proof, the idea is to show that if there is a large Fourier coefficient, then there

exists an arithmetic progression P ⊆ [n] for which the density of A restricted to P is strictly larger

than the density of A in Zn. Then, by letting P playing the role of [n], one can iterate until either

we find a 3-AP in A or we get that A has density 1 on some arithmetic progression P of length larger

than 3, where we are done as well. In later sections we try to give a bit more formal discussion that

should help with developing a bit of intuition.

11.2 General groups – first step – characters

In the previous section we illustrated how to work with Fourier’s over Zn. Here we extend the

above arguments to general abelian groups.

Let’s start by defining the super useful notion of a character. Suppose G is a finite abelian group

of order n, written additively. A character of G is a homomorphism χ : G → C× of G to the

multiplicative group of nonzero complex numbers. That is,

χ(a+ b) = χ(a)χ(b), for all a, b ∈ G.

Clearly,

χ(a)n = χ(na) = χ(0) = 1 for all a ∈ G,

and therefore

χ : G→ S1,

where S1 is the 1-dimensional unit sphere. In particular we have

χ(−a) = χ(a)−1 = χ(a).

We define the principal character as

χ0(a) = 1 for all a ∈ G.

Proposition 11.2. For any non-principal character of G we have∑
a∈G

χ(a) = 0.

Proof. Indeed, let b ∈ G be such that χ(b) 6= 1. Then,∑
a

χ(a) =
∑
a

χ(a+ b) =
∑
a

χ(a)χ(b) = χ(b)
∑
a

χ(a).

This completes the proof.
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As an immediate corollary we obtain the first orthogonality relation for characters:

Corollary 11.3 (First orthogonality relation). Let χ and ψ be any two characters of G. Then∑
a∈G

χ(a)ψ(a) = 0 if χ 6= ψ,

and ∑
a∈G

χ(a)ψ(a) = n otherwise .

Proof. The case χ = ψ is trivial. If χ 6= ψ, then ψχ is also a character and is non-principal. Therefore,

by the previous proposition we are done.

Let Ĝ be the set of all characters of G. It is quite obvious that Ĝ forms an abelian group under

the operation

(χψ)(a) = χ(a)ψ(a).

This group is called the dual group of G. To justify why we could identify Ẑn with Zn in the previous

section, let us prove the following:

Proposition 11.4. Let ω be a primitive nth root of unity. Then the map χj : Zn → C× defined by

χj(a) = ωja

is a character for all j ∈ Zn. Moreover:

(a) χj = χk if and only if j = k,

(b) χj = χj1,

(c) Ẑn = {χ0, . . . , χn−1},

(d) Ẑn ∼= Zn.

Proof. Easy exercise.

As a first step towards generalizing this notion to general abelian groups we need the following:

Proposition 11.5. If G is a direct sum: G = H1⊕H2, and ϕi is a character of Hi, i ∈ {1, 2}, then

the function χ = ϕ1 ⊕ ϕ2, define by

χ(h1, h2) = ϕ1(h1)ϕ2(h2)

is a character of G. Moreover, all characters of G are of this form. Therefore, Ĝ ∼= Ĥ1 ⊕ Ĥ2.

Proof. Exercise.

Corollary 11.6. For any finite abelian group G we have G ∼= Ĝ.

Proof. As G is a finite abelian group, we know that G ∼= Zn1 ⊕ Zn2 ⊕ . . . ⊕ Znk for some ni’s.

Therefore, by the previous propositions we obtain the desired.
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It is worth remarking that there is no natural isomorphism between G and Ĝ. Even for cyclic

groups, the isomorphism depends on the choice of ω. The isomorphism G ∼= ̂̂
G however is natural:

Corollary 11.7. G can be identified with
̂̂
G in the following natural way: for a ∈ G, define ā ∈ ̂̂G

by

ā(χ) = χ(a) for all χ ∈ ̂̂G.
Proof. Exercise.

Now, let’s consider CG. That is, the linear space consisting of all functions from G to C. As in

the previous section, we introduce an inner product

〈f, g〉 = Exf(x)g(x).

It is quite obvious (and we’ve already seen it) that Ĝ forms an orthonormal basis for CG. Let

Ĝ = {χ0, . . . , χn−1}. The n× n matrix C defined as

Cij = (χi(aj))

is called the character table of G.

Corollary 11.8. The matrix A = 1√
n
C is unitary.

Proof. Indeed, (CC∗)ij =
∑

k χi(ak)χj(ak) = 0 if i 6= j and n if i = j.

Note that as AA∗ = I we also have A∗A = I which immediately gives the following corollary:

Corollary 11.9 (Second orthogonality relation). Let a, b ∈ G. Then∑
χ∈Ĝ

χ(a)χ(b) = 0 if a 6= b

and equals n if a = b.

Proof. A different proof than just showing A∗A = I can be obtained by stating the problem for the

abelian group
̂̂
G instead of G.

In particular we have that

Corollary 11.10. For any non-zero a ∈ G we have∑
χ∈Ĝ

χ(a) = 0.
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11.3 General abelian groups – second step

We have already seen that any function f ∈ CG can be written as

f =
∑
χ∈Ĝ

cχχ,

where cχ = 〈f, χ〉 = Exf(x)χ(x). The coefficients cχ are called the Fourier coefficients of f .

The function f̂ : Ĝ→ C defined by

f̂(χ) = cχ =
1

n

∑
x∈G

f(x)χ(x)

is called the Fourier transform of f . This transformation is easily inverted:

f =
∑
χ∈Ĝ

cχχ =
∑
χ∈Ĝ

f̂(χ)χ.

Therefore, the formula for the inverse Fourier transform is

f(x) =
∑
χ∈Ĝ

f̂(χ)χ(x).

As a simple corollary we obtain the following. Let δ ∈ CG be defined as follows:

δ(a) = 0 if a 6= 0 and δ(0) = 1.

Corollary 11.11. The following holds:

• δ̂(χ) = 1/n for all χ ∈ Ĝ.

• δ = 1
n

∑
χ∈Ĝ χ.

Proof. For the first bullet, note that

δ̂(χ) =
1

n

∑
x

δ(x)χ(x) =
1

n
δ(0)χ(0) = 1/n.

To prove the second bullet, note that by the inverse formula we have

δ =
∑
χ∈Ĝ

δ̂(χ)χ

which by the first bullet equals
1

n

∑
χ∈Ĝ

χ

as desired.
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A useful observation is the following: let C be the character table of G as defined above. Since

f̂(χ) =
1

n

∑
x

f(x)χ(x),

it follows that

f̂ =
1

n
f tC∗,

where f t = (f(x))x∈G (considered as a row vector). This will be useful in the following theorem

(Recall that the inner product over Ĝ is defined as a sum rather than an average).

Theorem 11.12 (Plancheral formula). For any f, g ∈ CG we have

〈f̂ , ĝ〉 = 〈f, g〉.

Proof. Write f, g, f̂ , ĝ as row vectors, and observe that

f̂ =
1

n
f tC∗, and ĝ =

1

n
gtC∗.

Therefore,

〈f̂ , ĝ〉 = f̂ tĝ =
1

n2
f tC∗Cg =

1

n
f tḡ = 〈f, g〉

as desired.

Corollary 11.13. ‖f̂‖ = ‖f‖.

Next, let A ⊆ G and we wish to work with the characteristic function A(x) of A. Note that for

every A,B ⊆ G we have

〈A,B〉 = ExA(x)B(x) =
1

n
|A ∩B|,

where the first equality holds since B is a real valued function.

Moreover, as in a previous section, observe that

Â(χ0) =
1

n
|A|.

Indeed,

Â(χ0) = ExA(x)χ0(x) =
1

n
|A|.

That is, the first Fourier coefficient gives the ‘probability’ that a fixed element x ∈ G belongs to A if

A is a randomly (uniformly) chosen subset of size |A|. The other coefficients give some measurement

about the ‘pseudorandomness’ structure of A. Let

Φ(A) = max{|f̂(χ)| : χ ∈ Ĝ, χ 6= χ0}.

The smaller Φ(A) is, the more ‘random like’ A is. Estimating Φ(A) is usually the main goal when

applying Fourier analysis to problems in additive combinatorics.

Let’s give a simple lower bound that holds for all A ⊆ G.

Proposition 11.14. For every A ⊆ G, if |A| ≤ n/2, then

Φ(A) ≥ 1

n

√
|A|/2.
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Proof. Observe that

‖Â‖2 = ‖A‖2 = |A|/n.

On the other hand,

‖Â‖2 =
∑
χ

|Â(χ)|2 ≤ |Â(χ0)|2 + (n− 1)Φ(A)2.

Combining the above two inequalities we obtain:

Φ(A)2 ≥ |A|
2n2

as desired.

Some other useful properties of Φ(A) are summarized as follows:

• Φ(A) = Φ(G \ A) for every A ⊆ G. Indeed, note that (G \ A) = 1 − A, and it’s quite easy to

show that for all χ ∈ Ĝ we have

f̂(χ) = ̂(1− f)(χ).

• If gcd(k, n) = 1 then Φ(kA) = Φ(A) for every A ⊆ G, where kA = {ka : a ∈ A}.

• If α ∈ Aut(G), then Φ(A) = Φ(αA).

• Φ(A+ a) = Φ(A) for al a ∈ A.

11.4 A general application: Equations over finite abelian groups

We shall consider the following general problem (can be seen as a generalization of Roth’s theo-

rem): Let A1, . . . , Ak ⊆ G and let a be a fixed element of G. We wish to estimate the number of

solutions for the equation:

x1 + . . .+ xk = a, where xi ∈ Ai for all i.

Let |Ai| = mi for all i. Now, assume for a moment that the sets Ai are fixed and a ∈ G is chosen

uniformly at random. This gives an expected number of m1...mk
n solutions. The main goal here is to

show that under some reasonable assumptions the expectation is quite close to the actual number

of solutions for every a ∈ G! (we’ve already seen it in the brief sketch of Roth’s Theorem, but it

remains nice even long after you see it for the first time...).

To see what’s going on in there, we first observe that replacing Ak by Ak−a and set x1+. . .+xk = 0

doesn’t change the number of solutions. Therefore, it is enough to consider the homogeneous equation

x1 + . . .+ xk = 0, where xi ∈ Ai for all i.

Similarly to the sketch of Roth’s theorem, we want to write an explicit formula for the number of

solutions to this equality, which is denoted by N :

N =
∑

x̄∈
∏
Ai

δ(x1 + . . .+ xk) =
1

n

∑
χ∈Ĝ

∑
x̄

χ(x1 + . . .+ xk).
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Since χ(x1 + . . .+ xk) = χ(x1) . . . χ(xk), the right hand side can be written as

1

n

∑
χ∈Ĝ

k∏
i=1

∑
xi∈Ai

χ(xi)

 .

Observe that

nÂi(χ̄) =
∑
xi∈Ai

χ(xi),

and therefore

N = nk−1
k∏
i=1

Âi(χ0) +R =
m1 . . .mk

n
+R,

where

R = nk−1
∑
χ 6=χ0

k∏
i=1

Âi(χ).

The formula we’ve just obtained is useful only if we can show that |R| is ‘small’. To conclude

that the equation of interest has a solution at all, we need to prove that |R| < m1...mk
n . To this end

we need the aid of the following simple and yet powerful tool.

11.5 The Cauchy-Schwarz trick

Let us consider the case k = 3 in the above equation we are interested at. We will show that if at

least one of the sets Ai is smooth (that is, all non-principal Fourier coefficients of Ai are small) and

the sets of not too small, then the equation has roughly the ‘expected’ number of solutions.

Theorem 11.15. Let A1, A2, A3 ⊆ G, a ∈ G, and let N be the number of solutions to

x1 + x2 + x3 = a where xi ∈ Ai for all i.

Then, ∣∣∣N − m1m2m3

n

∣∣∣ < nΦ(A3)
√
|A1||A2|.

Proof. As mentioned before, it is enough to solve

x1 + x2 + x3 = 0, where xi ∈ Ai.

Observe that Φ(A3) = Φ(A3 − a), so it doesn’t change the conclusion. Indeed,

Φ(A3) = max{|Â3(χ)| : χ 6= χ0} = max{|ExA3(x)χ(x)| : χ 6= χ0},

and the result is obtained by a change of variable x→ x+ a.

Recall that

R = n2
∑
χ 6=χ0

3∏
i=1

Âi(χ).

Therefore,

|R| ≤ n2
∑
χ 6=χ0

3∏
i=1

|Âi(χ)| ≤ n2Φ(A3)
∑
χ∈Ĝ

|Â1(χ)||Â2(χ)|.
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By Cuachy-Schwarz, the right hand side is at most

n2Φ(A3)

(∑
χ

|Â1(χ)|2
)1/2(∑

χ

|Â2(χ)|2
)1/2

= nΦ(A3)
√
|A1||A2|.

This completes the proof.

Corollary 11.16. If Φ(A3)/|A3| <
√
|A1||A2|
n2 , then there is a solution to the above equation.

Proof. This is just a restatement of |R| < |A1||A2||A3|
n .

So now we’re done with the general setting, and it’s clear what we need to prove in order to obtain

the desired. In the following few sections we will give few examples of complete proofs of this type.

11.6 Roth’s Theorem in Zn3
In this section we prove Roth’s theorem in Zn3 . This very clean proof was obtained by Meshulam

and serves as a very good example for understanding what actually is going on.

First, note that for α ∈ Znm and ω = exp(2πi/m), we can define the character

χα(x) = ω(αTx).

Our main goal is to prove the following theorem:

Theorem 11.17. There exists an absolute constant C > 0 such that for all A ⊆ Zn3 , if |A| ≥ C3n/n,

then A contains a 3-AP.

Note that the bound is much weaker than the one we saw in the section about the Capset problem

(which was proved using the polynomial method).

Proof. Let A ⊆ Zn3 be a subset of density µ = |A|/3n, and let A : Zn3 → {0, 1} be the indicator

function for A (so Â(0) = µ). Note that a 3-AP in this setting is of the form x, y,−(x+y). The main

idea is to estimate the probability that randomly chosen x, y ∈ Zn3 will satisfy A(x)A(y)A(−(x+y) =

1. Note that if A is a random subset, then the success probability is µ3. Our goal is to show that if

A is not too small, then even if not random, this probability is not 0. This will give us the desired.

Claim 11.18. The probability that x, y,−(x+ y) ∈ A is
∑

α Â(α)3.

Proof. Note that the probability that x, y,−(x+y) ∈ A is exactly Ex,y[A(x)A(y)A(−(x+y))]. Since

A(z) =
∑

α Â(α)χα(z), we obtain that the probability is exactly

Ex,y[
∑
α,β,γ

Â(α)Â(β)Â(γ)χα(x)χβ(y)χγ(−(x+ y))]

which, by changing the summation and using the fact that χ(s+ t) = χ(s)χ(t), can be rewritten as∑
α,β,γ

Â(α)Â(β)Â(γ)Ex,y[χα(x)χβ(y)χ−γ(x)χ−γ(y)] =
∑
α,β,γ

Â(α)Â(β)Â(γ)Ex[χα−γ(x)]Ey[χβ−γ(y)].
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Now, observe that if α 6= γ or β 6= γ, then the corresponding Ex or Ey is 0. Therefore, we obtain

that the above sum equals ∑
γ

Â(γ)3

as desired.

Corollary 11.19. Suppose that |Â(α)| < µ2/2 for all α 6= 0. Then A contains a 3-AP.

Proof. Indeed, observe that

Pr
x,y

[x, y,−(x+ y) ∈ A] =
∑
α

Â(α)3 = µ3 +
∑
α 6=0

Â(α)3 ≥ µ3 −
∑
α 6=0

|Â(α)|3.

Using Parseval’s we obtain that∑
α 6=0

|Â(α)|3 ≤ max
α6=0
|Â(α)|

∑
α

|Â(α)|2 = Ex|A(x)|2 ≤ µ3/2.

Therefore, the probability that x, y,−(x + y) ∈ A is at least µ3 − (µ3/2) = µ3/2 > 0. This

completes the proof.

Remark 11.20. Note that we cheated a bit by ignoring the ‘trivial’ 3-AP’s of the form x, x, x.

Convince yourself that as there are not too many such sequences, then this cheat can be easily fixed.

Basically, what we’ve shown is that if all the Fourier coefficients are small, then A is ‘random like’.

For convenience, we say that A is η-uniform if |Â(α)| ≤ η for all α 6= 0. Working with this notation,

we proved that if A is µ2/2-uniform then A contains a 3-AP. What if A is not? in particular, it

means that there exists β 6= 0 for which |Â(β)| ≥ µ2/2 =: η. We now show that it means that A

is positively correlated with one of the three hyperplanes β · x = j, j ∈ Z3. This will enable us to

iterate using a density increment argument.

Proposition 11.21. Suppose f : Znp → R is a function satisfying E[f ] = µ and |f̂(β)| ≥ η for some

β 6= 0. Then, there exists c ∈ Zp such that

Ex[f(x)|β · x = c] ≥ µ+ η/2.

Proof. Let g = f − µ, so E[g] = 0 and |ĝ(β)| ≥ η. Note that

|ĝ(β)| = |Ex[g(x)ω−βx]| = |1
p

p−1∑
j=0

Ex[g(x)ω−j |βx = j]|

which by the triangle inequality is at most

1

p

∑
j

|Ex[g(x)|βx = j]| =:
1

p

∑
j

|δj |,

where δj = Ex[g(x)|βx = j]. Since |ĝ(β)| ≥ η we obtain, by averaging, that for some j ∈ Zp we have

|δj | ≥ η. In order to complete the proof we need to get rid of the absolute value. To this end, simply

observe that the average of all the δi’s is clearly E[g] = 0. Therefore, we can deduce that

η ≤ 1

p

∑
j

(|δj |+ δj),

84



so there is a j with |δj | + δj ≥ η. This gives δj ≥ η/2 so we have Ex[g(x)|βx = j] ≥ η/2, which

implies Ex[f(x)|βx = j] ≥ µ+ η/2. This completes the proof.

Based on the above proposition, we know that either A contains a 3-AP or three must be some

hyperplane βx = j where the density of A restricted to it is at least µ + µ2/4. Note that this

hyperplane is isomorphic to Zn−1
3 in the sense that there exists some affine transformation which

maps it to Zn−1
3 . Such a transformation will take A to some A′ ⊆ Zn−1

3 of density larger than µ+µ2/4,

and clearly a 3-AP in A corresponds to a 3-AP in A′ and vice versa under such a transformation.

Therefore, we can now repeat the argument on Zn−1
3 to obtain A′′ and more... at some point, either

we find a 3-AP or we obtain a subspace where A (or the image of A under all these transformations

along the way) has density larger than 1 on, which is clearly an absurd. This completes the proof.

11.7 A proof of Roth’s Theorem

In this section we present a proof of Roth’s theorem that avoids iterations (now we work in ZN ).

This proof was obtained by Croot and Sisask not so long ago.

Given an integer N , we let r3(N) denote the size of any largest subset S ⊆ [N ] that contains no

3-term AP. Now Roth’s Theorem can be stated as follows:

Theorem 11.22 (Roth’s Theorem). We have that r3(N) = o(N).

The theorem will be obtained by showing that r3(N)/N is asymptotically decreasing. To do so,

start with S ⊆ [N ] of size |S| = r3(N) that contains no 3-AP. Then, convolve it with a measure on a

carefully chosen 3-AP. The set T where this convolution is positive will be significantly larger than

S and yet will have very few 3-AP’s. Lastly, using a version of theorem of Varnavides we obtain that

r3(N)/N is much smaller than r3(M)/M for some M = (logN)1/16−o(1). This implies the theorem

quite easily.

For f : ZN → [0, 1], let Λ(f) := Ex,d∈ZN f(x)f(x + d)f(x + 2d). In a sightly misleading way, we

will refer to this parameter as the ‘number of 3AP in f ’. When f is the indicator function of a subset

S ⊆ [N ], then this expression is the density of the number of arithmetic progressions in S. Like in

Section 11.1, one can easily show that

Λ(f) =
∑
r∈Zn

f̂(r)2f̂(−2r).

We make use of the notation ‖t‖ as the distance from t to the nearest integer. Now we are ready

to prove Roth’s theorem:

Proof. Let κ := lim supN→∞ r3(N)/N . We will show that κ = 0 (and then we are done).

We can assume that N is a prime, as there is always a prime of order (1 + o(1))N so we will only

pay a constant factor.

Let S ⊆ [N ] be a 3-AP free subset with |S| = r3(N), and let f be its indicator function. Let

R := {r ∈ ZN : |f̂(r)| ≥ (2 log logN/ logN)1/2}.

By Parseval’s inequality, this set of large Fourier coefficients cannot be too big. In particular

|R| ≤ logN/2 log logN.
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Indeed,

1 ≥ |S|/N = 〈f, f〉 = 〈f̂ , f̂〉 ≥ (2 log logN/ logN)|R|,

giving the above.

Moreover, we can dilate this set to lie in a short part of ZN . That is, we can choose an integer

dilate x satisfying

0 < x < N1−1/(|R|+1) ≤ N/ logN,

such that for all r ∈ R we have

‖xr/N‖ ≤ N−1/(|R|+1) ≤ 1/ logN.

Indeed, enumerate R = {r1, . . . , r|R|} and define the set of points

{(j, jr1, . . . , jr|R|) : j ∈ [N ]}.

This is a set of size N , and therefore, if we split [N ]|R|+1 into ‘boxes’ of size s|R|+1, then as long as

N is larger than the number of boxes, N |R|+1/s|R|+1, there must be a box that contains at least two

points. Let s = N1−1/(|R|+1) and let (j, jr1, . . . , jr|R|) and (k, kr1, . . . , kr|R|) be two such points. Set

x = k− j and observe that x < N1−1/(|R|+1) and ‖xri/N‖ ≤ N−1/(|R|+1) ≤ 1/ logN holds for all i as

desired.

Taking such an x, let

B := {0, x, 2x},

and let h be the normalised indicator function for B, given by

h(n) := N ·B(n)/3.

Convolve f with h and obtain

g(n) = (f ∗ h)(n) = (f(n) + f(n− x) + f(n− 2x))/3,

and observe that

ĝ(0) = f̂(0).

(that is, f and g are averaged the same.) We now show that the Fourier coefficients of these two

functions are quite close to each other, and then we can ‘replace’ f by g.

Note that

f̂(r)− ĝ(r) = f̂(r)(1− ĥ(r)),

and therefore, using the claim bellow and some analysis, one can show that for all r ∈ ZN we have

|f̂(r)− ĝ(r)| ≤ C(log logN/ logN)1/2.

Indeed, suppose that r /∈ R. In this case we have

|f̂(r)− ĝ(r)| = |f̂(r)(1− ĥ(r))| ≤ (2 log logN/ logN)1/2.

(note that |ĥ(r)| = |Enh(n)e−2πirn/N | ≤ 1.)

Next, if r ∈ R, then

|ĥ(r)| = |Enh(n)e2πirn/N | = | 1
N

(h(0) + h(x)e2πiO(1/ logN) + h(2x)e2πiO(1/ logN))| = 1 +O(1/ logN),
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giving

|f̂(r)− ĝ(r)| = O(1/ logN).

Next we show that

|Λ(f)− Λ(g)| = O((log logN/ logN)1/2).

Indeed,

|Λ(f)− Λ(g)| = |
∑
r

f̂2(r)f̂(−2r)−
∑
r

ĝ2(r)ĝ(−2r)|

= |
∑
r

f̂2(r)(f̂(−2r)− ĝ(−2r)) +
∑
r

(f̂2(r)ĝ(−2r)− ĝ2(r)ĝ(−2r))|.

Clearly, the right hand side is at most

max
s
|f̂(s)− ĝ(s)|

(
|
∑
r

f̂2(r)|+ |
∑
r

(f̂(r) + ĝ(r))ĝ(−2r)|

)

which by the above estimate, Parseval’s and Cauchy-Schwarz can be easily upper bounded as desired.

All in all, observe that as f contains no non-trivial 3AP’s, we have

Λ(f) = O(1/N),

which by the above arguments give us

Λ(g) = O(log logN/ logN)1/2.

Getting closer to the punch line, let T := {n ∈ ZN : g(n) > 0}, and note that

• Λ(T ) = O(Λ(g)) (which is trivial), and

• Λ(T ) = O(log logN/ logN)1/2 (which follows from the above).

Since S is 3AP-free, we have g(n) ≤ 2/3 for all n. Therefore,

T (n) ≥ 3g(n)/2

for all n, which implies (by the fact that g averages the same as f)

|T | ≥ 3|S|/2.

To summarize our progress: we have managed to find a subset T which is significantly larger than

S, but with only few 3AP’s. Since S was of size r3(N), we have that T is of size at least 3r3(N)/2,

and in order to complete the proof it is enough to show that any set of this size must contain ‘many’

3AP’s. This was obtained by Varnavides (we will skip its proof at this section)

Lemma 11.23 (Varnavides). For any 1 ≤M ≤ N , and for any set A ⊆ [N ], we have

T3(A) ≥
(
|A|/N − (r3(M) + 1)/M

M4

)
N2,

where T3(A) is the number of non-trivial 3AP’s in A.
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To complete the proof of the theorem, let

M = (logN/ log logN)1/16,

and apply the lemma to T to obtain

Λ(T ) ≥ 3|S|/2N − (r3(M) + 1)/M

M4
.

Using the fact that

Λ(T ) = O(log logN/ logN)1/2

we conclude that

r3(N)/N = |S|/N ≤ 2r3(M)/3M +O((log logN/ logN)1/4),

which shows that r3(N)/N ≤ r3(M)/M .

12 Characteristic functions

In this section we would like to talk about characteristic functions. Our goal is to show some other

applications of Fourier analysis in what is called anti-concentration arguments and other related stuff.

This section is based on (or more or less – a copy paste of) the corresponding chapter in the book

Probability and Random Processes by Grimmett and Stirzaker.

Let us first recall the definition of the moment generating function of a random variable X. This

is a function MX : R→ [0,∞) defined by MX(t) = E[etX ].

Moment generating functions are proved to be very useful in handling non-negative integral ran-

dom variables. They also have some nice properties such as: suppose MX(t) < ∞ on some open

interval around 0, then

• E[X] = M ′(0), and E[Xk] = M (k)(0);

• MX(t) =
∑∞

k=0
E[Xk]
k! tk;

• If X,Y are independent random variables then MX+Y (t) = MX(t)MY (t).

The main disadvantage of moment generating functions is that the integrals that define them are not

always finite. Therefore, it makes sense to switch to another class of functions which are potentially

at least equally useful and finiteness is guaranteed.

Definition 12.1. The characteristic function of X is the function φX : R→ C defined by

φX(t) = E[eitX ].

Characteristic functions are related to the Fourier transform since φX(t) =
∫
eitxf(x)dx. Note

that this integral is well defined by considering it as

φX(t) = E[cos(tX)] + iE[sin(tX)].

Furthermore, φX is better behaved than MX .
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Theorem 12.2. The characteristic function φ satisfies:

1. φ(0) = 1, |φ(t)| ≤ 1 for all t.

2. φ is uniformly continuous on R.

3. φ is non-negative definite. That is, ∑
j,k

φ(tj − tk)zj z̄k ≥ 0

for all real numbers t1, . . . , tn and complex numbers z1, . . . , zn.

Proof. We leave 1. and 2. as an exercise and only prove 3. Note that

∑
j,k

φ(tj − tk)zj z̄k =
∑
j,k

∫
(zje

itjx)(z̄ke
−itkx)f(x)dx = E

|∑
j

zje
itjX |2

 ≥ 0.

Actually, Theorem 12.2 characterizes characteristic functions in the sense that φ is characteristic

function if and only if it satisfies 1− 3 in the theorem. This result is called Bochner’s theorem and

we are not going to prove it in these notes.

Now we wish to establish some properties of characteristic functions. First, we show that from

a knowledge on φX we can find the distribution of X. We won’t write such a statement in full

generality but rather start with the following easier statement whose proof is straightforward from

Taylor’s theorem for functions of complex variables:

Theorem 12.3. 1. If φ
(k)
X (0) exists then E|Xk| < ∞ whenever k is even, and E|Xk−1| < ∞

whenever k is odd.

2. If E|Xk| <∞ then

φX(t) =

k∑
j=0

E[Xj ]

j!
(it)j + o(tk),

and so φ
(k)
X (0) = ikE[Xk].

Another important property of characteristic functions is that they enable us to handle sums of

independent random variables:

Theorem 12.4. If X and Y are independent then φX+Y (t) = φX(t)φY (t).

Proof. Indeed, we have

φX+Y (t) = E[eit(X+Y )] = E[eitX ]E[eitY ],

where the last equality holds by the independence of X and Y .

Theorem 12.5. If a, b ∈ R and Y = aX + b then φY (t) = eitbφX(at).

89



Proof. Indeed,

φaX+b(t) = E[eitaX+itb] = eitbE[eitaX ] = eitbφX(at),

as desired.

In applications that I want to consider in later sections, we might work with random variables

which are not independent. For this we need the following definition:

Definition 12.6. The joint characteristic function of X and Y is the function φX,Y : R2 → C
defined by

φX,Y (s, t) = φsX+tY (1) = E[eisX+itY ].

The proof of the following theorem is left as an exercise:

Theorem 12.7. Random variables X,Y are independent if and only if

φX,Y (s, t) = φX(s)φY (t), for all s, t.

We saw in Theorem 12.3 that to find moments of X one can differentiate φX(t) at t = 0. A similar

calculation gives the ‘joint’ moments E[XjY k].

12.1 Examples of characteristic functions

1 Constant distribution. Suppose that X = µ with probability 1. Then

φX(t) = eitµ.

2 Bernoulli distribution. Suppose that X is Bernoulli with parameter p. Then

φX(t) = eit0(1− p) + eitp = 1− p+ peit.

3 Binomial distribution. If X ∼ Bin(n, p), then X =
∑
Xi where the Xi’s are iid Bernoulli with

parameter p random variables. Therefore,

φX(t) =
∏

φXi(t) = (1− p+ peit)n.

4 Exponential distribution. If the density function of X is f(x) = λe−λx for x ≥ 0 (and 0

otherwise) then

φX(t) =

∫ ∞
0

eitxλe−λxdx =
λ

λ− it
,

and the calculations for the last equality are being omitted.

5 Normal distribution. Suppose X ∼ N(0, 1). Then

φX(t) =
1√
2π

∫ ∞
−∞

eitx−x
2/2dx = e−t

2/2,

where again, the calculations are being omitted. Note that by the properties of φ that we’ve learnt,

we obtain that for Y ∼ N(µ, σ2) we have

φY (t) = φσX+µ(t) = eitµ−σ
2t2/2.
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12.2 Inversion and continuity theorems

Here we will see two main reasons for why characteristic functions are useful. The first is that

characteristic function uniquely determines the distribution. In fact, there actually exists a formula

to recover the distribution from the characteristic function. Let us state a special case:

Theorem 12.8. If X is continuous with density function f and characteristic function φX then

f(x) =
1

2π

∫ ∞
−∞

e−itxφX(t)dt

at every point x at which f is differentiable.

Proof. Note that this is just the Fourier inversion formula as discussed (for the discrete case) few

sections ago.

The general case is the following:

Theorem 12.9. Let X have a distribution function F and characteristic function φX . Define

F̄ : R→ [0, 1] by

F̄ (x) =
1

2

{
F (x) + lim

y↑x
F (y)

}
.

Then

F̄ (b)− F̄ (a) = lim
N→∞

∫ N

−N

e−iat − e−ibt

2πit
φX(t)dt.

We won’t prove this theorem, but as a corollary (left as an exercise) we obtain

Corollary 12.10. Random variables X,Y have the same characteristic function if and only if they

have the same distribution.

Exactly similar results hold for jointly distributed random variables. For example, if X and Y

have joint density function f and joint characteristic function φ then whenever f is differentiable at

(x, y), we have

f(x, y) =
1

4π2

∫ ∫
R2

e−isx−ityφ(s, t)dsdt.

The second thing we want to discuss in this section is the following. Suppose we are now dealing

with a sequence of random variables X1, X2, . . .. We state a theorem which roughly speaking says

that if the distribution functions of the sequence, F1, F2, . . . converge to some limit F , then the

characteristic functions approach to the characteristic function of F .

Definition 12.11. We say that F1, F2, . . . of distribution functions converges to the distribution

function F and write Fn → F , if F (x) = limn→∞ Fn(x) at each point x where F is continuous.

Theorem 12.12 (Continuity theorem.). Suppose F1, F2, . . . is a sequence of distribution functions

with corresponding characteristic functions φ1, φ2, . . ..

(a) If Fn → F for some distribution function F with characteristic function φ, then φn(t) → φ(t)

for all t.

(b) Conversely, if φ(t) = limn→∞ φn(t) exists and is continuous at t = 0, then φ is the charactersitic

function of some distribution function F , and Fn → F .
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12.3 Few limit theorems

In this section we prove few limit theorems. The first is the ‘law of large numbers’ which asserts

that if we perform many independent trials, then the average outcome converges to the expectation.

Before stating it formally we need the following definition:

Definition 12.13. If X,X1, X2, . . . is a sequence of random variables with distribution functions

F, F1, F2, . . ., we say that Xn converges in distribution to X, written Xn →D X, if Fn → F as

n→∞.

Theorem 12.14 (Law of large numbers). Let X1, . . . , Xn be a sequence of iid random variables with

finite mean µ. Their partial sums Sn =
∑n

i=1Xi satisfy

1

n
Sn →D µ.

Proof. The theorem asserts that as n→∞ we have

Pr[n−1Sn ≤ x]→

{
0 x < µ

1 x > µ

The approach is to show that the characteristic function of n−1Sn approaches the characteristic

function of the constant random variable µ. Let φ be the common characteristic function of the

Xi’s, and let φn be the characteristic function of n−1Sn. Then, by the properties of characteristic

functions that we discussed before, we have

φn(t) = φX(t/n)n.

The behavior of φX(t/n) is given by Theorem 12.3

φX(t) = 1 + itµ+ o(t).

Therefore, we obtain

φn(t) = (1 + itµ+ o(t))n → eitµ

where the limit is the characteristic function of µ. This completes the proof.

What we’ve just shown is that for large enough n we have Sn ≈ nµ. Can we say something about

|Sn − nµ|? apparently, if the Xi’s have finite variance then

• Sn − nµ is of order
√
n.

• The distribution of Sn−nµ√
n

approaches to the normal distribution.

Theorem 12.15 (Central Limit Theorem (CLT)). Let X1, X2, . . . be a sequence of iid random

variables with finite mean µ and finite non-zero variance σ2, and let Sn =
∑n

i=1Xi. Then,

Sn − nµ√
nσ2

→D N(0, 1).
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Proof. First, let us write Yi = Xi−µ
σ , and let φY be the characteristic function of the Yi’s. Observe

that E[Y ] = 0 and E[Y 2] = 1. Therefore, by Theorem 12.3 we have

φY (t) = 1− 1

2
t2 + o(t2).

Let ψn(t) be the characteristic function of

Un =
Sn − nµ√

nσ2
=

1√
n

∑
Yi,

and observe by Theorems 12.4 and 12.5 that

ψn(t) =
(
φY (t/

√
n
)n

=

(
1− 1

2n
t2 + o(t2/n)

)n
→ e−

t2

2 .

The right hand side is the characteristic function of N(0, 1) so we are done.

The CLT asserts that the distribution function of Sn (normalized...) converges to the distribution

function of N(0, 1). A natural thing to ask is whether a corresponding result holds for the density

functions and mass functions? We will see that mainly it is, but we need some assumptions about

the ‘smoothness’ of the functions, as it is not necessarily true that Fn → F implies F ′n → F ′. A

result of this kind is called ‘local central theorem’ since it deals with local behavior instead of the

cumulative behavior. To simplify the notation we assume that the Xi’s have zero mean and variance

1.

Theorem 12.16 (Local CLT). Let X1, X2, . . . be iid random variables with 0 mean and variance 1.

Suppose that their common characteristic function φ satisfies∫ ∞
−∞
|φ(t)|rdt <∞

for some integer r ≥ 1. Then, the density function gn of Un =
∑
Xi/
√
n exists for n ≥ r and

gn(x)→ 1√
2π
e−

1
2
x2 as n→∞ uniformly in x.

Proof. First observe that |φ|r being integrable implies that |φ|n is integrable for all n ≥ r, as |φ| ≤ 1.

Therefore, gn exists and is given by the inversion formula

gn(x) =
1

2π

∫ ∞
−∞

e−itxψn(t)dt,

where ψn(t) = (φ(t/
√
n))

n
is the characteristic function of Un. The Fourier inversion theorem is

valid for the normal distribution as well, and therefore∣∣∣gn(x)− e−
1
2
x2
∣∣∣ ≤ 1

2π

∣∣∣∣∫ ∞
−∞

e−itx
[
φ(t/
√
n)n − e−

1
2
t2
]
dt

∣∣∣∣ ≤ In,
where

In =
1

2π

∫ ∞
−∞

∣∣∣φ(t/
√
n)n − e−

1
2
t2
∣∣∣ dt.
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It thus suffices to show that In → 0 as n goes to infinity. From the assumptions on the Xi’s and

Theorem 12.3 we have

φ(t/
√
n) = 1− 1

2n
t2 + o(t2/n), as t→ 0.

Therefore, there exists some δ > 0 such that for all |t| ≤ δ we have

|φ(t)| ≤ e−
1
4
t2 .

Moreover, for any constant a > 0 we have φ(t/
√
n)n → e−

1
2
t2 uniformly for |t| ≤ a, as n tends to

infinity. These two observations enable us to upper bound by o(1) the above integral in the interval

[−δ
√
n, δ
√
n].

To complete the proof, we need to show that

1

2π

∫
|t|>δ

√
n

∣∣∣φ(t/
√
n)n − e−

1
2
t2
∣∣∣ dt = o(1).

To this end, observe that since gn exists for n ≥ r, we can (relatively) easily conclude that

|φ(t)r| < 1 for all t 6= 0, and |φ(t)|r → 0 as t → ±∞. Therefore, |φ(t)| < 1 for t 6= 0 and |φ(t)| → 0

as t→ ±∞. In particular, we conclude that

η := sup{|φ(t)| : |t| ≥ δ}

satisfies η < 1. Now, for n ≥ r we have∫
|t|>δ

√
n
|φ(t/

√
n)n − e−

1
2
t2 |dt ≤ ηn−r

∫
|t|>δ

√
n
|φ(t/

√
n)|rdt+ 2

∫
t>δ
√
n
e−

1
2
t2dt,

which clearly approaches 0 as n→∞. This completes the proof.

13 Some simple examples using Fourier analysis

In this section we give some simple and less simple examples using Fourier analysis.

13.1 Random sums over a finite field

It is well known (and very easy to prove in many ways) that if X1, . . . , Xn (for any n ≥ 1) are iid

where Pr[X1 = 0] = Pr[X1 = 1] = 1/2, then for Sn =
∑
Xi, working over Z2, we have

Pr[Sn = 1] = Pr[Sn = 0] =
1

2
.

In this section we discuss generalizations of the above equality over finite fields Zq where q > 2.

For convenience, it will be easier for us to consider the case where the variables output the numbers

±1. Note that it does’nt make sense to consider such a scenario over Z2, but it is also very easy to

convert such a result for q > 2 into the 0/1 setting (WHY?). In what follows we use Fourier analysis

to settle the general case.

Suppose that we are working over Zq for some prime q, and for every a ∈ Zq, let δa(x) be the

indicator function for the event x = a. That is,

δa(x) =

{
1 x = a

0 otherwise
.
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Recall that δ̂0(χ) = 1
q for all χ ∈ Ẑq (this follows immediately from the definition of the Fourier

coefficient), and therefore,

δ0(x) =
1

q

∑
χ

χ(x) =
1

q

∑
r∈Zq

ωrx,

where ω is any qth root of unity (for example, let us set from now on ω = e−2πi/q). Suppose that

X1, . . . , Xn are iid random variables, where Pr[X1 = 1] = Pr[X1 = −1] = 1/2, and we are interested

in

Sn =

n∑
i=1

Xi.

A natural question to consider is the following:

Question 13.1. For any fixed s, what is the probability that Sn = s mod q?

We will answer this question using Fourier analysis. Later on we will extend our argument to

vector valued random variables.

Theorem 13.2. Suppose that n = ω(q2 log q), then for any s ∈ Zq we have

Pr[Sn = s mod q] = (1 + o(1))/q.

Proof. For simplicity, let us first take care of the case s = 0. Note that

Pr[Sn = 0] = E
[
δ0

(∑
Xi

)]
= E

∑
r∈Zq

δ̂0(r)ωr
∑
Xi

 =
1

q
+

1

q
E

∑
r 6=0

ωr
∑
Xi

 .
It is thus suffices to show that ∣∣∣∣∣∣E

∑
r 6=0

ωr
∑
Xi

∣∣∣∣∣∣ = o(1).

Observe that by a change of summations and independence we have

E

∑
r 6=0

ωr
∑
Xi

 =
∑
r 6=0

∏
i

E
[
ωrXi

]
=
∑
r 6=0

∏
i

(
e2πir/q + e−2πir/q

2

)
,

and that the right hand side (in absolute value) is at most∑
r 6=0

| cos(2πr/q)|n =
∑
r 6=0

| cos(πr/q)|n.

Note that in the last equality we used the fact that 2 is invertible mod q.

Now, observe that

| cos(πx)| ≤ e−2‖x‖2 ,

where ‖x‖ is the distance of x from the nearest integer, and therefore the above is at most∑
r 6=0

e−2n‖r/q‖2 ≤ qe−2n/q2 .

Therefore, by taking n ≥ mq2 log q we obtain an upper bound of the form
(

1
q

)2m−1
which is clearly

o(1) as m goes to infinity.

95



Remark 13.3. Note that the same result holds if we look at Sn =
∑
aiXi, where all the ai’s are

non zero mod q. Moreover, for the case s 6= 0, the same proof basically holds by replacing the first

line in the proof by

Pr[Sn = q] = E[δ0(
∑

Xi − s)].

These two things are left as easy exercises.

Exercise 13.4. Try to improve the bound on n by a more careful analysis of the last inequality in

the above proof. Note that we assumed that as long as r 6= 0 we have ‖r/q‖2 ≥ 1/q2 which is clearly

far from the truth...

13.2 Random sums of vectors over a finite field

Let us now try to obtain a similar result for vectors. That is, suppose now that X1, . . . , Xn are

iid random variable, each of which is uniformly chosen in {±}d. Consider

Sn =
n∑
i=1

Xi

and we are interested in the question:

Question 13.5. Given v ∈ Zdq , what is the probability that Sn = v?

We will show that if n is large enough comparing to d and q, then the answer is of the form

(1 + o(1)) 1
qd

. That is, Sn is roughly uniformly distributed.

Theorem 13.6. Let q ≥ 3 be a prime, d ∈ N, and let n = ω(q2 log(dq)). Then for any v ∈ Zdq we

have

Pr[Sn = v] = (1 + o(1))/qd.

Proof. Similarly to the previous proof, observe that for every x ∈ Zdq we have

δ0(x) =
1

qd

∑
r∈Zdq

ω−
∑
rixi ,

where ω is a qth root of unity (from now on assume ω = e2πi/q).

Again, for simplicity we assume that v = 0 (hopefully you are already convinced that it doesn’t

matter) and write

Pr[Sn = 0] = E[δ0(
∑

Xi)] =
1

qd
E

∑
r∈Zdq

n∏
j=1

ω−
∑d
i=1 riXji

 .
This equals

1

qd
+

1

qd

∑
r 6=0

n∏
j=1

d∏
i=1

E[ω−riXji ] =
1

qd
+

1

qd

∑
r 6=0

d∏
i=1

cos(2πri/q)
n.

Therefore, in order to complete the proof, it is enough to show that

|
∑
r 6=0

d∏
i=1

cos(2πri/q)
n| ≤

∑
r 6=0

d∏
i=1

| cos(2πri/q)|n =
∑
r 6=0

d∏
i=1

| cos(πri/q)|n = o(1).
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Let us write Vk for the set of all vectors r ∈ Zdq with support of size exactly k. Clearly,

|Vk| =
(
d

k

)
(q − 1)k ≤ (dq)k.

We also use (again) the following easy inequality

cos(πx) ≤ e−2‖x‖2 ,

where ‖x‖ is the distance of x from the nearest integer.

Now, by rearranging the above sum we obtain

∑
r 6=0

d∏
i=1

| cos(πri/q)|n ≤
d∑

k=1

|Vk|e−2kn/q2 ≤
d∑

k=1

(dq)ke−2kn/q2 .

Therefore, as long as we take n = ω(q2 log(dq)), the above sum is o(1). This completes the proof.

Exercise 13.7. Try to improve the bound on n by a more careful analysis of the last display (that

is, don’t use only the support but also the structure of the vectors r).

13.3 Random sums over the integers

In this section we keep on improving our technique until we could ‘see’ how to prove stronger

theorems. Our aim is to prove the following:

Theorem 13.8. Let X1, . . . , Xn be iid random variables with Pr[X1 = 1] = Pr[X1 = −1] = 1
2 . Then,

for Sn = 1X1 + 2X2 + . . .+ nXn we have

Pr[Sn = 0] ≤ Cn−3/2.

Proof. We use the identity (for k ∈ Z)

δ0(k) =

∫ 1/2

−1/2
e2πikxdx,

to obtain (skipping some easy steps)

Pr[Sn = 0] = E[δ0(Sn)] =

∫ 1/2

−1/2

n∏
k=1

cos(2πxk)dx.

Now, in order to estimate the above integral, observe that for small x, by the Taylor expansion

of cosx we have

cos(x) ≈ e−x2/2.

Moreover, it is quite easy to show that the integral∫
ε/n<|x|≤1/2

n∏
k=1

cos(2πxk)dx
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is exponentially (in n) small, and therefore it is enough to estimate∫ ε/n

−ε/n

n∏
k=1

cos(2πxk)dx

. The advantage is that now we can use the above estimate on cos(2πxk) for all k ≤ n and obtain∫ ε/n

−ε/n

n∏
k=1

cos(2πxk)dx ≤
∫ ε/n

−ε/n
e−Cx

2
∑n
k=1 k

2
dx ≤

∫ ε/n

−ε/n
e−C

′x2n3
dx.

Finally, by a change of variable t = n3/2x, using the fact that
∫∞
−∞ e

−t2dt = O(1), we obtain the

desired bound of the form O(n−3/2). This completes the proof.

14 Higher degree Erdős-Littlewood-Offord type inequalities

Recall that the Erdős-Littlewood-Offord problem deals with linear functions of the form

Sn =
n∑
i=1

aiXi,

where the Xi are iid Bernoulli random variables. In particular, we are interested at

ρ(ā) = sup
m

Pr[Sn = m].

In this section we discuss generalizations of this problem to non-linear functions.

14.1 A quadratic Erdős-Littlewood-Offord inequality

Define

Q :=
∑

1≤i,j≤n
aijzizj ,

where the aij ’s are fixed and the zis are iid Bernoulli random variables. We wish to prove the

following theorem (due to Costello, Tau and Vu):

Theorem 14.1. Let Q be as above, let U1 ∪ U2 = [n] be any nontrivial partition, and let S be any

non-empty subset of U1. For each i ∈ S, let di be the number of indices j ∈ U2 such that |aij | ≥ 1.

Suppose that di ≥ 1 for each i ∈ S. Then for any interval I of length 1 we have

Pr[Q ∈ I] = O

(
|S|−1/2 + |S|−1

∑
i∈S

d
−1/2
i

)1/4

.

It is very unlikely that the above bound is best possible, and in fact, in later sections we will

probably prove some better bounds. The goal is to sketch the main tricks to be used later in similar

problems.
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Proof. A natural thing to do is to rewrite

Q :=

n∑
i=1

Qizi,

where Qi :=
∑n

j=1 aijzj for all i. Writing in this form, one would expect to obtain the proof by two

applications of the Erdős-Littlewood-Offord inequality. Unfortunately, the Qi’s are not independent,

and therefore this plan fails. To overcome this problem, we will use the following decoupling lemma.

Lemma 14.2 (Decoupling lemma). Let X,Y be independent random variables and E := E(X,Y ) be

an event depending on X and Y . Then,

Pr[E ] ≤
(
Pr[E(X,Y ) ∧ E(X ′, Y ) ∧ E(X,Y ′) ∧ E(X ′, Y ′)]

)1/4
,

where X ′ and Y ′ are independent copies of X and Y , respectively.

Proof. We will only handle the case where both X and Y take only finite number of values, say,

x1, . . . , xn and y1, . . . , ym, respectively (the general case is being left as an exercise). Clearly, we

have

Pr[E(X,Y )] =

n∑
i=1

Pr[E(xi, Y )] Pr[X = xi]

and

Pr[E(X,Y ) ∧ E(X,Y ′)] =
n∑
i=1

Pr[E(xi, Y )]2 Pr[X = xi].

Therefore, by Cauchy-Schwarz we obtain

Pr[E ] ≤ Pr[E(X,Y ) ∧ E(X,Y ′)]1/2.

Similarly, we have

Pr[E(X,Y ) ∧ E(X,Y ′)] =

m∑
j=1

m∑
s=1

Pr[E(X, yj) ∧ E(X, ys)] Pr[Y = yj ] Pr[Y = ys],

and

Pr[E(X,Y )∧E(X ′, Y )∧E(X,Y ′)∧E(X ′, Y ′)] =
∑
j

∑
s

Pr[E(X, yj)∧E(X, ys)]
2 Pr[Y = yj ] Pr[Y = ys].

Therefore, by Cauchy-Schwarz we have

Pr[E(X,Y ) ∧ E(X,Y ′)] ≤ Pr[E(X,Y ) ∧ E(X,Y ′) ∧ E(X ′, Y ) ∧ E(X ′, Y ′)]1/2.

From here, to complete the proof is a trivial exercise.

Let Z ∈ {0, 1}n be the random variable (z1, . . . , zn), and consider Q(Z). Fix a non-trivial partition

U1 ∪ U2 = [n] and a non-empty subset S ⊆ U1. Let I be an interval of length 1. We need to show

that

Pr[Q(Z) ∈ I]4 = O

(
|S|−1/2 + |S|−1

∑
i∈S

d
−1/2
i

)
.
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(Recall that di is the number of indices j ∈ U2 for which |aij | ≥ 1).

Define X := (zi)i∈U1 and Y := (zi)i∈U2 , and write Q(Z) = Q(X,Y ). Let z′i be an independent

copy of zi and set X ′ = (z′i)i∈U1 and Y ′ = (zi)i∈U2 . Applying the decoupling lemma, it is enough to

show

Pr[Q(X,Y ), Q(X ′, Y ), Q(X,Y ′), Q(X ′, Y ′) ∈ I] = O

(
|S|−1/2 + |S|−1

∑
i∈S

d
−1/2
i

)
.

Observe that R := Q(X,Y )−Q(X ′, Y )−Q(X,Y ′) +Q(X ′, Y ′) can be written as

R =
∑
i∈U1

∑
j∈U2

aij(zi − z′i)(zj − z′j) =
∑
i∈U1

Riwi,

where for i ∈ [n] we have wi = zi − z′i, and Ri is the random variable

Ri :=
∑
j∈U2

aijwj .

Note that now the random variables (Ri)i∈U1 are independent of (wi)i∈U1 .

Consider the events Q(X,Y ) ∈ I,Q(X ′, Y ) ∈ I,Q(X,Y ′) ∈ I,Q(X ′, Y ′) ∈ I. If all these hold,

then R lies in the interval J := 2I − 2I of length 4. Therefore, it is enough to show that

Pr[R ∈ J ] = O

(
|S|−1/2 + |S|−1

∑
i∈S

d
−1/2
i

)
.

Recall that for each i ∈ U1, di is the number of coefficients j ∈ U2 for which |aij | ≥ 1. Therefore,

for each i ∈ S ⊆ U1 we can apply Erdős-Littlewood-Offord to Ri to obtain

Pr[|Ri| ≥ 1 for all i ∈ S] ≥ 1−O(
∑
i∈S

d
−1/2
i ).

This bound is a bit wasteful, so we will improve it by using higher moments. For each i ∈ S, let Ii
be the indicator random variable for the event |Ri| ≥ 1. Then,

Pr[|Ri| ≥ 1] = E[Ii] = 1−O(d
−1/2
i ).

By linearity of expectation we obtain

E[
∑
i∈S

Ii] = |S| −O(
∑
i∈S

d
−1/2
i ).

Since di ≥ 1, we have at least one j ∈ U2 for which |aij | ≥ 1 which implies that E[Ii] ≥ 1/2. Thus,

we also have

E[
∑
i∈S

Ii] ≥ |S|/2.

Now let us compute the variance of
∑

i∈S Ii:

Var(
∑
i∈S

Ii) = E[(
∑
i∈S

Ii)
2]− E[

∑
i∈S

Ii]
2 ≤ |S|2 −

(
|S| −O

(∑
i∈S

d
−1/2
i

))2

= O(|S|
∑
i∈S

d
−1/2
i ).
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By Chebyshev’s inequality we obtain that

Pr[
∑
i∈S

Ii ≤ |S|/4] = O(
1

|S|
∑
i∈S

d
−1/2
i ).

Therefore, with probability 1−O( 1
|S|
∑

i∈S d
−1/2
i ) we have |Ri| ≥ 1 for at least |S|/4 values of i ∈ S.

Condition on the Ri’s for all i ∈ U1, and assume that |Ri| ≥ 1 for at least |S|/4 values i ∈ S (call

this event E1). By the Erdős-Littlewood-Offord inequality we obtain

Pr[R ∈ J | the Ri’s are fixed] = O(|S|−1/2).

Therefore,

Pr[R ∈ J ] = Pr[¬E1] + Pr[E1 ∧R ∈ J ] ≤ O(
1

|S|
∑
i∈S

d
−1/2
i ) +O(|S|−1/2)

as desired.

15 Beating very small probabilities

In this section we illustrate how to beat very small probabilities in certain scenarios. First, we

will consider a problem that was recently introduced by Deneanu and Vu regarding the probability

of an n×n, ±1 matrix to be normal (will be defined bellow). Later, we will consider the problem of

giving a non-trivial upper bound on the probability for a random n× n, ±1 matrix to be Hadamard

(will be defined in the relevant subsection).

15.1 Probability for being a normal matrix

Consider an n × n matrix M with entries from {±1}. We say that M is normal if and only if

MMT = MTM . Clearly, every symmetric matrix is normal, and therefore, the number of n×n, ±1

normal matrices, denoted by N (n), is at least 2(n+1
2 ). It is not too hard to construct normal matrices

which are not symmetric (exercise!), and a natural question to ask is whether one can find ‘many’

non-symmetric, normal matrices? In a recent paper, Deneanu and Vu introduced this problem and

conjectured that the answer is ‘no’:

Conjecture 15.1 (Deneanu-Vu).

N (n) = 2(1+o(1))(n+1
2 ).

Translating the above into the language of probability, let νn := |N (n)|/2n2
be the probability

that a random n× n, ±1 matrix Mn is normal. The above conjecture is equivalent to

Conjecture 15.2 (Deneanu-Vu).

νn = 2−
1
2
n2+o(n2).

Note that the bound we are trying to prove is much smaller than exponential and therefore all

standard large deviation inequalities (at least to the best of my knowledge) fail in tackling this

problem. Deneanu and Vu have managed to obtain such bounds by using some rank arguments in a

clever way and they obtained the first non-trivial upper bound on νn.
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Theorem 15.3.

νn ≤ 2−(0.302+o(1))n2
.

The proof of Deneanu and Vu is not very long, but is quite sophisticated and technical so we

won’t give it in full (we will briefly sketch their ideas throughout the section). Instead, we will

prove a weaker bound (but yet of the form 2−αn
2

for some α > 0) using a recent (and simple)

anticoncentration inequality (which at some point I’ll also add to these notes). The advantage is

that this proof is based on a quite general principle and can be applied for other counting problems.

The disadvantage is that the obtained bound is weaker than the one of Deneanu and Vu. But, at the

end of the section we will describe how to combine both approaches to obtain a slight improvement

on their bound (so the final bound won’t have such a short and elegant bounf...). Before stating

the theorem that we wish to prove, we need some notation. Recall that M is normal if and only if

MMT −MTM = 0. For technical reasons in the proof (which is based on an inductive construction)

we need a bound on the number of n × n, ±1 matrices for which MMT −MTM = N , where N is

any arbitrary (but fixed) matrix. This leads us to the following definition:

Definition 15.4. An n× n matrix M is said to be N -normal if and only if

MMT −MTM = N.

Note that if we take N = 0 then N -normal is just the standard definition of normal.

For an n × n matrix, we let N (N) be the set of all n × n, ±1 matrices which are N -normal.

Recall that in the special case where N = 0 we have N (n) = N (N) is the set of all n×n, ±1 normal

matrices.

Observe that every matrix M is N -normal with respect to the matrix N := MMT − MTM .

The main goal is to show that no family N (N) is ‘too large’. Moreover, note that N is always a

symmetric matrix.

Deneanu and Vu actually proved the following:

Theorem 15.5 (Deneanu-Vu). Let N be any (but fixed) n×n matrix. Let M be a randomly chosen

n× n, ±1 matrix. Then

Pr[M is N -normal] ≤ 2−αn
2+o(n2),

where α = 0.302.

We give a simple proof for Theorem 15.5 with α =??. We then sketch the ideas of Deneanu

and Vu to obtain the better bound, and discuss how both methods can be combined to obtain slight

improvement (but still far from the conjectured α = 0.5 unfortunately...). Before proving the theorem

we need the following preliminary lemmas.

The basic tool we are going to use is the following simple observation by Odlyzko:

Lemma 15.6. For any d-dimensional subspace W ⊆ Rn we have

|W ∩ {±1}n| ≤ 2d.

Sketch. Note that a d-dimensional space depends on d coordinates. Therefore, it contains at most

2d ±1 vectors.
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The following lemma is a trivial exercise in linear algebra NOT SURE YET THAT REALLY

NEED IT:

Lemma 15.7. Suppose that M is a k × n matrix of rank r, u is any vector in Rk, and consider

Mx = u.

Then, there are at most 2n−r solution vectors x ∈ {±1}n.

The next lemma is a simple corollary from Odlyzko’s observation (Lemma 15.6).

Lemma 15.8. Let M be a randomly chosen m × m matrix with entries taken from {±1}. Let

0 < γ < 1 be any fixed number. Then,

Pr[rank(M) ≤ γm] ≤ 2−(1−γ)2m2+O(m).

Proof. Expose M in m steps, one row at a time. Let 1 ≤ r ≤ γm be any integer, and let Er be the

event that rank(M) = r. By a loss of an
(
m
r

)
factor, we may assume that its first r rows are of rank

exactly r and the rest lie in their span. Note that by Lemma 15.6 we have that there are at most 2r

vectors from {±1}m at the span of the first r rows. Therefore, for every r < k ≤ m, the probability

that the kth row lies in this span is at most 2r−m, which gives us

Pr[Er] ≤
(
m

r

)
2−(m−r)2 .

All in all, the probability that M has rank at most γm is upper bounded by

γm∑
r=1

Pr[Er] ≤ 2−(1−γ)2m2+O(m),

as desired. This completes the proof.

Next, we wish to show that ‘most’ matrices satisfy some additional rank-type conditions. This

will enable us to use our new anti-concentration inequality. Specifically, let us define:

Definition 15.9. Let r and ` be two integers. An m × n matrix M is said to admit an (r, `)-rank

partition if and only if one can partition the columns of M into ` disjoint subsets, each of which

corresponds to a submatrix of rank at least r.

In the following lemma we upper bound the probability for a random matrix not to admit an

(r, `)-rank-partition.

Lemma 15.10. Suppose that M is a random m×n′ matrix with all entries in {±1}, and let 0 < γ < 1

be any fixed constant.

Pr[M does not admit a (γm, `)-rank partition] ≤ 2−(1−γ)2mn′+(1−γ)2m2`+O(n′).

Proof. NOTE SUPER FORMAL – NEED SOME ASSUMTIONS ABOUT n′ AS WELL. WAS TO

GENEROUS IN WRITING O(m) WHENEVER NEEDED. Before exposing M , let us partition
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its columns into t := n′/m disjoint subsets of size exactly m each, and let A1, . . . , At denote the

corresponding m×m sub matrices. By Lemma 15.8, for each 1 ≤ i ≤ t we have

Pr[rank(Ai) ≤ γm] ≤ 2−(1−γ)2m2+O(m).

Therefore, the probability to have at least t− ` indices 1 ≤ i ≤ t with rank(Ai) ≤ γm is at most

t∑
k=t−`

(
t

k

)(
2−(1−γ)2m2+O(m)

)k
≤ 2t2−(1−γ)2mn′+(1−γ)2m2`+O(m)

= 2−(1−γ)2mn′+(1−γ)2m2`+O(m).

This completes the proof.

Finally, the following lemma is our anti-concentration inequality which is the main tool we are

going to use.

Lemma 15.11. Suppose that M is an m × n′ matrix which admits a (γ, `)-rank partition. Let

x ∈ {±1}n′ be a vector chosen uniformly at random. Then, for all u ∈ Rm we have

Pr[Mx = u] ≤
(

2−`
(
`

`/2

))r
.

In particular, if ` is large enough, then the right hand side is approximately
(√

2
π`

)r
≤ `−r/2.

Now we are ready to prove Theorem 15.5.

NOTE THAT THE FIRST PAGE AND A HALF ARE NOT PART OF THE PROOF BUT

MORE A DISCUSSION AND NOTATION. MAYBE WE CAN TAKE IT OUT OF THE PROOF

AS A PRELIMINARY DISCUSSION?

Proof of Theorem 15.5. Given any matrix X we let ri(X) and ci(X) be its ith row and column,

respectively. With this notation, note that for a given matrix M , being N -normal is equivalent to:

ri(M)rTj (M)− c(M)Ti c(M)j = Nij , for all 1 ≤ i, j ≤ n. (6)

Suppose now that M is N -normal and for all 1 ≤ k ≤ n let

M =

[
Ak Bk
Ck Dk

]
,

where Ak is a k×k matrix. Observe that with this notation in hands, by distinguishing between few

cases, (6) is equivalent to saying that M satisfies all the following:

(i) For all 1 ≤ i, j ≤ k we have

r(Ak)ir(Ak)
T
j + r(Bk)ir(Bk)

T
j − c(Ak)Ti c(Ak)j − c(Ck)Ti c(Ck)j = Nij .

(ii) For all 1 ≤ i ≤ k and 1 ≤ j ≤ n− k we have

r(Ak)ir(Ck)
T
j + r(Bk)ir(Dk)

T
j − c(Ak)Ti c(Bk)j − c(Ck)Ti c(Dk)j = Ni,k+j .
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(iii) For all 1 ≤ i, j ≤ n− k we have

r(Ck)ir(Ck)
T
j + r(Dk)ir(Dk)

T
j − c(Bk)Ti c(Bk)j − c(Dk)

T
i c(Dk)j = Nk+i,k+j .

Now, suppose we want to construct an N -normal matrix in n− 1 steps. We will do it as follows:

For every 1 ≤ k ≤ n − 1, in Step k we completely reveal all the entries in the kth row and column

along with the diagonal element dk+1 := Mk+1,k+1. Let Mk be the structure obtained after k + 1

steps, then we have

Mk =

 Ak Bk

Ck
dk+1 ∗
∗ ∗

 ,
where the ∗’s are the parts of Dk which remain unknowns at this step. Observe that Ak, the first

column of Bk (together with the diagonal element dk), and the first row of Ck, form the matrix Ak+1

as defined above. In particular, the matrix Ak+1 is already determined after this step. Moreover,

both Bk+1 and Ck+1 are determined up to the last row and last column, respectively. In step k + 1

we reveal rk+1(Dk+1) and ck+1(Dk+1) (we can forget about dk+2 for now). In order to make Mk+1

‘valid’ (that is something that can potentially being extended into an N -normal matrix by filling out

Dk+1 ), we need that for all 1 ≤ i ≤ k we have

rk+1(Ak+1)ri(Ak+1)T +rk+1(Bk+1)rTi (Bk+1)−ck+1(Ak+1)T ci(Ak+1)−ck+1(Ck+1)T ci(Ck+1) = Nk+1,i

Observe that only the second and the fourth summands involve unknowns, and therefore there

exists N ′k+1,i for which the above condition is equivalent to showing

rk+1(Bk+1)rTi (Bk+1)− ck+1(Ck+1)T ci(Ck+1) = N ′k+1,i, (7)

where N ′t,i is uniquely determined by the previously exposed entries.

Let N ′ := (N ′k+1,i)
k
i=1 (considered as a column vector) be the vector of all ‘restriction’ coming

from the above equality. Moreover, let Tk = [U V ] be a k × 2(n − k − 1) matrix, where U is the

matrix obtained from Bk by deleting its first column, and V is CTk minus its first column, and let

xk :=

[
rTk+1(Bk+1)

−ck+1(Ck+1)

]
. The above condition is the same as saying that

Tkxk = N ′. (8)

Another simple observation to make is the following: Suppose we have already exposed

Mk =

[
Ak Bk
Ck ∗

]
.

Let f(Mk) be the number of ±1 matrices Dk for which[
Ak Bk
Ck Dk

]
is N normal. By a similar reasoning as we obtained (7), one can easily show that Dk should be an

N ′-normal for some (n − k) × (n − k) matrix N ′ which is already determined by Mk. Therefore,

letting f(k) = supMk
f(Mk), for all 1 ≤ k ≤ n we have

|N (n)| ≤ f(k)|N (n− k)|. (9)
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In order to complete the proof, it is enough to prove that for some β, δ > 0 we have

f(βn) ≤ 2(2β−β2)n2−δn2
.

Indeed, assuming this, using the trivial bound |N (n− βn)| ≤ 2(1−β)2n2
, using (9) we obtain

|N (n)| ≤ 2(2β−β2)n2−δn2+(1−β)2n2
= 2(1−δ)n2

,

as desired.

Claim 15.12. There exist β, δ > 0 for which f(βn) ≤ 2(2β−β2)n2−γn2
.

Proof. Our plan is to expose Mβn in βn steps, where in each step 1 ≤ k ≤ βn we expose Mk. Then,

we want to show that either (8) has ‘not too many’ solutions, or Mk has some unlikely structure and

therefore there are ‘not too many’ options for such an Mk.

More formally, for all 1 ≤ k ≤ βm, we are interested in whether the matrix Tk (which is the

k× 2(n− k− 1) matrix define above) admits a (γk, `k)-rank-partition (recall Definition 15.9), where

`k = n′/2k, and n′ = 2(n − k − 1). If yes, then by Lemma 15.11 we obtain that the number of

solutions to Tkxk = N ′ is at most

22(n−k−1)`
−γk/2
k ≤ 22(n−k)− γk

2
log n

2k . (10)

Note that in the last inequality we used the fact that (n − k − 1)/k ≥ n/2k for all k ≤ βn. In

particular, we need β ≤ 1/2.

Suppose that for some (say) k ≥ βn/2 the matrix Tk does not admit such a partition. Then, by

Lemma 15.10 there are at most

2kn
′−(1−γ)2kn′+(1−γ)2k2`+O(n′) = 2kn

′−δ1kn′

such matrices, where δ1 > 0 is some constant depending on β and γ. This immediately implies that

the number of options for

Mβn =

[
Aβn Bβn
Cβn ∗

]
with the property that for some k ≥ βn/2 the matrix Tk does not admit a (γk, `k)-rank-partition is

at most

2(2β−β2)n2−δ2n2

for some δ2 > 0.

Next, suppose that for all k ≥ βn/2 we have that Tk admits a (γk, `k)-rank-partition. Then, by

(10) we have that the number of matrices Mβn satisfying this property is at most

2
(2β−β2)n2−

∑βn
k=βn/2

γk
2

log n
2k = 2(2β−β2)n2−δ3n2

for some δ3 > 0. All in all, the number of possible choices for Mβn is at most

2(2β−β2)n2−δ2n2
+ 2(2β−β2)n2−δ3n2 ≤ 2(2β−β2)n2−δn2

,

where δ = min{δ2, δ3} − o(1), as desired.
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This completes the proof of the theorem.

Now we wish to discuss the strategy from Deneanu and Vu and explain how to obtain a slight

improvement by combining their proof with our technique.

A key idea in their proof is to partition the set N (n) into equivalent classes of permuted matrices.

Before explaining the ideas and the motivation for doing so we start with the following definition:

Definition 15.13. For any σ ∈ Sn and for any n× n matrix M , define

Mσ = PσMP Tσ ,

where Pσ is the matrix representing σ. That is, Mσ is the matrix obtained from M by permuting the

row and columns according to σ.

Given the above definition, we can form equivalence classes as follows: for n× n matrices M and

M ′ define

M ↔M ′ ⇔ ∃σ ∈ Sn such that Mσ = M ′.

With this notation in hands, let us update the definition of being N -normal for the equivalence

classes.

Definition 15.14. Let N be a fixed n × n matrix. We say that an n × n matrix M is N -normal-

equivalent if and only if there exists σ ∈ Sn such that MMT −MTM = Cσ.

The following proposition is trivial.

Proposition 15.15. Let σ ∈ Sn, then M is N -normal-equivalent if and only if Mσ is N -normal-

equivalent.

Note that the above proposition shows that equivalence classes preserve the property of being

N -normal-equivalent. Moreover, as every equivalence class is of size at most n! = 2o(n
2), it is enough

to count the number of equivalence classes which are N -normal-equivalent for the same matrix N ,

while considering a carefully selected representative from each such class.

The key idea behind this approach is that given any matrix M , one can find a permutation σ such

that by considering M := Mσ, we have a ‘very good control on the ranks’ rank(Tk) for all 1 ≤ i ≤ n.

In particular, as our goal is to solve something of the form

Tkxk = N ′,

by Lemma 15.7 it seems helpful to have these ranks as large as possible (so the number of solutions

is small). Before stating writing what ‘very good control on the ranks’ means, we need to define the

following functions (for all k ≤ t):

Rk,t(i) :=


i if 0 < i ≤ k
k if k < i ≤ t

k + t− i if t < i ≤ 2n− k − t
2n− 2i if 2n− k − t < i ≤ n

Having defined Rk,t we are ready to state the following key lemma in their proof:
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Lemma 15.16 (Permutation Lemma). Let M be any (fixed) n×n matrix. Then, there exists k, t ∈ N
and σ ∈ Sn such that Mσ satisfies:

rank(Ti) = Rk,t(i) for all 1 ≤ i ≤ n.

From now on, the proof strategy is clear. Expose M (actually Mσ) like discussed above, where

at every step i we form the structure Mi. Using the Permutation lemma we know that at every step

we have some restrictions on the number of solutions to

Tixi = N ′,

and clearly they accumulate to an upper bound of the form 2n
2−αn2

for some α. It turns our that

the bound α = 0.25 is quite simple to obtain using this approach, and the main difficulty in their

paper is to get something better.

Before diving into more details, we need the following definition:

Definition 15.17. Let Nk,t(N) be the collection of all N -normal matrices M with ±1 entries which

satisfy the conclusion of the Permutation lemma with k, t.

Remark 15.18. As from now on N is fixed, we will simply write Nk,t instead of Nk,t(N).

In the following lemma they showed how the special form obtained by the Permutation lemma

gives tight control on Pr[M is N -normal-equivalent]. We will use D as the diagonal entries of M .

Lemma 15.19 (Recursion Lemma). For all i < j, let Xi:j be any specific outcome of the x`’s where

i ≤ ` ≤ j. Then, for any 1 ≤ k ≤ t ≤ n and 1 ≤ i ≤ n we have

sup
D,X1:i−1

Pr[M ∈Mk,t | D,X1:i−1] ≤

{
2−Rk,t(i−1) supD,X1:i

Pr[M ∈Mk,t | D,X1:i] if 2n− 2i > ranki(M)

2−(n−i)2+o(n2) if 2n− 2i ≤ ranki(M).

Proof. Without loss of generality we can assume that M itself satisfies the conclusion of the Permu-

tation lemma with k, t (as otherwise define M := Mσ). Moreover, as M ∈ Mk,t we have that M is

C-normal, and therefore

Ti−1xi = c,

for some c which is uniquely determined by C,D and x1, . . . , xi−1. Hence, conditioned on x1, . . . , xi−1

and D, the vector xi belongs to a (shifted) subspace H of dimension max{2n− 2i− ranki−1(M), 0}.
Moreover, observe that by the Permutation lemma we have ranki−1(M) = Rk,t(i − 1). Using

Odlyzko’s observation (Lemma 15.6) we obtain that

Pr[M ∈Mk,t | D,X1:i−1] =
∑
Xi∈H

Pr[M ∈Mk,t | D,X1:i] Pr[Xi ∈ H]

≤ 2−(2n−2i)+max{2n−2i−ranki−1(M),0} sup
Xi∈{±1}2n−2i

Pr[M ∈Mk,t | D,X1:i].

In order to complete the proof we distinguish between two cases:

Case 1. 2n− 2i > ranki−1(M). In this case, as

max{2(n− i)− ranki−1(M), 0} = 2(n− i)− ranki−1(M),
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we immediately get the bound

Pr[M ∈Mk,t | D,X1:i−1] ≤ 2−Rk,t(i) sup
Xi∈{±1}2n−2i

Pr[M ∈Mk,t | D,X1:i].

Case 2. 2(n − i) ≤ ranki−1(M). In this case, as |Rk,t(`) − Rk,t(` − 1)| ≤ 2 for all `, we obtain

that for all 0 ≤ j ≤ n− i we have

2n− 2i− 2j ≤ ranki−1+j(M).

Therefore, by the recurrence relation we’ve obtained, we conclude that

Pr[M ∈Mk,t | D,X1:i−1] ≤ 2−2(n−i)−2(n−i−1) sup
X1,...,Xi+1

Pr[M ∈Mk,t | D,X1:i+1]

≤ 2−
∑n−i
j=0 2j = 2−(n−i)2+o(n2).

This completes the proof.

Remark 15.20. Note that there is a very weak point in the above proof. Namely, whenever we

are to expose xi for some i, we use a bound which is based only on the rank of Ti−1 and no other

structure. Therefore, theoretically, if we can do slightly better, then we will obtain an improvement

to Theorem 15.5. Basically, we could rewrite the above lemma as: the number of options for xi is at

most 22(n−i)−Rk,t(i−1) if 2n− 2i > ranki(M) or 1 otherwise.

15.2 Combining all the above

Here we do the actual steps towards proving Theorem 15.5. Fix the matrix C, and our goal is to

upper bound Pr[M ∈ Mk,t] for all k ≤ t. Then, as there are at most n2 options for k and t, by a

simple union bound we obtain the desired.

Note that for some specific values of k and t the problem is trivial. For example, it is quite obvious

to see (WHY?) that Mk,t is empty whenever k + t < n − 2, k > 2n/3 or t + k/2 > n (to see is,

recall the definition of Rk,t). We distinguish between two cases, where in each case we take a slightly

different approach. In the first case we provide an upper bound on Pr[M ∈ Mt,k] when 2t + k is

close to 2n, while in the second case we provide good bounds when 2t+k is far from 2n. Afterwards,

we combine the two results to get the desired bound through some optimization.

15.2.1 The first case

Lemma 15.21. For 1 ≤ k ≤ 2n/3 and k
2 < n− t ≤ k we have

Pr[M ∈Mk,t] ≤

{
2n

2+k2+t2+kt−2kn−2nt+o(n2) if k ≥ n/2
2t

2−3k2+2kn+kt−2nt+o(n2) if k ≤ n/2

In particular we have

Pr[M ∈Mk,t] ≤ 2−0.25n2+o(n2).
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15.2.2 The second case

Let M ∈Mk,t and consider Tt. Recall that Tt has t rows and 2(n− t−1) columns, rank k and the

the additional property that for any 1 ≤ i ≤ n− t−1, the deletion of both its ith and (n− t−1+ i)th

columns reduces the rank by at least 1. The following definitions will be convenient for us:

Definition 15.22. Let M be a fixed q × 2m matrix. We say that M has the property P if for any

1 ≤ i ≤ m, by deleting both the ith and the (i+m)th columns we reduce the rank of M by at least 1.

Definition 15.23. Let A := {β | Pr[M is C-normal] ≤ 2−(β+o(1))n2}. Define

α = supA− 0.0001.

Observe that Lemma 15.21 implies that α ≥ 0.2499. We wish to prove the following:

Lemma 15.24. Given 1 ≤ k ≤ t ≤ n we have that

Pr[M ∈Mk,t] ≤ 2(1−α)t2−k2/2−n2+nk+o(n2).

Intuitively, the above lemma asserts that if we take a t× 2(n− t− 1) ±1 matrix at random, then

the probability that it satisfies P is very small. Note that as was mentioned earlier, the probability

is 0 unless n− k − 2 ≤ t ≤ n− k/2.

16 Inverse theorems

In this section we consider some inverse theorems in additive number theory. The main theorem

we are interested at (but won’t prove in full) is the so called Freiman’s inverse theorem, that concerns

the structure of sets with small sumsets. Suppose that A is a subset of an abelian group G, and

define

A+A := {a+ a′ : a, a′ ∈ A}.

Clearly, if |A| = n then |A+A| ≥ n, and equality can occur for example if A is a subgroup. On the

other hand, we trivially have

|A+A| ≤
(
n+ 1

2

)
,

which is also tight if, for example, G = Z and A = {1, 5, 52, . . . , 5n−1}. The following simple exercise

is nice to start understanding what’s going on here.

Exercise 16.1. Let A ⊆ Z be a set of size n. Then |A + A| ≥ 2n − 1. Moreover, equality holds if

and only if A is an arithmetic progression.

The main question we want to deal with is about the structure of sets with small, but not ‘too

small’ sumsets. For example, what is the structure of a subset A ⊆ Z with |A+A| ≤ 2000|A|?
The following notion will play an important role from now on: Let x0, . . . , xd ∈ Z and let

M1, . . . ,Md be positive integers. The set

P =

x0 +

d∑
j=1

mjxj | 0 ≤ mj ≤ mj − 1


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is called a d-dimensional arithmetic progression, or a general arithmetic progression (GAP for short)

of dimension d. We say that P is proper if |P | = M1 · · ·Md. It is relatively straight forward to prove

that if P is proper then |P + P | ≤ 2d|P |.
Freiman’s inverse theorem says, more or less, that the converse also holds:

Theorem 16.2 (Freiman’s inverse theorem). Let A ⊆ Z be a subset of size n. Suppose that |A+A| ≤
C|A| for some C. Then A is contained in a proper d-dimensional GAP of size at most Kn, where d

and K depend only on C.

There are many more results of a similar flavor which are based on this theorem. The type of

problems we will mostly be interested in this section (after understanding few ingredients in the

proof of the above theorem of course...) are an ‘inverse Littlewood-Offord’-type statements. That

is to say, suppose that (a1, . . . , an) is sum integer valued vector and that X1, . . . , Xn are iid random

variable, each of which is distributed as

Pr[X = 1] = Pr[X = −1] = 1/2.

We’ve already seen that for every m ∈ Z we have

Pr[
∑

aiXi = m] = O(1/supporta).

Moreover, we clearly have

sup
m

Pr[
∑

Xiai = m] ≥ 2−n.

The main question is: suppose that

sup
m

Pr[
∑

Xiai = m] ≥ n−C

for some C. What is the additive structure of our vector a? note that if this probability is large,

then intuitively it means that there are many cancelations in the sums
∑
±ai, so intuitively one

would expect that the set A = {ai | i} has a relatively small sumset. We will discuss this problem in

a much more detail later.

16.1 Plünnecke’s inequalities

One of the main ingredients in the proof of Freiman’s theorem is the following theorem:

Theorem 16.3 (Plünnecke-Ruzsa). Suppose that |A + A| ≤ C|A| for some C > 0. Then, for any

k, ` we have

|kA− `A| ≤ Ck+`|A|.

We won’t prove this theorem here but will give some details. We will start with a different looking

statement that requires few definitions. A Plünnecke graph of level h is a directed graph G on some

vertex set V0 ∪ . . . Vh satisfying:

1. All edges in E(G)) are edges from some Vi to Vi+1.

2. (Forward splitting of paths) Let 0 ≤ i ≤ h − 2 and suppose that u ∈ Vi, v ∈ Vi+1 and

w1, . . . , wk ∈ Vi+2 are such that uv and all the vwi’s are edges of G. Then, there are distinct

v1, . . . , vk ∈ Vi+1 such that all of the uvj ’s and the vjwj ’s are edges in G.
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3. (Backward splitting of paths) Let 0 ≤ i ≤ h − 2 and suppose u1, . . . , uk ∈ Vi, v ∈ Vi+1 and

w ∈ Vi+2, with uiv and vw being edges for all i. Then there are distinct v1, . . . , vk ∈ Vi+1 such

that all of the ujvj and vjw are edges.

Now, let X ⊆ V0 and let Ni(X) be the set of all vertices in Vi which can be reached by path

starting from some x ∈ X. The ith magnification ratio of G, Di(G), is

Di(G) = inf
X⊆V0,X 6=∅

|Ni(X)|
|X|

.

Proposition 16.4 (Plünnecke). Let G be a Plünnecke graph of level h ≥ 2. Then we have the

inequalities

D1 ≥ D1/2
2 ≥ D1/3

3 ≥ . . . ≥ D1/h
h .

The key step in deducing Theorem 16.3 is the following

Proposition 16.5. Let A,B be subsets of an abelian group with |A + hB| ≤ C|A|. Then, for any

h′ ≥ h, there is a set A′ ⊆ A with |A′ + h′B| ≤ Ch′/h|A′|.

Proof. Define a directed graph as follows. Set Vi = A+ iB, and join v ∈ Vi to v′ ∈ Vi+1 if and only

if v′ − v ∈ B. This is (more or less trivially) a Plünnecke graph. The hth magnification ratio, Dh, is

at most C because

inf
Z⊆A

|Nh(Z)|
|Z|

≤ |Nh(A)|
|A|

≤ |A+ hB|
|A|

≤ C.

In particular, for any h′ ≥ h, from Proposition 16.4 and the above estimate we can write

Dh′ ≤ D
h′/h
h ≤ Ch′/h

which is equivalent to what we are trying to prove.

It follows immediately from Proposition 16.5 (taking h = 1 and B = A) that if |A + A| ≤ C|A|
then |kA| ≤ Ck|A| for any k ≥ 2. In order to prove Theorem 16.3 we need the following lemma

Lemma 16.6. Let U, V,W be subsets of an abelian group. Then

|U ||V −W | ≤ |U + V ||U +W |.

Proof. For any d ∈ V −W fix v(d) ∈ V , w(d) ∈W with v(d)− w(d) = d. Define

Φ : U × (V −W )→ (U + V )× (U +W )

by

Φ(u, d) = (u+ v(d), u+ w(d)),

and show that this is injective. Indeed, if Φ(u, d) = (x, y), then by definition we have x − y = d.

Now, after knowing d, we know v(d) and w(d) and this enables us to recover u as well.

To complete the proof of Theorem 16.3: Suppose |A + A| ≤ C|A| and suppose without loss of

generality that ` ≥ k. We may apply Proposition 16.5 twice to get A′′ ⊆ A′ ⊆ A satisfying

|A′ + kA| ≤ Ck|A′|
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and

|A′′ + `A| ≤ C`|A′′|.

Then by Lemma 16.6 we have

|A′′||kA− `A| ≤ |A′′ + kA||A′′ + `A| ≤ |A′ + kA||A′′ + `A| ≤ Ck+`|A′||A′′| ≤ Ck+`|A||A′′|.

This gives the desired.

16.2 Inverse Littlewood-Offord inequalities

Here, for convenience, we ‘shift’ our definition of GAP of dimension d from the previous section

as follows:

P := {a+m1v1 + . . .+mdvd | −Mj/2 < mj < Mj/2 for all 1 ≤ j ≤ d}.

We say P is symmetric if a = 0. We say that P is proper if the map

(m1, . . . ,md)→ m1v1 + . . .+mdvd

is injective. If P is symmetric and proper, we define the P -norm ‖v‖P of a point v = m1v1+. . .+mdvd
in P by

‖v‖P =

(
d∑
i=1

(
|mi|
Mi

)2
)1/2

.

Let ā = (a1, . . . , an) be a vector and assume that

Pr[
∑

aixi = 0] ≈ 2−C .,

where the xi’s are iid bernoulli (±1) r.v. Moreover, assume that for some ε > 0 we have that

Pr[
∑

aixi = 0] ≥ εPr[
∑

aiyi = 0],

where the yi’s are iid ‘lazy walks’ variables.

We wish to prove the following:

Theorem 16.7 (Tao-Vu). There is a constant C ′ such that the following holds. There exist integers

1 ≤ d ≤ C ′ and M1, . . . ,Md ≥ 1 with ∏
Mi ≤ C ′2n−C

and non-zero elements v1, . . . , vd ∈ F such that the following holds.

1. The corresponding symmetric GAP P is proper and contains all the ai’s.

2. The ai’s have small P -norm:
n∑
j=1

‖aj‖2P ≤ C ′.
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3. The set {v1, . . . , vd} ∪ {a1, . . . , an} is contained in the set

{p
q
v1 : p, q ∈ Z, q 6= 0, |p|, |q| ≤ no(n)}.

They work over F = Znn/2 . We are interested in much smaller primes so we don’t really need the

third condition in order to overcome union bound. Before turning into the proof we need quite a lot

of preparation. First, we will use Freiman’s theorem as stated here:

Theorem 16.8 (Freiman’s inverse theorem). For any constant C there are d, δ such that: for any

finite set A of integers with |A + A| ≤ C|A|, there is a proper arithmetic progression P of rank d

such that A ⊆ P and |A|/|P | ≥ δ.

We will not try to optimize or calculate the ‘correct’ dependency in any of the parameters.

Moreover, Freiman’s theorem can be also phrased in finite fields of a sufficiently large order (this is

what we will actually use).

The following lemma (we skip this proof...) shows that given a GAP which is not proper, by a

cost of a constant factor, embed it into a proper one.

Lemma 16.9 (GAP lies inside proper GAP). There is a constant C such that the following holds:

Let P be a GAP of dimension d in an abelian group G. Suppose that every non-zero element of G

has order at least dCd
3 |P |. Then there exists Q which is a proper GAP of dimension at most d for

which P ⊆ Q and |Q| ≤ dCd3 |P |.

Another ingredient we are going to use is the following lemma:

Lemma 16.10 (Sumset estimates). Let A be a symmetric finite subset of an abelian group G such

that |4A| ≤ C|A| for some C ≥ 1. Then, for any k ≥ 4 we have

|kA| ≤
(
C + k − 3

k − 2

)
C|A|.

Proof. The proof is based on a covering argument of Ruzsa. Consider the sets x + A as x ranges

inside 3A. Each such set has size exactly |A| and is a subset of 4A. Let X ⊆ 3A be a largest subset

for which (x+A)∩(x′+A) = ∅ for all x 6= x′ ∈ X. Clearly, |X| ≤ |4A|/|A| ≤ C. In particular, for all

y ∈ 3A there exists x ∈ X such that x+A intersects y+A. This implies that y ∈ X+A−A = X+2A

(we also used the fact that A is symmetric here) and we obtained

A+ 2A = 3A ⊆ X + 2A.

Iterating this argument gives us

kA ⊆ 2A+ (k − 2)X

for all k ≥ 2. Thus

|kA| ≤ |2A||(k − 2)X| ≤ C|A||(k − 2)X|.

Note that we trivially have

|`X| ≤
(
|X|+ `− 1

`

)
,

which together with the above completes the argument.
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To prove Theorem 16.7 we want to use Freiman’s inverse theorem on the vector ā (or to a large

subset of its coordinates). Our goal now is to show that one can find such a subset A with small

doubling.

We start with a Fourier analytic argument: Let V = {x ∈ Fn : ax = 0}. By Fourier expansion we

have

V (x̄) =
1

|F|
∑
ξ∈F

ep(
∑
i

xiaiξ),

where p = |F| and ep is the primitive character ep(x) = e2πix/p.

Consider X as a vector of ±1 entries, we clearly have

Pr[X ∈ V ] = E[1X∈V ] =
1

|F|
∑
ξ∈F

n∏
j=1

cos(2πajξ/p).

In particular, after a short manipulation we obtain

Pr[X ∈ V ] ≤ 1

p

∑
ξ∈F

n∏
j=1

(
1

2
+

1

2
cos(2πajξ/p)

)1/2

.

Similarly, if we take Y to be a vector of iid r.v where each coordinate i satisfies

Pr[yi = 0] = 1− µ, and Pr[yi = 1] = Pr[yi = −1] = µ/2,

we obtain

Pr[Y ∈ V ] ≤ 1

p

∑
ξ∈F

n∏
j=1

((1− µ) + µ cos(2πajξ/p)) .

Define

f(ξ) =

n∏
j=1

(
1

2
+

1

2
cos(2πajξ/p)

)1/2

and g(ξ) =

n∏
j=1

((1− µ) + µ cos(2πajξ/p)) ,

and by a simple calculation TO SHOW we see that for all ξ we have f(ξ) ≤ g(ξ)1/4µ. This in

particular implies that if µ < 1/4 then f(ξ) ≤ g(ξ) which give

Pr[X ∈ V ] ≤ Pr[Y ∈ V ].

Now we want to understand what to do with the information that

Pr[X ∈ V ] ≥ ε1 Pr[Y ∈ V ].

Let ε2 be a sufficiently small constant (depending on ε1). Define the spectrum Λ ⊆ F of

{a1, . . . , an} as

Λ := {ξ ∈ F | f(ξ) ≥ ε2}.

Note that Λ is symmetric. Next, we make the elementary observation that (say)

1− 100‖x‖2 ≤ cos(2πx) ≤ 1− 1

100
‖x‖2.
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This implies that

f(ξ) ≤ exp

− 1

1000

n∑
j=1

‖ajξ/p‖2
 .

Therefore, as f(ξ) ≥ ε2 for all ξ ∈ Λ, there exists a constant C(ε2) such that n∑
j=1

‖ajξ/p‖2
1/2

≤ C(ε2)

for all ξ ∈ Λ.

We now show that Λ has small sumsets:

Lemma 16.11. There is a constant depending on the ε’s such that

Λ ∈ [C−12−(n−d±)|F|, C2−(n−d±)|F|].

Proof. Note that by assumptions we have

1

p

∑
ξ

f(ξ) ≥ ε1
1

p

∑
g(ξ)

. But from the definition of Λ and the fact that we take µ < 1/4 we have

1

p

∑
ξ /∈Λ

f(ξ) ≤ ε1−4µ
2

∑
ξ /∈Λ

f4µ(ξ) ≤ ε1−4µ
2

1

p

∑
ξ∈F

g(ξ).

Now we are going to make an essential use of the fact that µ < 1/4. Assuming this, we can make

sure that the contribution of ξ outside Λ is negligible, by choosing ε2 sufficiently small:∑
ξ∈Λ

= Θ(
∑
ξ∈F

f(ξ)) = Θ(
∑
ξ

g(ξ)) = Θ(|F|Pr[X ∈ V ]) = Θ(2d±−n|F|).

The bounds on |Λ| now follow immediately from the fact that for any ξ ∈ Λ we have ε2 ≤ f(ξ) ≤ 1.

It thus remain to prove that the sumsets of Λ are not too large. Specifically, it is enough to prove

that there is a constant C with

|4Λ| ≤ C|Λ|.

Note that for ξ ∈ 4Λ we have by triangle inequality that n∑
j=1

‖ajξ/p‖2
1/2

≤ C(ε2),

for some C(ε2). From previous estimates we conclude that

f(ξ) ≥ c(ε2) > 0.

Therefore,

|4Λ| ≤ c(ε2)−1
∑
ξ

f(ξ) ≤ c(ε2)−1
∑
ξ∈F

g(ξ) = Θ(2d±−n|F) = Θ(|Λ|).

This completes the proof.
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Now we want to go back from Λ to ā using the inverse Fourier transform. For any x ∈ F define

‖x‖Λ by

‖x‖Λ :=

 1

|Λ|2
∑
ξ,ξ′∈Λ

‖x · (ξ − ξ′)/p‖2
1/2

.

One can check that this quantity is between 0 and 1 and obeys the triangle inequality. In particular,

we obtain

‖x‖Λ ≤

 1

|Λ|2
∑
ξ,ξ′∈Λ

‖xξ/p‖2
1/2

+

 1

|Λ|2
∑
ξ,ξ′∈Λ

‖xξ′/p‖2
1/2

= 2

 1

|Λ|2
∑
ξ,ξ′∈Λ

‖xξ/p‖2
1/2

.

Therefore by summing squares over all ξ ∈ Λ we obtain

n∑
j=1

‖aj‖2Λ ≤ C(ε2).

Therefore, we expect many of the aj ’s to have small Λ-norm. On the other hand we will show that

the set of elements with small such norm has constant doubling:

Lemma 16.12. There is a constant C such that: Let A ⊆ F denote the ‘Bohr set’

A := {x ∈ F | ‖x‖Λ ≤
1

100
}.

Then we have

C−12n−d± ≤ |A| ≤ |A+A| ≤ C2n−d± .

17 Matrix analysis

In this section we discuss some more advance linear algebra. Later, we will show more combina-

torial results, based on the tools which we develop here. We are going to assume that the reader is

familiar with basic notions of linear algebra though.

17.1 A QR-decomposition of a matrix

The first observation that we make (left as an exercise) is the following: suppose that X =

(x1, . . . , xk) is a linear independent k-tuple of vectors in an n-dimensional inner product space (such

a space is referred to as a finite Hilbert space). Suppose that the xi’s are column vectors, and we say

that a k-tuple Y = (y1, . . . , yk) is biorthogonal to X if 〈xi, yj〉 = δij for all i, j.

Exercise 17.1. Given an X as above, there exists a k-tuple Y biorthogonal to X.

In the above notation, the Gram-Schmidt procedure can be seen as a matrix factorization the-

orem. Given an n-tuple X of linearly independent vectors, the procedure gives another tuple

Q = (q1, . . . , qn) whose entries are orthonormal vectors. For each k = 1, 2, . . . , n, the vectors xi’s and

qi’s have the same linear span. In a matrix notation this can be expressed as X = QR, where R is an

upper triangular matrix and can be chosen in a way that all the diagonal entries are positive. This
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makes the factors Q and R both uniquely determined. Note that if the xi’s are not independent,

then the procedure can be modified as follows: if xk depends on x1, . . . , xk−1, then one can choose

qk = 0. Otherwise, proceed as in Gram-Schmidt.If the kth column of Q is 0, then set the kth row of

R to be 0. This gives X = QR, where R is upper triangular and Q has orthogonal columns, some of

them are 0. Take the nonzero columns and extend to an orthonormal basis. Then replace the zero

columns by the additional elements of the basis. This still gives X = QR, and now Q is orthonormal.

This is called the QR decomposition of X.

Example 17.2. Suppose that X = (x1, . . . , xn). Then,

| det(X)| ≤
n∏
j=1

‖xj‖.

Indeed, write X = QR as above. Then, since Q is unitary, det(X) = det(Q) det(R) = det(R).

Moreover, as R is upper triangular, we obtain

det(R) =
n∏
j=1

Rjj ,

and by definition, we have, for all j, that

Rjj = xTj qj .

Therefore, by Cauchy-Schwarz we have

|Rjj | ≤ ‖xj‖‖qj‖ = ‖xj‖.

This gives the desired.

17.2 Linear operators and matrices

Let L(V,W ) be the set of all linear operators from V to W . If we fix the bases of V and W ,

then each operator has a unique matrix associated with it. Note that the matrix representations

are super nice if the bases are being chosen to be orthonormal. Indeed, suppose A ∈ L(V,W ) and

E = (e1, . . . , en), F = (f1, . . . , fm) are orthonormal bases of V and W , respectively. Then, by

orthonormality, observe that every vector v ∈W can be written as

v =
n∑
i=1

(f∗i · v)fi,

and therefore, the ijth entry of A relative to these bases is aij = f∗i Aej . In particular, we obtain

that the matrix of A relative to these bases is F ∗AE.

18 Singularity over finite fields

In this section we consider a random ±1, n× n matrix M over a finite field Zp. The problem we

are interested at is
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Problem 18.1. Estimate

σn(p) := Pr[M is singular over Zp].

We prove the following theorem:

Theorem 18.2. For all p ≤ we have

σn(p) = .

Proof. The proof is based on the Fourier method and is one of the rear cases where one can make

all the calculations exact. Recall that in Zp we have

δ0(x) =
1

p

∑
k∈Zp

exp

(
2πikx

p

)
.

We use the notation ep(x) = exp(2πix/p) and simply write

δ0(x) =
1

p

∑
k∈Zp

ep(kx).

Our goal is to estimate the probability for M being singular over Zp. Note that M is singular

over Zp if and only if there exists a ∈ Znp \ {0} such that Ma = 0. Now, observe that for every a we

have

Pr[Ma = 0] =

(
Pr

[
n∑
i=1

aixi = 0

])n
,

where the xi’s are iid bernouli ±1 random variables. Since

Pr

[∑
i

aixi = 0

]
= E

[
δ0

(∑
i

aixi

)]
,

by the above equalities we obtain

Pr[Ma = 0] =

(
E

[
δ0(
∑
i

aixi)

])n

=

E
1

p

∑
k∈Zp

ep

k n∑
j=1

ajxj

n

=

E
1

p

∑
k∈Zp

n∏
j=1

ep (kajxj)

n

=

1

p

∑
k∈Zp

n∏
j=1

E [ep (kajxj)]

n

=

1

p

∑
k∈Zp

n∏
j=1

cos

(
2πkaj
p

)n
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= p−n

1 +
∑
k 6=0

n∏
j=1

cos

(
πkaj
p

)n

,

where the last equality holds by a change of variable.

Next, let A be the set of all vectors in Znp which have at least εn non zero coordinates. For every

a ∈ A we can write:

p(a) := p−n

1 +
∑
k 6=0

n∏
j=1

cos

(
πkaj
p

)n

= p−n

1 + n
∑
k 6=0

n∏
j=1

cos

(
πkaj
p

)
+ o(of ugly sum/prod)

 .

Our main goal is to give an upper bound to

∑
a∈A

p(a) = |A|p−n + p−nn
∑
a∈A

∑
k 6=0

n∏
j=1

cos

(
πkaj
p

)
.

Write

p−nn
∑
a∈A

∑
k 6=0

n∏
j=1

cos

(
πkaj
p

)
= p−nn

∑
a∈Znp

∑
k 6=0

n∏
j=1

cos

(
πkaj
p

)
− p−nn

∑
a∈Znp \A

∑
k 6=0

n∏
j=1

cos

(
πkaj
p

)
.

We will later show that the second summand is vert small, and therefore it is enough to consider

only the first summand

p−nn
∑
a∈Znp

∑
k 6=0

n∏
j=1

cos

(
πkaj
p

)
= p−nn

∑
k 6=0

∑
a∈Znp

n∏
j=1

cos

(
πkaj
p

)
Before proceeding with the proof, we need some definitions/notation. Let ~n = (n1, . . . , np) be a

positive integer valued vector such that
∑

i ni = n. A vector a ∈ Znp is said to be of type ~n, if it has

exactly nj entries which are equal j for all 1 ≤ j ≤ p. For every k 6= 0 and ~n, we let Tk(~n) be the set

of all vectors a such that ka is of type ~n. Now, rearranging the above expression we obtain

p−nn
∑
k 6=0

∑
a∈Znp

n∏
j=1

cos

(
πkaj
p

)
= p−nn

∑
k 6=0

∑
~n

|Tk(~n)|
p∏
j=1

cosnj
(
πj

p

)

= p−nn
∑
k 6=0

∑
~n

(
n

n1, . . . , nt

) p∏
j=1

cosnj
(
πj

p

)

= p−nn
∑
k

 p∑
j=1

cos

(
π

p
· j
)n

,

where the last equation follows from the multinomial identity, and this equals 0 (not that the sum

of cos is Re(
∑
e−πk/p)).
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19 The two families theorem of Bollobás

Theorem 19.1. Let (Ai, Bi)i∈I be a collection of pairs of sets for which the following hold:

1. Ai ∩Bi = ∅ for all i, and

2. Ai ∩Bj 6= ∅ for all i 6= j.

Then, we have
∑

i
1

(ai+bibi
)
≤ 1.

There are many proof for the above theorem and we decided to present the following:

Proof. We will proceed by induction on n = | ∪i∈I (Ai ∪ Bi)|, and without loss of generality we

assume that the ground set is [n]. For n = 1 the theorem is trivial. For the induction step, we wish

to remove an element x ∈ [n] and induct on n− 1. For each x ∈ [n] we let Ix = {i ∈ I | x /∈ Ai}, and

Bx
i = Bi \ {x}. Moreover, consider the collection of pairs (Ai, B

x
i )i∈Ix , and observe that we cannot

have Ai ∩ Bx
j = ∅ for some i 6= j ∈ Ix. Indeed, as Ai ∩ Bj 6= ∅ and Bj = Bx

j ∪ {x}, it follows that

x ∈ Ai ∩ Bj which is clearly absurd (by the choice of Ix). Therefore, for each x ∈ [n], by induction

we have ∑
i∈Ix

1(
ai+bxi
ai

) ≤ 1.

Next, observe that by induction we have

n =
∑
x∈[n]

1 ≥
∑
x∈[n]

∑
i∈Ix

1(
ai+bxi
ai

) ,
and in order to obtain an equality sign, we need the second summand to be exactly 1 for all x.

Now, let us fix i, and run over all x for which i ∈ Ix (that is, x /∈ Ai). There are exactly n − ai
such elements x. It follows that for bi values of x we have bxi = bi − 1 and for n− ai − bi values of x

we have bxi = bi. Therefore, by a change of summation, the right hand side of the above inequality is

∑
i∈I

(
n− ai − bi(

ai+bi
ai

) +
bi(

ai+bi−1
ai

)) =
∑
i∈I

(
(n− ai − bi)ai!bi!

(ai + bi)!
+
bi · (bi − 1)!ai!

(ai + bi − 1)!

)

= n
∑
i∈I

1(
ai+bi
ai

) .
This completes the proof of the theorem.
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