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Abstract

Let H1, . . . ,Hk be Hamilton cycles in Kn, chosen independently and uniformly at random. We

show, for k = o(n1/100), that the probability of H1, . . . ,Hk being edge-disjoint is (1 + o(1))e−2(
k
2).

This extends a corresponding estimate obtained by Robbins in the case k = 2.

1 Introduction

A classical problem in elementary combinatorics is to show that the number of derangements of
an n element set (recall that a derangement is a permutation with no fixed points) is (1+o(1))n!

e .
This problem can equivalently be formulated in graph theoretic language as follows: let Kn,n be
the complete bipartite graph with each part of size n. Let M1 and M2 be two perfect matchings
of Kn,n, chosen independently and uniformly at random. Then, the probability that M1∩M2 = ∅
is (1 + o(1)) 1

e .
This formulation immediately suggests the following question: suppose that M1, . . . ,Mk are k

perfect matchings of Kn,n, each of which is chosen independently and uniformly at random. What
is the probability that all of the Mi’s are edge-disjoint? Using (nowadays) standard estimates
on the permanent of the (bipartite) adjacency matrix of a d-regular bipartite graph, one can
readily show that (for k which is not too large compared to n), the answer to this question is

(1+o(1))e−(k
2) – we leave this as an exercise for the interested reader. Of course, one may ask the

same question with perfect matchings replaced by any other graph, and Kn,n replaced by some
other ‘ground graph’

Problem 1.1. Let H be a graph on at most n vertices, and let G be a graph that contains at
least one copy of H. Let X1, . . . , Xk, k ≥ 2, be i.i.d random variables, each of which outputs a
copy of H in G, distributed uniformly at random. What is the probability p(G,H, k) that all the
copies Xi are edge-disjoint?

For G = Kn (the complete graph on n vertices), H = Cn (a simple cycle on n vertices, also
known as a Hamilton cycle), and k = 2, it was shown in [3] using a clever inclusion-exclusion
argument that p(G,H, 2) = (1 + o(1))e−2. As in the case of perfect matchings, it is natural to
ask for p(G,H, k) for k > 2. Unfortunately, it seems rather hard to extend the argument of [3]
to larger values of k (in fact, even a possible extension to k = 3 seems quite involved). In this
note, using a completely different argument, we resolve this problem for all values of k up to some
small polynomial in n. Specifically, we prove the following theorem.
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Theorem 1.2. Let k = o(n1/100), and let H1, . . . ,Hk be Hamilton cycles in Kn, each of which is
chosen independently and uniformly at random. Then, the probability that all the Hi’s are edge
disjoint is

(1 + o(1))e−2(
k
2).

Remark 1.3. In order to keep the exposition simple, and since our approach anyway does not
seem to work for values of k larger than

√
n, we did not make any effort to optimize the upper

bound on k in the above theorem.

1.1 Outline of the proof

By Bayes’ rule, it suffices (see Section 3 for details) to show that the number of Hamilton
cycles in any graph obtained by removing i edge-disjoint Hamilton cycles from Kn is (1+o(1/k)) ·
e−2i · (n− 1)!/2 – this is the content of our main technical lemma (Lemma 2.7). Our proof of this
lemma consists of providing an algorithm to generate all Hamilton cycles in a given graph G (see
Section 2.2), and then using standard estimates on the number of perfect matchings in bipartite
graphs (Corollary 2.5, Lemma 2.6), as well as standard concentration inequalities (Theorem 2.1),
in order to analyze the number of distinct Hamilton cycles our algorithm can output.

Roughly speaking, our algorithm generates Hamilton cycles as follows: for a sufficiently large
integer `, divide the vertices of G into ` parts of size n/` (for the sake of this discussion, we assume
that n is divisible by `); choose a perfect matching between parts i and i + 1 for 1 ≤ i ≤ ` − 1
to obtain a collection of n/` (oriented) paths of length ` − 1, and finally, extend (if possible),
this collection of oriented paths to an oriented Hamilton cycle of G. In Claim 2.9, we show using
a standard concentration of measure argument that most ways to partition the vertices satisfy
a certain ‘goodness’ property – the contribution to our enumeration coming from partitions not
satisfying this property is so small that it may be ignored. On the other hand, for partitions
satisfying this goodness property, we are able to effectively leverage standard estimates on the
number of perfect matchings in bipartite graphs to provide an asymptotically correct estimate of
the number of choices available to our algorithm in subsequent steps.

2 Tools and auxiliary results

In this section, we collect some tools and auxiliary results to be used in the proof of our main
result.

2.1 McDiarmid’s inequality

We will make use of the following concentration inequality due to McDiarmid (see [2], Section
3.2).

Theorem 2.1. Let Sn denote the symmetric group on n elements and let f : Sn → R be such that
|f(π) − f(π′)| ≤ u whenever π′ can be obtained from π by a single transposition. If π is chosen
uniformly at random from Sn, then

Pr [|f(π)− E(f)| ≥ t] ≤ 2 exp

(
− 2t2

nu2

)
.

2.2 A procedure to find all Hamilton cycles in a graph G

In this section, we describe a procedure to find all Hamilton cycles in a given graph G. Later,
in Section 2.4, we will estimate (from below and above) the number of distinct Hamilton cycles
that this procedure can output.
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1. Fix any positive integer ` (possibly depending on n). Let r = n mod `, so that 0 ≤ r ≤ `−1.
Let [n] = V1 ∪ . . . ∪ V` be any partition of [n], where the first r parts have size tc :=

⌈
n
`

⌉
,

and the last `− r parts have size tf :=
⌊
n
`

⌋
.

2. If r 6= 0, designate a ‘root’ v∗ ∈ Vr. If r = 0, designate a ‘root’ v∗ in V1.

3. For each j ∈ [1, r−1]∪[r+1, `−1], let Bj := G[Vj , Vj+1]. If r 6= 0, let Br := G[Vr\{v∗}, Vr+1]
and B` := G[V` ∪ {v∗}, V1]; if r = 0, let B` := G[V`, V1].

4. For each 1 ≤ j ≤ ` − 1, choose a perfect matching Mj of Bj , and observe that ∪jMj is a
collection of tc vertex disjoint paths, of which tf have length ` and tc− tf have length r (by
the length of a path, we mean the number of vertices in it). Let P := {P1, . . . , Ptc} denote
the obtained collection of paths, and orient each path such that the vertex in V1 is the first
vertex.

5. Finally, using only the edges in B` (directed from V` to V1), find (if possible) a rooted,
oriented Hamilton cycle in G, which is rooted at v∗ and contains all the paths in P as
oriented segments.

Let Hr,o(`) denote the collection of rooted, oriented Hamilton cycles in G obtained by running
the above procedure (with some fixed positive integer `) for all possible choices of partitions in
Step 1, all possible choices of the root in Step 2, all possible choices of the perfect matchings in
Step 4, and all possible choices of the compatible rooted, oriented Hamilton cycle in Step 5.

Lemma 2.2. For every positive integer `, the collection Hr,o(`) contains every rooted, oriented
Hamilton cycle of G exactly once.

Proof. Fix a rooted, oriented Hamilton cycle H in G. There is exactly one partition of the vertices
in Step 1 compatible with H – indeed, the root v∗ must belong to Vmax{r,1}, and following the
Hamilton cycle from the root along its orientation determines the partition of the vertices. Once
this is done, note that the choice of perfect matchings (equivalently, the collection of oriented paths
P) in Step 4 is automatically determined by the edges present in the Hamilton cycle. Finally,
given this collection of paths, there is exactly one choice of edges in Step 5 which is compatible
with H.

Let H(`) be the collection of Hamilton cycles in G, obtained from Hr,o(`) by forgetting the
root and the orientation. Since for any Hamilton cycle in G, there are exactly n ways to choose
a root for it, and exactly 2 ways to orient it, we have:

Observation 2.3. For every positive integer `, the collection H(`) contains every Hamilton cycle
of G exactly 2n times.

2.3 The number of perfect matchings in bipartite graphs

In order to estimate the number of Hamilton cycles our procedure can output, we will need to
estimate the number of perfect matchings in ‘typical’ bipartite graphs obtained by our procedure.

For bounding the number of perfect matchings in a bipartite graph from above, we use the
following theorem due to Brégman (see e.g. [1], page 24) that relates the number of perfect
matchings to the vertex-degrees in the graph.

Theorem 2.4. (Brégman’s Theorem) Let G = (A ∪B,E) be a bipartite graph with both parts of
the same size. Then, the number of perfect matchings in G is at most∏

a∈A
(dG(a)!)1/dG(a).

The following is an immediate corollary of Theorem 2.4 and Stirling’s approximation.

3



Corollary 2.5. Let H be a spanning subgraph of Km,m with maximum degree at most D ≤ m/2.
Then, the number of perfect matchings in Km,m \H is at most

eO(D logm/m) ·m! · e−|E(H)|/m.

Proof. By applying Theorem 2.4 toG := Km,m\H and using the fact that s! = (1+O(1/s))
√

2πs
(
s
e

)s
,

one obtains that the number of perfect matchings in Km,m \H is at most(∏
a∈A

(
1 +O

(
1

m−D

))1/(m−D)
)
·

(∏
a∈A

(
√

2πm)1/(m−D)

)
·

(∏
a∈A

(
m− dH(a)

e

))
.

Using the assumption D ≤ m/2, the first term can be estimated by:

∏
a∈A

(
1 +O

(
1

m−D

))1/(m−D)

≤ eO(m/(m−D)2)

≤ eO(1/m).

The second term can be estimated by:∏
a∈A

(
√

2πm)1/(m−D) =
√

2πm · (
√

2πm)D/(m−d)

≤
√

2πm · eO(D logm/(m−D))

≤
√

2πm · eO(D logm/m).

The third term can be estimated by:∏
a∈A

(
m

e
·
(

1− dH(a)

m

))
≤
(m
e

)m
·
∏
a∈A

exp

(
−dH(a)

m

)
≤
(m
e

)m
· exp

(
−|E(H)|

m

)
.

Combining everything, and using Stirling’s approximation once again, we get the upper bound:

eO(D logm/m) ·
(√

2πm
(m
e

)m)
· e−|E(H)|/m ≤ eO(D logm/m) ·m! · e−|E(H)|/m,

as desired.

The next lemma provides a nearly matching lower bound on the number of perfect matchings
in ‘almost complete’ balanced bipartite graphs.

Lemma 2.6. Let H be a spanning subgraph of Km,m with |E(H)| < m
4 . Then, the number of

perfect matchings in Km,m \H is at least(
1−O

(
|E(H)|2

m2

))
·m! · e−|E(H)|/m.

Proof. Represent G := Km,m \H as G = (A ∪ B,E), and label the vertices of A = {v1, . . . , vm}
in such a way that all the q ≤ m/4 vertices in A, which are not isolated in H, are labeled as
v1, v2, . . . , vq. For each 1 ≤ i ≤ q, let di := dH(vi).

We will construct perfect matchings of G by manually pairing each vertex in A with a vertex
in B. For this, note that there are at least m− d1 ways to choose a vertex in B to pair with v1.
Having chosen such a vertex, there are at least m− d2− 1 ways to choose a vertex in B, different
from the one chosen in the previous step, to pair with v2. In general, for 1 ≤ i ≤ q, there are at
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least m−di− (i−1) ways to choose a vertex in B, different from the ones chosen in the first i−1
steps, to pair with vi. Having matched the first q vertices, note that all of the remaining vertices
in A have edges (in G) to all of the vertices in B and hence, the number of ways in which we can
find a vertex in B to pair with vi for i > q is exactly m− (i− 1). Since each sequence of choices
gives a different perfect matching, it follows that the number of perfect matchings in G obtained
in this manner is at least(

q∏
i=1

(m− di − (i− 1))

)
m∏

i=q+1

(m− (i− 1)) = m! ·
q∏

i=1

m− di − i+ 1

m− i+ 1

= m! ·
q∏

i=1

(
1− di

m− i+ 1

)

≥ m!

(
1−

q∑
i=1

di
m− i+ 1

)

≥ m!

(
1−

q∑
i=1

di
m− q

)

= m!

(
1− |E(H)|

m− q

)
,

where the third line uses the elementary inequality
∏n

i=1(1 − xi) ≥ 1 −
∑n

i=1 xi, valid for
x1, . . . , xn ≥ 0. Next, using the numerical inequality (1− x)−1 ≤ 1 + 2x, valid for x ∈ [0, 1/2], we
have

m!

(
1− |E(H)|

m− q

)
≥ m!

(
1− |E(H)|

m
·
(

1 +
2q

m

))
= m!

(
1− |E(H)|

m

)(
1− 2q|E(H)|

m(m− |E(H)|)

)
≥ m!

(
1− |E(H)|

m

)(
1− 3

|E(H)|2

m2

)
,

where the last equality uses that q ≤ |E(H)| < m/4. Finally, using the numerical inequality
1− x ≥ e−x(1− x2), valid for x ∈ [0, 1], we can bound the right hand side from below by

m! · e−|E(H)|/m
(

1− |E(H)|2

m2

)(
1− 3

|E(H)|2

m2

)
≥ m! · e−|E(H)|/m

(
1− 10

|E(H)|2

m2

)
=

(
1−O

(
|E(H)|2

m2

))
m! · e−|E(H)|/m.

2.4 The number of Hamilton cycles obtained by our procedure

In this section, we present the key step in the proof of our main theorem – a near-optimal
estimate on the number of Hamilton cycles in a graph G obtained by deleting i < k edge-disjoint
Hamilton cycles from Kn. Specifically, we prove the following lemma:

Lemma 2.7. Let k = o(n1/100), and let H1, . . . ,Hk be i.i.d. random variables, each of which
outputs a Hamilton cycle of Kn, chosen uniformly at random. For each 1 ≤ i ≤ k, let Ei be the
event “E(Hi) ∩ (∪j<iE(Hj)) = ∅” i.e. no edge of Hi is present in Hj, for any j < i. Then, for
every 0 ≤ i ≤ k − 1

Pr [Ei+1 | Ei · · · E1] = exp

(
±O

(
1

k2 log4 n

))
· exp(−2i).
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To prove this lemma, we will analyze the procedure for generating all Hamilton cycles of G
given in Section 2.2. We will need the following two preliminary claims.

The first claim concerns the number of partitions in Step 1 of Section 2.2.

Claim 2.8. The number of partitions V of [n] into r sets V1, . . . , Vr of size tc and ` − r sets
Vr+1, . . . V` of size tf , together with a designated vertex v∗ ∈ Vmax{r,1} is n!·tc

(tc!)r(tf !)`−r .

Proof. Indeed, there are n!
(tc!)r(tf !)`−r ways of choosing an (ordered) partition with the given sizes,

and tc ways of choosing a designated vertex from Vmax{r,1}.

Let G be a graph obtained from Kn by removing i edge-disjoint Hamilton cycles, and fix
` ≤
√
n. For a partition of [n] into ` parts as above, let {Bj}1≤j≤` denote the collection of bipartite

graphs constructed in Step 3 of Section 2.2. We claim that, for most partitions, the number of
edges missing from each Bj is close to its expectation (for a uniformly random partition).

Claim 2.9. Let fj be the number of missing edges in Bj. Then, for all sufficiently large n, the
number of partitions V of [n] for which |fj − 2·i·n

`2 | ≤ 2n2/3 for every 1 ≤ j ≤ ` is at least

(1− e−n
3/100

)
n!

(tc!)r(tf !)`−r
.

Proof. Let σ ∈ Sn be a uniformly random permutation of [n]. Let V1 be the image of [1, |V1|]
under σ, V2 be the image of the next |V2| elements in [n] under σ, and so on. For 1 ≤ j ≤ `, let
fj be the number of missing edges in Bj , and observe that

µj := Efj =
2 · i · n
`2

±O
(
i

`

)
=

2 · i · n
`2

± o(n2/3),

where the final inequality uses the assumption i ≤ k = o(n1/100). Next, since ∪j≤iE(Hi) is a
2i-regular graph, it follows that a single transposition of σ can change fj by at most 2i. Therefore,
by Theorem 2.1,

Pr[|fj − µj | ≤ n2/3] ≤ 2e−2n
4/3/(4·n·i2) = o(e−n

3/100

/`),

where the final inequality uses the assumption i ≤ k = o(n1/100). Applying the union bound
for 1 ≤ j ≤ ` shows that the number of permutations giving rise to ‘good partitions’ (i.e. those

satisfying the assumptions of the lemma) is at least
(

1− e−n3/100
)
n!. Finally, since each partition

corresponds to (tc!)
r(tf !)`−r distinct permutations, we get the desired conclusion.

With these two claims in hand, we can prove Lemma 2.7.

Proof of Lemma 2.7. Let H1, . . . ,Hi be any edge-disjoint Hamilton cycles in Kn, and let G be
the graph obtained from Kn by removing ∪j≤iE(Hj). We wish to count the number of Hamilton
cycles in G, and we will do so by analyzing the procedure in Section 2.2. For the rest of this
proof, we fix ` = d(k log n)4e = o(n1/20).

First, note that the number of Hamilton cycles in G obtained by our procedure, starting from
a partition in Step 1 which does not satisfy the conclusion of Claim 2.9 is negligible for our
purposes. Indeed, by Claim 2.9, the number of such partitions is at most e−n

3/100 · n!/((tc!)
r ·

(tf !)`−r), and once we fix such a partition, the number of choices available in Steps 2-5 is at most
t · (tc!)r · (tf !)`−r. Hence, the number of Hamilton cycles that can be obtained in this manner is at

most t · n! · e−n3/100

= o(n! · e−2i/poly(n)), for i ≤ k = o(n1/100). Therefore, it suffices to analyze
the contribution of partitions satisfying the conclusion of Claim 2.9.

For any such partition V = V1 ∪ · · · ∪ V`, there are exactly tc choices in Step 2.
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Moreover, for each such realisation of Steps 1-3, by Corollary 2.5 and Claim 2.9, the number
of perfect matchings of Bj is at most either (depending on the value of j)

tc! · exp

(
−2 · i

`

)
· exp(O(` · n−1/3)),

or the same expression with tc replaced by tf . Similarly, by Lemma 2.6 and Claim 2.9, the number
of perfect matchings of Bj is at least either (depending on the value of j)

tc! · exp

(
−2 · i

`

)
· exp

(
−O

(
k2

`2

))
,

or the same expression with tc replaced by tf .
Since there are r− 1 values of j for which the above bounds hold with tc, and `− r values of j

for which the above bounds hold with tf , and since k2/`2 � ` · n−1/3, it follows that the number
of collection of paths that can be obtained at the end of Step 4 is

(tc!)
r−1 · (tf !)`−r · exp (−2i) · exp

(
±O

(
k2

`

))
.

Finally, let us estimate the number of ways to extend any such collection of paths into a
Hamilton cycle in Step 5. For this, we arbitrarily label the collection of paths obtained at the end
of Step 4 by 1, . . . , tc. This induces a natural labeling (given by which path the vertex participates
in) of each part of the bipartite graph B` by the labels 1, . . . , tc. The obtained labelled bipartite
graph may be viewed as a directed graph (possibly with self loops) on tc vertices as follows:
identify vertices with the same label, and orient edges from the first part of B` to its second part.
Observe that the the number of extensions available in Step 5 correspond precisely to the number
of oriented Hamilton cycles of this directed graph.

Since the complete directed graph on tc vertices has at most (tc−1)! oriented Hamilton cycles,
it follows that there are at most (tc− 1)! such extensions. For a nearly matching lower bound, we
begin by noting that the number of oriented Hamilton cycles in the complete directed graph on
tc vertices containing a specific edge is at most (tc − 2)!. Since, by Claim 2.9 the directed graph
corresponding to B` has at most O(k ·n/`2) missing edges, it follows that the number of oriented
Hamilton cycles in this directed graph is at least

(tc − 1)!−O
(
k · n
`2

)
(tc − 2)! = (tc − 1)!

(
1−O

(
k

`

))
.

To summarize, we have shown that the number of choices available in Steps 2-5, for any fixed
choice of partition in Step 1 which satisfies the conclusion of Claim 2.9 is

tc · (tc!)r−1 · (tf !)`−r · exp (−2i) · (tc − 1)! exp

(
±O

(
k2

`

))
= (tc!)

r · (tf !)`−r · exp(−2i) · exp

(
±O

(
k2

`

))
.

Combining this with the number of choices in Step 1, as given by Claim 2.9, we see that the
contribution to the number of oriented, rooted Hamilton cycles from such partitions is

n! · exp(−2i) · exp

(
±O

(
k2

`

))
= 2n · (n− 1)!

2
· exp(−2i) · exp

(
±O

(
1

k2 log4 n

))
To conclude, recall that every (undirected, unrooted) Hamilton cycle is counted exactly 2n

times by our procedure, and that Kn has (n− 1)!/2 Hamilton cycles.
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3 Proof of the main theorem

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. The proof is a straightforward application of Lemma 2.7. Indeed, we wish
to find the probability that all k of the chosen Hamiltonian cycles are edge disjoint, which is

Pr [E1E2 · · · Ek] = Pr [E1] Pr [E2 | E1] . . .Pr [Ek | Ek−1 . . . E2E1]

=

k−1∏
i=0

Pr [Ei+1 | Ei · · · E1]

=

k−1∏
i=0

exp

(
±O

(
1

k2 log4 n

))
· exp(−2i)

= exp

(
±O

(
1

k log4 n

))
exp

(
−2

k−1∑
i=0

i

)
= (1 + o(1))e−2(

k
2),

where the third line uses Lemma 2.7.
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