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Abstract

This document served as my lecture notes for Math 130B in UC Irvine, during the spring quarter
2020. Most of the material is taken from the two lovely books: “Probability and computing: Random-
ization and probabilistic techniques in algorithms and data analysis” by Mitzenmacher and Upfal [2],
and “A first course in probability” by Ross [3]. Moreover, I also found the lecture notes of Gravner
[1] very useful. I have no claims for originality of the arguments and most of the math is taken from
other sources. I do take full responsibility for all the math mistakes appearing in this document.
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1 A general course introduction

In this course we will advance our knowledge in probability – both in theory and in applications. In
particular, as a side goal, we will be exposed to some basic (and not-so-basic) ideas from randomized
algorithms.

1.1 Randomized algorithms: Verifying polynomial identities

Suppose that we have written a program to multiply monomials. For example, the following can be an
output of our program:

(x− 1)(x− 2)(x− 3)(x− 10) = x4 − 16x3 + 70x2 − 116x+ 60.
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Before you continue reading, in order to appreciate the following arguments, please try to check whether
the above identity is correct or not.

As you have all noticed, the above identity is wrong as the coefficient of x2 should be 71. Moreover,
if you indeed try to figure it our by yourself, then it should be easy to convince you that, for a similar
identity, if we take a product of 10000 binomials, it will take you a lot of time to do the same verification.

This raises the following problem:

Problem 1.1. Suppose that F (x) and G(x) are two polynomials. Can we find an “efficient” way to check
whether the polynomial identity F (x) = G(x) is correct?

As this class is about probability and not algorithms, we will not try to formally define/explain what
the word “efficient” stands for. Instead, we will always try to compare how many basic operations we need
to make using a naive approach versus how many basic steps our (sometimes also quite naive) algorithm
makes.

Naive approach Clearly, in order to convince ourselves that F (x) = G(x), we can write both polyno-
mials in their canonical forms as: F (x) =

∑d
k=0 akx

k, and G(x) =
∑d

k=0 bkx
k, and check whether ak = bk

for all k. Indeed, by a theorem from calculus/linear algebra, we know that F (x) = G(x) if and only if
ak = bk for all k (try to prove this!).

Now let us analyze the number of basic operations that we need to perform in order to write F (x) =∏d
i=1(x− ri) in its canonical form. Imagine that we expand this expression in d steps, where in each round

j we compute Fj+1 := (x− rj) · Fj(x), where Fj(x) is the canonical form of the product of the first j − 1
binomials

∏j−1
i=1 (x− ri).

Now, since Fj(x) is a polynomial of degree j−1, it has exactly j terms in its canonical form (some may
be zero). Therefore, to compute Fj+1(x), we need to do at most (say) 3j basic operations (multiplying
all coefficients by rj, multiplying by x, and then adding up coefficients of the same power of x). All in
all, since j = 1, . . . , d, and since 1 + 2 + . . . + d =

(
d+1

2

)
(WHY?), we can compute the canonical form,

starting from a product of monomials, by doing at most 3
(
d+1

2

)
basic operations. Note that if we assume

that d is large, the multiplicative constants in this expression don’t matter much in terms of number of
computations – we consider 3d2 or 100d2 the same. We say that the number of operations is of order at
most d2, and denote it by O(d2). This means that there exists C > 0 such that for all d, the number of
operations is at most Cd2.

Observe that the naive approach has two main disadvantages:

1. It is basically the same approach like we originally tried to do. In particular, if the same person
writes the code, then assuming that the original code has an error, it is very likely that the same
error occurs in the second code.

2. In order to double check something that we believe is likely to be true, it would be better if we could
find a simpler (meaning – faster) way to check for correctness, even if there is some small chance for
making an error. This is where probability comes into the game!

A Probabilistic Approach Assume that the degree of F (x) and G(x) is d. Now, if F (x) = G(x), then
in particular, it means that F (r) = G(r) for all r ∈ R. Moreover, if F (x) 6= G(x), then in particular we
have that F (x)−G(x) is a polynomial (and not the 0 polynomial) of degree at most d. Therefore, by the
fundamental theorem of algebra, it has at most d roots.

Consider the set (say) {1, . . . , 100d}. We know that if F (x) 6= G(x) then there are at most d numbers
r in this set that satisfy F (r)−G(r) = 0. So, we can pick a random element r from this set and compute
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F (r) − G(r). If the answer is 0, then we conclude that F (x) is probably equal to G(x). Otherwise, we
conclude that F (x) 6= G(x). Observe that this test has a 1-sided error. That is, if F (r) 6= G(r) for the
randomly chosen r, then we are absolutely certain that F (x) 6= G(x), and the only error can come if we
conclude that F (x) = G(x) (WHY?). What is the probability for such an error? Clearly it’s at most
1/100, which we consider to be a “reasonable” margin of error. How efficient is this test? In order to
compute the value of F (r)−G(r) we have to do only O(d) basic operations (WHY?), so we saved quite a
lot of time in the case where d is large.

In later sections, we will use more sophisticated tools to analyse more complicated algorithms.

1.2 Probabilistic counting: number of triangles in dense graphs

A graph G = (V,E) is a pair consisting of a set V whose elements are called vertices, and a collection of
pairs of vertices E ⊆

(
V
2

)
= {{u, v} : u, v ∈ V } whose elements are called edges.

A well known theorem in Graph Theory is the following theorem by Mantel:

Theorem 1.2 (Mantel’s theorem). Suppose that G = (V,E) is a graph on n vertices that contains no
triangles. Then, |E| ≤ n2

4
.

Claim 1.3. Let G = (V,E) be any graph. Then,∑
x∈V

d(x)2 =
∑
xy∈E

(d(x) + d(y)),

where d(x) is the degree of the vertex x: the number of vertices adjacent to x.

Proof. This is left as an exercise for the reader.

Proof of Mantel’s. Since G is triangle-free, we know that any two adjacent vertices x and y have no common
neighbor. Therefore, for each xy ∈ E we have d(x) + d(y) ≤ n. Now, by the above claim we obtain that∑

x∈V

d(x)2 =
∑
xy∈E

(d(x) + d(y)) ≤ |E|n.

Moreover, since
∑

x∈V d(x) = 2|E| (try proving this!), by Cauchy-Schwarz we obtain that

4|E|2 ≤ n
∑
x∈V

d(x)2.

Combining the above bounds we obtain

4|E|2 ≤ n2|E|,

which gives us the desired inequality.

Following Mantel’s theorem one can naturally ask the following question:

Question 1.4. Suppose that G = (V,E) is a graph on n vertices and with |E| ≥ n2/4 + εn2. How many
triangles does it have?

Basically, what if we have just a few more than n2

4
edges? Clearly one cannot hope for some closed

formula because there are many such graphs and it is quite easy to form many such graphs with distinct
numbers of triangles. BUT what we are interested is in its asymptotics: how the answer behaves as n→∞.
Observe that there are

(
n
3

)
triangles in the complete graph on n vertices so any lower bound of the form

cn3 is good for us. To obtain such a lower bound we will use some (very) useful probabilistic tricks.
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Theorem 1.5. Suppose that G = (V,E) is a graph on n vertices and with |E| ≥ n2/4 + εn2. Then, G has
at least f(ε)n3 many triangles for some function f .

Proof. First, we need to make the following rather trivial observation:

Claim 1.6. Suppose that G′ = (V ′, E ′) is a graph on m vertices with |E ′| ≥ m2/4 + k. Then G′ has at
least k triangles.

Proof. Take such a G′. By Mantel’s theorem it must have a triangle. Let e ∈ E ′ be an edge from this
triangle, and consider the graph G′′ = (V ′, E ′ − {e}), the graph obtained by deleting the edge e. This
graph still has more than m2/4 edges if k > 1 and therefore must also contain a triangle (which is not the
previous triangle!). Repeat this k times.

Now, let X ⊆ V be a random subset of vertices, where each vertex is chosen with probability p (to
be determined later), independently at random. Let e(X) be the random variable counting the number of
edges induced in X. Since for every edge xy ∈ E, the probability that both x and y are in X is p2, by the
linearity of expectation we have that

E[e(X)] = |E|p2 ≥ n2p2/4 + εn2p2.

Now, let T (G) denote the number of triangles in G. Observe that we don’t know T (G) as this is the
parameter we are trying to bound. Since each triangle appears in X with probability p3, by the linearity
of expectation we have that

E[T (X)] = T (G)p3.

Moreover, by the above claim, we have the deterministic (not random) bound

T (X) ≥ e(X)− |X|2/4.

Taking the expectation of both sides and using the linearity of expectation gives

E[T (X)] = T (G)p3 ≥ |E|p2 − (np)2/4 ≥ εn2p2.

You may have noticed that we’re cheating a little bit here. E[|X|2] 6= E[|X|]2, but these quantities are
close to one another in a precise sense that we will make formal later. If you suspend your disbelief and
accept this cheat, we have that

T (G) ≥ εn2/p.

In particular, we can choose p = c/n for some large enough c, and obtain the desired result. This
completes the proof.

If you don’t completely understand all the steps in this proof yet, don’t be too worried. This was one
of many examples illustrating the power of probabilistic arguments in different areas. We will now turn to
give a quick review of knowledge that we expect to have from Math 130A.

2 The basics

2.1 Axioms of probability

Recall that a probability space consists of a sample space Ω, which is the set of all possible outcomes of our
“experiment”, a family F of subsets of Ω representing all the allowable events, and a probability function
Pr : F → R satisfying Definition (2.1).

Definition 2.1. A probability mass function (or a probability function) Pr : F → R is any function that
satisfies the following three axioms:
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1. For all E ∈ F , 0 ≤ Pr[E] ≤ 1, and

2. Pr[Ω] = 1, and

3. For any sequence of pairwise mutually disjoint events E1, E2, . . . we have

Pr[∪iEi] =
∑
i

Pr[Ei].

Suppose A,B ∈ F are two events in the sample space Ω, it is helpful to represent the relations between
them (intersection, union, complement etc) in a Venn diagram.

For convenience, we will recall some basic properties of the operations ∩ and ∪:

Commutative laws For all A,B we have A ∪B = B ∪ A and A ∩B = B ∩ A.

Associative laws For all A,B,C we have (A ∪B) ∪C = A ∪ (B ∪C) and (A ∩B) ∩C = A ∩ (B ∩C).

Distributive laws For all A,B,C we have (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C) and (A ∩ B) ∪ C =
(A ∪ C) ∩ (B ∪ C).

DeMorgan’s laws For all n ∈ N and all A1, . . . , An we have(
n⋃
i=1

Ai

)c

=
n⋂
i=1

Aci and

(
n⋂
i=1

Ai

)c

=
n⋃
i=1

Aci .

Exercise 2.2. Prove that Axiom 3 from Definition 2.1 also implies its finite version. That is, prove that
if Pr satisfies Axioms 1-3 then, in particular, for any sequence of mutually disjoint events A1, A2, . . . , AN
we have

Pr

[
N⋃
n=1

An

]
=

N∑
n=1

Pr[An].

The following propositions are simple consequences of the axioms in Definition 2.1.

Proposition 2.3. Pr[Ac] = 1− Pr[A].

Proposition 2.4. If A ⊆ B then Pr[A] ≤ Pr[B].

Proposition 2.5. Pr[A ∪B] = Pr[A] + Pr[B]− Pr[A ∩B]

A generalization of the last proposition is called the inclusion-exclusion principle and is summarized in
the following theorem.

Theorem 2.6 (Inclusion-Exclusion formula). Let A1, A2, . . . be events in a sample space Ω. Then,

Pr

[
N⋃
n=1

An

]
=

N∑
i=1

Pr[Ai]−
∑

1≤i1<i2<N

Pr[Ai1 ∩ Ai2 ] +
∑

1≤i1<i2<i3<N

Pr[Ai1 ∩ Ai2 ∩ Ai3 ]± . . .
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Proof. First, note that if an outcome is not in ∪An, then it contributes nothing to Pr[∪An]. Indeed, it
belongs to none of the An’s and therefore, the right hand side (RHS for short) doesn’t count it at all.

Second, suppose that an element x ∈ ∪An belongs to exactly m events. Then. x appears in any
summand that involves intersections only of subsets that contain x. Therefore, it contributes

m∑
k=1

(−1)k+1

(
m

k

)
= 1.

This completes the proof.

As a simple exercise one can also prove the following useful estimates that follow almost immediately
from the inclusion-exclusion formula:

Theorem 2.7. Let A1, . . . , An ⊆ Ω events in a sample space Ω. Then,

• The union bound Pr[∪ni=1Ai] ≤
∑n

i=1 Pr[Ai], and

• Simple lower bound Pr[∪Ai] ≥
∑

Pr[Ai]−
∑

Pr[Ai ∩ Aj], and

• Three-terms upper bound Pr[∪Ai] ≤
∑

Pr[Ai]−
∑

Pr[Ai ∩ Aj] +
∑

Pr[Ai ∩ Aj ∩ Ak], etc.

In general, the above theorem asserts that the inclusion-exclusion formula, as an alternating sum,
always “sandwiches” the probability we are trying to estimate.

2.2 Independence and conditional probability

In this section we introduce two of the main concepts in probability, namely, conditional probabilities, and
independence of events. We start with the latter.

To motivate the concept a bit, let us go back to the “verifying polynomial identities algorithm” for a
moment. Suppose that we want to “boost” the error probability from 1/100 to something smaller. One
way to do this is to sample a random point from a larger set, say, {1, . . . , 1000d}. This will decrease the
error to be at most 1/1000. Another way is to perform the algorithm again independently (whatever that
means...). The probability to have an error twice is at most 1/1002 = 1/10000 – not that bad! If we
repeat the algorithm k times, then the error probability becomes 1/100k which is exponentially small in
the number of trials. To get a better feeling for the word “exponential,” try to write down the number
1/100k even for small k (for example, take k = 10), and observe that this is a super tiny constant. In order
to make the above arguement rigorous, we need to turn the word “indepedent” into a mathematical term:

Definition 2.8. Two events E,F ∈ F are called independent if

Pr[E ∩ F ] = Pr[E] Pr[F ].

More generally, events E1, E2, . . . , En are called mutually independent if for any subset I ⊂ [n] we have

Pr[
⋂
i∈I

Ei] =
∏
i∈I

Pr[Ei].

That is, if Ei is the event “the ith time that we run our algorithm is a failure”, and we run the algorithm
k times independently, then the probability to fail in all of them is precisely

Pr[
k⋂
i=1

Ei] =
k∏
i=1

Pr[Ei].
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Next, we discuss conditional probability. As an illustrating and nice example, consider the following
problem: suppose that a couple has two kids and that the genders and DOB of the kids are independent.
Now, suppose we are told that the older kid is a boy. What is the probability that the younger one is a
boy as well? Clearly, as the genders are independent, the answer is 1/2.

Next, suppose we are told that at least one of the kids is a boy. What is the probability that both of
them are boys? In this case, if we examine all the options, it is not hard to convince ourselves that the
answer is 1/3 (DO IT!).

Lastly, suppose we are told that one of the kids is a boy that was born on a Monday. What is the prob-
ability that both of them are boys? In particular, does the additional information affect the probability
that we’ve just computed?

In order to be able to compute these probabilities, we need to introduce the concept of conditional
probabilities.

Definition 2.9. Let E,F ∈ F . Then, the probability that the event E occurs given that the event F occurs
is

Pr[E | F ] =
Pr[E ∩ F ]

Pr[F ]
.

Observe that if E and F are independent and Pr[F ] 6= 0, then we have

Pr[E | F ] =
Pr[E ∩ F ]

Pr[F ]
=

Pr[E] Pr[F ]

Pr[F ]
= Pr[E].

That is, at least on an intuitive level, if E and F are independent, then any information about one of
them does not affect the probability of the other event.

As an almost immediate corollary from Definition 2.9, we obtain the following multiplication rule:

Theorem 2.10 (The multiplication rule). Let E1, . . . , En ⊆ Ω be any events. Then,

Pr[∩ni=1Ei] = Pr[E1] · Pr[E2 | E1] · Pr[E3 | E1 ∩ E2] · · ·Pr[En | ∩n−1
i=1 Ei].

Next, suppose that E,F ⊆ Ω are events. We can separate E into the parts that live in F and those
that live outside of F , i.e.

E = (E ∩ F ) ∪ (E ∩ F c),

which is a union of two disjoint events. Therefore, by Axiom 3 we have that

Pr[E] = Pr[E ∩ F ] + Pr[E ∩ F c],

which by the multiplication rule gives us

Pr[E] = Pr[E | F ] Pr[F ] + Pr[E | F c] Pr[F c].

This simple formula can be generalized to arbitrary events as follows:

Theorem 2.11 (The law of total probability). Suppose that F1, . . . , Fn ⊆ Ω are disjoint events for which
Ω = ∪Fi, and let E ⊆ Ω be any event. Then,

Pr[E] =
n∑
i=1

Pr[E | Fi] Pr[Fi]. (1)
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It might not look like it, but the law of total probability is immensely powerful. Effectively, it lets you
compute the probability of any event E by conditioning on any partition ∪Fi that you want. The subtlety
is in choosing the “correct” partition for the problem at hand, as the next example illustrates.

Exercise 2.12. A man possesses five coins, two of which are double-headed, one is double-tailed, and two
are normal. He shuts his eyes, picks a coin at random, and tosses it.

1. What is the probability that the lower face of the coin is a head?

2. He opens his eyes and see that the coin is showing heads. What is the probability that the lower face
is heads as well?

3. He shuts his eyes again, and tosses the coin again. What is the probability that the lower face is
head?

4. He opens his eyes and sees that the coin is showing heads. What is the probability that the lower face
is a head?

5. He discards this coin, picks another one at random (but not the same coin), and tosses it. What is
the probability that it shows heads?

Exercise 2.13 (The prosecutor’s fallacy). Let G be the event that an accused person is guilty, and let T
be the event that some testimony is true. Some lawyers have argued on the assumption that Pr[G | T ] =
Pr[T | G]. Show that this holds if and only if Pr[G] = Pr[T ].

Exercise 2.14 (Galton’s paradox). You flip three fair coins. At least flips come up the same and it is an
even chance that the third is heads or tails. Therefore, Pr[all alike] = 1

2
. Do you agree? If not, what should

this probability be instead?

2.3 Application: upper bounding an “atom-probability”

We now give a simple application of conditional probability to random sums. In particular, we will learn
two tricks which will be very useful (and won’t be explained again) in later sections.

Suppose that ā = (ai)
n
i=1 ∈ Rn is not the all-zero vector (that is, aj 6= 0 for at least one 1 ≤ j ≤ n).

Let x̄ = (xi)
n
i=1 ∈ {0, 1}n be a 0/1 vector chosen according to a uniform distribution (meaning, each of the

2n possible vectors can be chosen with the same probability 2−n). The parameter (or more formally, the
random variable) that we are interested in is the inner product of the two vectors, that is,

Sn := ā · x̄ =
n∑
i=1

aixi.

The random variable Sn is referred to as a “random sum”. Now, we define its atom probability as
follows:

ρ(Sn) = max
m∈R

Pr[Sn = m].

(exercise: why could we write max and not sup?) We will revisit this random variable many times in these
notes, but for now, let us prove the following simple upper bound on ρ(Sn).

Proposition 2.15. For all m ∈ R we have that

Pr[ā · x =
∑
i

aixi = m] ≤ 1

2
.
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Proof. The first trick that we need to take away from this is that a randomly chosen vector x̄ ∈ {0, 1}n
can be seen as x̄ = (x1, . . . , xn), where the xi’s are independent, and identically distributed (from now on
i.i.d), random variables, with Pr[x1 = 1] = Pr[x1 = 0] = 1

2
.

Exercise 2.16. Prove it!

The second trick that we need to understand is how to use conditional probability here. Observe that
since ā 6= 0̄, there must exist a coordinate 1 ≤ j ≤ n for which aj 6= 0. By relabelling if necessary, we may
assume that a1 6= 0. Now, suppose we already know the values of the partial vector x̄(1) = (x2, . . . , xn).
In particular, we already know the value s =

∑n
i=2 aixi, and we have that Sn = a1x1 + s. The important

observation here is that, no matter what s is, there is at most one value of x1 for which Sn = m, for
a fixed m (WHY?). Since x1 takes one of two values, each occurring with probability 1/2, we have
Pr[Sn = m | x̄(1) = b̄(1)] ≤ 1/2 for any b̄(1). Now we use the law of total probability, conditioning on the
possible values of the partial vector x̄(1):

Pr[Sn = m] =
∑

b̄(1)∈{0,1}n−1

Pr[Sn = m | x̄(1) = b̄(1)] Pr[x̄(1) = b̄(1)] ≤ 1

2

∑
b̄(1)∈{0,1}n−1

Pr[x̄(1) = b̄(1)] =
1

2
,

where the last equality follows from the fact that Pr is a probability mass function. This completes the
proof.

Next we show how to obtain a much stronger bound using a beautiful combinatorial argument.

2.4 Improved atom probability: Sperner’s theorem and a problem of Little-
wood and Offord

In this section we will give a simple solution to a problem that we will revisit many times.

Exercise 2.17. Let Ω be the set of all perumtations of {1, . . . , n}. What is the probability that the elements
of a fixed subset S ⊆ {1, . . . , n} of size k will be an initial segment of a randomly chosen permutation?

If you solved the above exercise correctly, then you obtained that the answer is 1

(nk)
. This fact will be

the key in the proof of the following theorem due to Sperner:

Theorem 2.18 (Sperner’s theorem). Suppose that F is a collection of subsets of [N ] such that there are
no two subsets A 6= B ∈ F for which A ⊂ B. Then, |F| ≤

(
n
n/2

)
.

Proof. Let Ω be the set of all permutations of {1, . . . , n}, equipped with a uniform distribution. For every
S ∈ F , let ES be the event “S is an initial segment of the chosen permutation”. Since F contains no two
sets S, T ∈ F with S ⊂ T , it follows that the events (ES)S∈F are mutually disjoint. In particular, it follows
that ∑

S∈F

Pr[ES] ≤ 1.

Now, since Pr[ES] = 1

( n
|S|)

(this follows from the above exercise), and since
(
n
|S|

)
≤
(
n
n/2

)
for all |S| (the

middle binomial coefficient is always the biggest one. Prove this!), we conclude that

|F|/
(
n

n/2

)
≤ 1,

which completes the proof.
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We will now use Sperner’s theorem to solve the following, seemingly unrelated, problem, posed by
Littlewood and Offord in 1938, considering the distribution of zeroes of random polynomials. Suppose
that a1, . . . , an are given real numbers, with absolute value at least 1. How many sums of the form∑

i εiai, where εi ∈ {−1, 1} can lie within an open unit interval? They proved that this number is at
most c logn√

n
2n for some fixed constant c. Later on, Erdős found an elegant way to obtain an optimal bound

using Sperner’s theorem. This result is now known as the Erdős-Littlewood-Offord inequality and has a
tremendous amount of applications and extensions.

Theorem 2.19 (Erdős, 1945). Let a1, . . . , an be real numbers of absolute value at least one. For all open
unit intervals I, there are at most

(
n
bn/2c

)
vectors (εi)

n
i=1 ∈ {−1, 1}n such that

∑
εiai ∈ I.

Proof. Note that by changing signs of the ais we do not change the distribution, and therefore we are
allowed to assume that they are all positive. Now, fix an open, unit interval I, and let SI = {(εi)ni=1 ∈
{±1}n :

∑
i εiai ∈ I}. For each vector ε = (εi) ∈ S, let Aε ⊆ [n] be the set of all indices i for which εi = 1,

and let A := {Aε : ε ∈ SI}. In order to complete the proof, it is enough to claim that A contains no sets
S, T ∈ A for which S ⊂ T , and then apply Sperner’s theorem. Indeed, suppose that there are ε 6= ε′ with
Aε ⊂ Aε′ . As all the ais have absolute value at least 1, it follows that∣∣∣∑ εiai −

∑
ε′iai

∣∣∣ ≥ 1

and therefore they cannot both lie in I. This completes the proof.

Note that the above theorem gives the best possible bound as the sequence ai = 1 for all i shows.
Clearly, the number of vectors ε can be large only if there are many cancelations. That is, intuitively, it
means that the sequence ai has some ‘nice’ additive properties. What if, for example, we enforce all the
ai’s to be distinct integers? can we do better?

2.5 Bayes’s Formula

Let B1, . . . , Bn be a set of disjoint events for which ∪Bi = Ω. Suppose now that and event A has occurred
and we are interested in determining which one of the Bj’s also occurred. Then, by (1) we have the
following proposition:

Proposition 2.20 (Bayes’s formula).

Pr[Bj | A] =
Pr[A ∩Bj]

Pr[A]
=

Pr[A | Bj] Pr[Bj]∑n
i=1 Pr[A | Bi] Pr[Bi]

.

Exercise 2.21. Prove it!

As a simple application to Bayes’s formula, consider the following example: suppose that we have 3
coins. One of them is biased with a probability 2/3 for H, and the other two are unbiased. We don’t know
which of them is biased and we would like to identify it. We permute the three coins at random and then
flip all of them. Suppose that the first and second coins turned up H and the third is T. What is the
probability that the first coin is the biased one?

Clearly, before flipping them, the probability is 1/3 as we permuted the coins at random and each coin
has equal probability to be the first. Now, let Ei be the event “the ith coin is biased” (where i = 1, 2, 3),
and let B be the event “the outcome is HHT”. We wish to compute the probability Pr[E1 | B].

First, we compute

Pr[B | E1] = Pr[B | E2] =
2

3
· 1

2
· 1

2
=

1

6
,
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and

Pr[B | E3] =
1

2
· 1

2
· 1

3
=

1

12
.

Now, using Bayes’s formula we have that

Pr[E1 | B] =
Pr[B | E1] Pr[E1]∑3
i=1 Pr[B | Ei] Pr[Ei]

=
1
6

1
6

+ 1
6

+ 1
12

=
2

5
.

That is, based on the outcome, it is more likely that coin 1 is biased.

2.6 Application: Karger’s algorithm for finding a min-cut

Let G = (V,E) be any graph. A cut of G is a partition of its vertices into two non-empty sets V = A∪B.
Every cut (A,B) of G determines the cut-set E(A,B), which is the set of all edges in E with one endpoint
in A and the other endpoint in B. The size of a cut (A,B) is defined as |E(A,B)|, that is, as the number
of edges in the corresponding cut-set. The min-cut problem is about finding a cut with a cut-set of a
minimum size.

Observe that in order to find a min-cut using a naive approach, one could go over all 2n possible par-
titions, counting the number of cut edges and then take the minimum. In particular, the running time is
exponential since there are 2n possible partitions. Here we will present a beautiful and simple randomized
algorithm due to Karger that can find a min-cut with probability (say) 0.9999 in running time which is
only polynomial in n.

In order to describe the algorithm we need to set up some notation. The main operation in the algo-
rithm is edge contraction. That is, when we say “contracting the edge uv” we mean that we merge the two
vertices u and v into one vertex, eliminate all edges connecting u and v, and retain all other edges in the
graph. The new graph may have parallel edges but no self-loops (WHY?).

The algorithm consists of n−2 rounds, where in each round i, we pick an edge uv uniformly at random
and contract it. Note that after each round, the number of vertices in the new graph reduces by exactly
one, and therefore, after the (n−2)nd round we are left with only two vertices. The algorithm then outputs
the set of all the edges connecting these two remaining vertices.

It is not hard to convince yourself that every cut-set during the execution of the algorithm is also a
cut-set of the original graph (actually convince yourself!). On the other hand, clearly not every cut-set
appears as a cut-set in an intermediate stage of the algorithm. Therefore, even though the algorithm
outputs a cut-set of the original graph, there is no guarantee that it is indeed a min-cut. The main result
that we are going to prove is the following:

Theorem 2.22 (Karger). The algorithm outputs a min-cut with probability at least 1

(n2)
= 2

n(n−1)
.

Before proving the theorem, let us explain how we can indeed find a min-cut with high probability in
polynomial time. Clearly, the algorithm itself is a polynomial time algorithm (there are roughly n rounds,
and in each round we contract one edge). Now, suppose we run this algorithm Cn2 many times for some
constant C > 0, independently at random, and then declare the the minimal output among the Cn2 out-
puts is a min-cut. What is the probability that it is not?

Since by Theorem 2.22 we know that an output is a min-cut with probability at least 2/n(n− 1), the
probability that we missed a min-cut Cn2 times is at most

(1− 2/n(n− 1))Cn
2 ≤ e−2C ,
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where in the last inequality we used the simple inequality 1− x ≤ e−x which is valid for all x ∈ R.
Finally, by taking C to be (say) 100, we obtain a very small probability for an error.
Now we turn to the proof of Theorem 2.22.

Proof. Let k be the size of the min-cut set of G. The graph may have several cut-sets of minimum size, and
we compute the probability of finding one specific such set C. Since C is a cut-set in the graph, removal of
the set C partitions the set of vertices into two sets, S and V −S, such that there are no edges connecting
vertices in S to vertices in V − S.

Assume that, throughout an execution of the algorithm, we contract only edges that connect two ver-
tices in S or two vertices in V − S, but not edges in C. In that case, all the edges eliminated throughout
the execution will be edges connecting vertices in S or vertices in V − S, and after n − 2 iterations the
algorithm returns a graph with two vertices connected by the edges in C. We may therefore conclude that,
if the algorithm never chooses an edge of C in its n − 2 iterations, then the algorithm returns C as the
minimum cut-set.

This argument gives some intuition for why we choose the edge at each iteration uniformly at random
from the remaining existing edges: if the size of the cut C is small and if the algorithm chooses the edge
uniformly at each step, then the probability that the algorithm chooses an edge of C is small - at least
when the number of edges remaining is large compared to the size of C.

Now, let Ei be the event that the edge contracted in the i-th round of the algorithm is not in C, and
let Fj = ∩ji=1Ei be the event that none of the first j contracted edges belong to C. Our goal is to lower
bound Pr[Fn−2]. To this end, we use the multiplication rule

Pr[Fn−2] = Pr[En−2 | Fn−3] Pr[En−3 | Fn−4] · · ·Pr[E2 | F1] Pr[E1], (2)

and observe that if Fj holds, then the current graph has n− j vertices, and since the size of the min-cut is
k, we obtain that the graph has at least k(n− j)/2 edges. Indeed, every vertex must have degree at least
k (WHY?). Therefore, by picking an edge at random, the probability that it does not belong to C is at
least

Pr[Ej+1 | Fj] ≥ 1− k

k(n− j)/2
= 1− 2

n− j
=
n− j − 2

n− j
.

Plugging it into (2) we obtain that

Pr[Fn−2] ≥
n−3∏
j=0

(
n− j − 2

n− j

)
=

2

n(n− 1)
.

This completes the proof.

3 Discrete random variables

3.1 Random variables and expectation

So far we have dealt with events and their probabilities. Another very important concept in probability is
that of a random variable. A random variable is simply a function X defined on the points of our sample
space Ω. That is, associated with every ω ∈ Ω, there is a value X(ω). For the time being, we will only
consider functions that take values over the reals R, but the range of a random variable can be any set.
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Examples 3.1. 1. Experiment: roll two dice. Clearly, Ω = {(a, b) | 1 ≤ a, b ≤ 6} (and hence |Ω| = 36).
Define a random variable X : Ω → R as follows. X((a, b)) = a + b (that is, we don’t care about the
actual outcome of the experiment but only about the sum of the numbers on the dice). What can we
say about Pr[X = x]? trivially, Pr[X = x] = 0 for all x ≤ 1 or x ≥ 13. For all the other values,
there is a non-zero probability (compute it!). An important observation is that

(a) “X = x” is an event and can be formally described as Ex := {(a, b) ∈ Ω | a+ b = x}.
(b) For all x 6= y the events Ex and Ey are disjoint.

(c) Ω = ∪xEx (That is, all the events defined by X form a partition of the sampling space). In
particular, we have that

∑
x Pr[X = x] = 1.

2. Experiment: do n independent trials each of which has a success probability p. Let X bethe number
of successes.

3. Experiment: do infinitely many independent trials each of which has a success probability p, and let
X be the first time we had a success.

Given a random variable X, we define its cumulative distribution function, or, more simply, its distri-
bution function of FX as follows:

FX(x) = Pr[X], −∞ < x <∞.

That is, for all real values x, FX(x) outputs the probability that the random variable X is at most x.
A random variable X which has only finitely or countable many possible values is called a discrete

random variable. For such a variable, the function pX(xi) := Pr[X = xi] is called its probability mass
function. Whenever the random variable we are dealing with is clear from the context, we will delete the
subscript X and simply write p(x).

The probability mass function has the following properties:

1. p(xi) > 0 for all i (we don’t list outcomes which occur with probability 0).

2. For any subset A we have Pr[X ∈ A] =
∑

x∈A p(x).

3.
∑

i p(xi) = 1 (that is, X has some value).

The definition of independence of events extends to random variables as follows:

Definition 3.2. Two random variables X, Y are called independent if and only if

Pr[X = x, Y = y] = Pr[X = x] · Pr[Y = y]

for all x, y.
More generally, random variables X1, . . . , Xn are called mutually independent if and only if for all

I ⊆ [n] and for every possible (xi)i∈I we have that

Pr[∩i∈IXi = xi] =
∏
i∈I

Pr[Xi = xi].

Given a random variable X, we define its expected value as

E[X] =
∑
w∈Ω

Pr[{w}]X(w).
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Another expression for the expectation (prove its equivalence!) is

E[X] =
∑

x∈range(X)

xPr[X = x].

This is quite straightforward to verify using the fact that

Pr[X = x] =
∑

w∈Ω:X(w)=x

Pr[{w}].

A key property of expectation that significantly simplifies its computation is the linearity of expectation.
This property is summarized in the following theorem:

Theorem 3.3. Let X1, . . . , Xn be random variables, and let a0, . . . , an be any numbers. Then,

E[a0 +
n∑
i=1

aiXi] = a0 +
n∑
i=1

aiE[Xi].

As we will see in the next section, given a random variable X, sometimes we are interested in calculating
the expectation of some function of X (for example, we are interested at E[X2], or E[1/X] etc.). Observe
that for any function g we have that g(X) is also a random variable. Therefore, by the definition of
expectation we can write:

E[g(X)] =
∑
x

g(x) Pr[X = x].

(convince yourselves!)
For example, imagine that X is a r.v with probability mass function Pr[X = 1] = Pr[X = −1] = 1

2
, and

let g1(x) = x2 + 2, g2(x) = ex, and g3(x) = e2πitx (recall from complex analysis that eit = cos t+ i sin t).
Then,

E[g1(X)] = ((−1)2 + 2)
1

2
+ (12 + 2)

1

2
= 3,

E[g2(X)] = e−1 · 1

2
+ e1 · 1

2
,

and

E[g3(X)] = e−2πit · 1

2
+ e2πit · 1

2
= cos 2πt.

The following theorem asserts that in case that the random variables are independent, we can also
compute expectation of products :

Theorem 3.4. Suppose that X1, . . . , Xn are mutually independent random variables and let g1, . . . , gn be
functions of one variable. Then,

E[g1(X1) · g(X2) · · · gn(Xn)] = E[g1(X1)] · E[g2(X2)] · · ·E[gn(Xn)].

Proof. Prove it by induction on n.

3.2 Application: Expected number of cycles in a random permutation

Recall that a permutation is just a bijection π : [n] → [n]. Now, given a permutation π, we can define its
associated directed graph Dπ as follows: The vertices are V = [n], and the directed edges (namely, ordered
pairs) are E = {(j, π(j)) | j ∈ [n]}. A moment’s thought now reveals that this graph must consists of
a collection of vertex disjoint cycles (self loops and cycles of length two are allowed), covering the entire
vertex-set.
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Exercise 3.5. Pick two arbitrary permutations of length 10 and draw their associates digraphs.

Exercise 3.6. Find permutations π1, π2, π3 of length 10 with 10, 1, and 4 many cycles, respectively.

A natural question to ask is:

Question 3.7. How many cycles a “typical” permutation has? or in other words, what is the expected
number of cycles in a randomly chosen permutation?

We prove the following theorem:

Theorem 3.8. The expected number of cycles in a randomly chosen permutation of length n is

n∑
j=1

1

j
= lnn+ C + εn,

where εn → 0 as n→∞.

Proof. How can we even start? First, let X be a random variable defined on the set of all permutations of
length n (this set is usually denoted as Sn) as

X(π) = the number of cycles in the permutation π.

Next, our goal is to “break” this variable into a sum of simpler random variables. The main observation
here is the following: suppose we have a cycle of length k, and that we assign each of its members a “weight”
1/k. Then, the total number of weights along this cycle is exactly 1. This leads us to define the following
random variables:

For all 1 ≤ i ≤ n, let Yi = the length of the (unique) cycle that element i belongs to.

From the above discussion, it is clear that we have

X =
n∑
i=1

1

Yi
,

and therefore, by linearity of expectation we have

E[X] =
n∑
i=1

E[1/Yi].

Observe that, by symmetry, all the Yi’s are distributed the same (CONVINCE YOURSELF!) and
therefore, we have that

E[X] = nE[1/Y1].

Now we calculate E[1/Y1]. By definition, we have that

E[1/Y1] =
n∑
j=1

1

j
Pr[element 1 is in a cycle of length j]. (3)

Claim 3.9. For all 1 ≤ j ≤ n we have that

Pr[element 1 is in a cycle of length j] =
1

n
.
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Proof. The probability that 1 is on a cycle of length 1 (meaning, a self loop) is precisely 1/n. The
probability that 1 is on a cycle of length 2 is n−1

n
· 1
n−1

= 1
n

(we have n− 1 ways out of n to choose π(1),
then we need to choose π(π(1)) = 1 out of n − 1 possibilities. Try to complete the proof by writing the
formula for a general 1 ≤ j ≤ n.

All in all, plugging the estimate from Claim 3.9 into (3) yields

E[1/Y1] =
1

n

n∑
j=1

1

j
,

and therefore,

E[X] = nE[1/Y1] =
n∑
j=1

1

j
= lnn+ C + εn.

This complete the proof.

Example 3.10 (A riddle – Beating the intuition). Suppose that n prisoners are playing the following
game: there are n boxes, and each box contains a card with a name of exactly one prisoner and every name
appears exactly once. The game is played in n rounds, where in round i, prisoner i goes into the room with
the boxes and can open up to n/2 boxes. If one of the opened boxes contains their name, they close all the
other boxes and immediately get out of jail, get $1,000,000 and start a new life (without seeing/talking to
their prisoner friends). If they fail in finding their name in one of these boxes, then they and all the other
remaining prisoners are immediately executed.

The rules are that no communication between the prisoners is allowed after the game starts (they can
talk before the game starts and agree on some strategy). Moreover, the boxes are labelled and the cards are
distributed uniformly at random among the boxes.

Try to come up with a good strategy which can help all the prisoners to start a new life.

We will show how to find such a strategy that with probability at least 0.3 ensures that all prisoners will
be able to start a new life, regardless of the number of prisoners.

Proof. The strategy is simple – the prisoners assign themselves numbers ahead of time and prisoner i opens
box i. They see a name (which corresponds to a number) on the card. If this is their name, then they are
happy and the game is over for them. Otherwise, they see some name j. Then they open box j, etc until
they open n/2 boxes.

Observe that this strategy can only fail if the corresponding permutation has cycles of length larger
than n/2. Let’s count the number of such “bad” permutations. We can upper bound the number of such
permutations by (check!)

n∑
k=n/2

(
n

k

)
(k − 1)!(n− k)! = n!

n∑
k=n/2

1

k
,

which by the inequality
n∑

k=n/2

1

k
≤
∫ n+1

n/2−1

1

x
dx = ln

n+ 1

n/2− 1
≈ ln 2 + o(1)

is at most 0.7n!. In particular, since the permutation (the names in the boxes) is random, the probability
that it has no cycles of length larger than n/2 is at least 0.3. This completes the proof.
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3.3 Variance of random variables

Given a random variable X, we would like to summarize the essential properties of its distribution function
(which is sometimes very complicated to calculate!) by certain measures. One example for such a measure
is E[X], which gives us the weighted average of the possible values of X. The main disadvantage of the
expectation is that it does not measure our “risk” (in case that X meausres our gain/loss in some luck
game), or more precisely, the “variation” (or spread), of the values of X. To this aim we define the variance
of X.

Definition 3.11. Let X be any random variable. Its variance is defined as

V ar(X) = E[(X − E[X])2].

That is, the variance of X is the weighted average of the “distance squere” of X from its expectation.
Intuitively, if V ar(X) is “large”, then the values of X differ from the expectation “a lot”.

As an immediate consequence from the definition, since we take an expectation of something squared,
we have that V ar(X) ≥ 0, regardless of what X is.

Another consequence, which follows quite easily by combining the definition with linearity of expecta-
tion, is the following alternative definition for variance:

V ar(X) = E[X2]− (E[X])2 .

In technical problems, you will find that this definition of variance is usually easier to use. The reason
why I chose to define it via the first definition is that it doesn’t hide the idea behind the variance.

Another simple and interesting consequence from both definitions of the variance combined is that

(E[X])2 ≤ E[X2],

for every r.v X. (prove it!).
To have a little feeling for how to work with the first definition of the variance let us prove the following

intuitive proposition:

Proposition 3.12. Let X be a discrete random variable. Then, V ar(X) = 0 if and only if X is constant
(by X is a constant we mean that there exists some constant C ∈ R for which Pr[X = C] = 1).

Proof. Suppose that X is a constant. Then, we have that with probability 1 we have both X = C and
X2 = C2. In particular, we have that

E[X] = C and E[X2] = C2,

and therefore, by the second defintion of variance we conclude that

V ar(X) = E[X2]− (E[X])2 = C2 − C2 = 0.

For the other direction, suppose that V ar(X) = 0 and we wish to show that there exists some constant
C for which Pr[X = C] = 1. Assume towards a contradiction that there exists two constants C1 6= C2

for which 0 < Pr[X = C1],Pr[X = C2] < 1. Without loss of generality we may assume that C1 6= E[X].
Therefore, from the first definition of variance we conclude that

V ar(X) = E[(X − E[X])2] ≥ (C1 − E[X])2 Pr[X = C1] > 0,

which contradicts the assumtion V ar(X) = 0. This completes the proof.

3.4 Special (discrete) distributions

In this section we review some special discrete distributions that will play a crucial role in later sections.
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3.4.1 Bernoulli random variables

A random variable X is said to be distributed according to Bernoulli distribution with parameter p, and
denoted by X ∼ Ber(p) if and only if its probability mass function is

Pr[X = 1] = p, and Pr[X = 0] = 1− p.
We won’t over estimate Bernoulli random variables if we say that these are probably the most (or at

least in the top 5) important random variables in probability. The reasons for that will be clear in later
sections. For now, let us record that E[X] = p and that V ar(X) = p(1− p) (prove it!).

3.4.2 Binomial distribution

We say that a random variable is distributed according to a binomial distribution with parameters n and
p, and denote it by X ∼ Bin(n, p), if and only if its probability mass function is

Pr[X = k] =

(
n

k

)
pk(1− p)n−k, where k = 0, . . . , n.

As a motivating story, one can think about the following problem: Suppose that n independent trials
are being performed, each of which has a success probability p. Let X be the random variable counting
the number of successes. Then X ∼ Bin(n, p). Now, for each trial i we define a random variable Xi which
outputs 1 if the ith trial is a success and 0 otherwise. Clearly, Xi ∼ Ber(p) for all i, and more importantly,
we have

X = X1 + . . .+Xn.

Therefore, by the linearity of expectation and the fact that E[Ber(p)] = p, we obtain that

E[X] = E[X1 + . . .+Xn] = E[X1] + . . .+ E[Xn] = np.

There is also a shortcut to calculate the variance (and we will see it in a later section), but for now let
us just state, without a proof, that V ar(X) = np(1− p).

3.4.3 Geometric distribution

We say that X ∼ Geo(p) (that is, X is distributed according to a geometric distribution with parameter
p) if and only if its probability mass function is

Pr[X = k] = (1− p)k−1p, for k = 1, 2, . . .

A geometric random variable counts the number of trials required to see the first success, when inde-
pendent trials with success probability p are being performed.

Indeed, Pr[X = 1] = p is the probability to have a success in the first trial, Pr[X = 2] = (1− p)p is the
probability that the first trial is a failure and the second is a success, Pr[X = 3] = (1 − p)2p is precisely
the probability to fail in first two trials and have a first success in the third, etc.

The expectation of X is E[X] = 1
p

and its variance is V ar(X) = 1−p
p2

(can you prove it?).

3.4.4 Uniform distribution

Given a set S = {x1, . . . , xn}, we say that a random variable X is uniformly distributed over S, and is
denoted by X ∼ Uniform(S) if and only if Pr[X = xi] = 1

n
for all 1 ≤ i ≤ n.

It is relatively straight forwards to compute (do it!) that

E[X] =
x1 + . . .+ xn

n
,

and

V ar(X) =
x2

1 + . . .+ x2
n

n
−
(
x1 + . . .+ xn

n

)2

.
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3.4.5 Poisson distribution

A random variable X is distributed according to poisson distribution with parameter λ, and denoted by
X ∼ Poisson(λ) if and only if its probability mass function is

Pr[X = k] = e−
λk

k!
, where k = 0, 1, . . . .

Its expectation is E[X] = λ and its variance is V ar(X) = λ. It is a good exercise to calculate these

parameters by yourselves (Hint: recall the Taylor expansion of ex =
∑∞

k=0
xk

k!
).

The main takeaway is the following theorem that, roughly speaking, asserts that poisson distribution
is a “good” approximation for binomial distribution.

Theorem 3.13. Suppose that n is “large” and that p is “small”. Then for X ∼ Bin(n, p), we can
“approximate” X by assuming that X ∼ Poisson(λ), where λ = np. That is, for all fixed k, if n goes to
infinity then (

n

k

)
pk(1− p)n−k → e−λ

λk

k!
.

Proof. Let us fix a k and calculate

lim
n→∞

(
n

k

)
pk(1− p)n−k = lim

n→∞

n(n− 1) · · · (n− k + 1)

k!

λk

nK

(
1− λ

n

)n(
1− λ

n

)−k

= lim
n→∞

λk

k!
e−λ,

where in the last equality we used the following fact that we know from calculus:

lim
n→∞

(
1− λ

n

)n
= e−λ.

This completes the proof.

Before we move on to the next topic, let us give the following somehow surprising example:

Example 3.14. An experiment with success probability p is being performed n times. Let X be the number
of heads, and Y be the number of tails. Clearly, X and Y are not independent as Y = n − X (so in
particular, knowing X we can compute Y ). BUT suppose now that the experiment is being performed a
random number of times N , where N ∼ Poisson(λ). Show that now X and Y are independent!

4 Continuous random variables

In this section we learn about continuous random variables. A random variable X is continuous if there
exists a non-negative function f so that, for every interval I ⊆ R, we have that

Pr[X ∈ I] =

∫
I

f(x)dx.

The function f = fX is called the density of X.
For a random variable X with a density function f , its distribution function F (x) := FX(x) is defined

by

F (x) =

∫ x

−∞
f(t)dt.
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Observe that F (x) = Pr[X ≤ x].
Since a density function is not unique (for example, changing finitely many values of f cannot change

the integral), we will usually assume that the function f is continuous in all but at most finitely many
jumps, and therefore we have that F ′(x) = f(x) for all x for which F is differential at.

Density function has the same role as the probability mass function for discrete random variables, and
it measures how “probable” certain subsets of R are. The following proposition summarizes its properties
(and is left as an exercise):

Proposition 4.1. Let X be a random variable with density function f . Then,

1.
∫∞
−∞ f(x)dx = 1,

2. Pr[X = x] = 0 for all x ∈ R,

3. Pr[a ≤ X ≤ b] =
∫ b
a
f(x)dx.

Example 4.2. Suppose that X is a random variable with a density function

fX(x) =

{
3x2 if x ∈ [0, 1]

0 otherwise.

Let Y = 1−X4 and compute its density function fY (y).

Proof. The plan for solving this problem goes as follows: first, we compute Y s distribution function FY (y).
Then, we define fY (y) = F ′(y) in all “relevant” points.

Now, observe that fY (y) is non-zero only for y ∈ [0, 1] as its values are restricted to that interval
(WHY?). Next, let y ∈ (0, 1), and recall that

FY (y) = Pr[Y ≤ y] = Pr[1− y ≤ X4] = Pr[(1− y)1/4 ≤ X].

Finally, by definition we have that

Pr[(1− y)1/4 ≤ X] =

∫ 1

(1−y)1/4
3x2dx.

Therefore, we have
fY (y) = F ′(y) = −3(1− y)1/2(−1/4)(1− y)−3/4,

for all y ∈ (0, 1). For y /∈ (0, 1) we have fY (y) = 0. This completes the proof.

4.1 Expectation and variance

Analogously to the discrete case, we define

E[X] =

∫ ∞
−∞

xf(x)dx,

and

E[g(X)] =

∫ ∞
−∞

g(x)f(x)dx. (4)

The variance is defined as
V ar(X) = E[X2]− (E[X])2 .

Example 4.3. Let f(x) =

{
λe−x/20 if x ≥ 0

0 otherwise.
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1. Find a value of λ for which f(x) is a density function.

2. Let X be a random variable with f as its density function. Compute Pr[X ≤ 10].

3. Compute E[X], E[X2], and V ar(X).

Proof. By definition, all λ ≥ 0 the function f is non-negative. Therefore, in order to make it a density
function, we need to choose λ for which ∫ ∞

−∞
f(x)dx = 1.

Observe that ∫ ∞
−∞

f(x)dx =

∫ ∞
0

λe−x/20dx =
−λ
20
· e−x/20 |∞0 = λ/20.

Therefore, for λ = 20 the function f(x) is a density function.
Now, to calculate Pr[X ≤ 10], we need to calculate the integral∫ 10

−∞
f(x)dx.

(do it yourselves!).
For its expectation, we need to calculate

E[X] =

∫ ∞
−∞

20xe−x/20dx,

which can be done by the integration-by-parts principle.
Similarly, we compute

E[X2] =

∫ ∞
−∞

20x2e−x/20dx,

and then combine the results to compute the variance as

V ar(X) = E[X2]− (E[X])2 .

Please complete the missing details by yourselves!

For non-negative random variables we can find the following proposition useful in calculating the
expectation:

Proposition 4.4. Let X be a random variable with density function f . Suppose that f(x) = 0 for all
x < 0. Then,

E[X] =

∫ ∞
0

Pr[X ≥ x]dx.

Proof. From the definition of a density function, we know that

Pr[X ≥ x] =

∫ ∞
y=x

f(y)dy.

Therefore, we obtain that ∫ ∞
0

Pr[X ≥ x]dx =

∫ ∞
0

(∫ ∞
y=x

f(y)dy

)
dx.

Finally, by interchanging the order of integration, we obtain that the above quantity equals∫ ∞
0

(∫ y

x=0

f(y)dx

)
dy =

∫ ∞
0

f(y)

(∫ y

x=0

1dx

)
dy

∫ ∞
0

yf(y)dy = E[X].

This completes the proof.
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Exercise 4.5. Prove the following:

1. Let X1, X2, . . . , Xn be iid random variables for which E[X−1
i ] exists. Show that if m ≤ n, then

E[Sm/Sn] = m/n,

where Sm = X1 + . . .+Xm.

2. Let X be a non-negative random variable with density function f . Show that

E[Xr] =

∫ ∞
0

rxr−1 Pr[X > x]dx.

4.2 Special (continuous) distributions

As in the discrete case, we will now summarize some famous distributions for continuous random variables.

4.2.1 Uniform distribution

We say that a continuous random variable X is distributed according to a uniform distribution over the
interval [a, b], and denote it by X ∼ U [a, b], if and only if its density function is

f(x) =

{
1
b−a if x ∈ [a, b]

0 otherwise.

That is, all the points in the interval [a, b] have the same “mass”, and points outside this interval have
“mass zero”.

It is a good (and relatively easy) exercise to prove the following:

• E[X] = b+a
2
.

• V ar(X) = (b−a)2

12
.

Exercise 4.6. Calculate the distribution function F (x) of X ∼ U [a, b].

Example 4.7. A stick of length 1 is split at a point U that is uniformly distributed over (0, 1). Determine
the expected length of the piece that contains the point p, where p is some arbitrary point 0 < p < 1.

Proof. Fix some 0 < p < 1, and let X be a random variable that measures the length of the piece that
contains the point p. Observe that

X =

{
1− U if U < p

U if p < U.

Therefore, by (4) we have that

E[X] =

∫ ∞
−∞

X(u)f(u)du =

∫ p

0

(1− u)du+

∫ 1

p

udu = p(1− p) +
1

2
.

Exercise 4.8. Suppose that X ∼ U [0, 1]. What is the probability that X ∈ Q?

Example 4.9. Suppose that X ∼ U [0, 1]. Then X divides the interval [0, 1] into two intervals [0, x] and
[x, 1]. Let R be the ratio between the smaller and the larger intervals. That is, if x ≤ 1/2, then R = x

1−x ,

and if x ≥ 1/2 then R = 1−x
x

. Compute the density function of R.
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Proof. First, observe that 0 ≤ R ≤ 1 always, and therefore we have that fR(r) = 0 for all r /∈ [0, 1]. Now,
suppose that r ∈ [0, 1] and we wish to compute Rs distribution function FR(r). Note that

FR(r) = Pr [R ≤ r] = Pr

[
X ≤ 1/2,

X

1−X
≤ r

]
+Pr

[
X ≥ 1/2,

1−X
X

≤ r

]
= Pr

[
X ≤ 1/2, X ≤ r

r + 1

]
+Pr

[
X > 1/2, X ≥ 1

r + 1

]
= Pr

[
X ≤ r

r + 1

]
+Pr

[
X ≥ 1

r + 1

]
=

r

r + 1
+1− 1

r + 1
=

2r

r + 1
.

(5)
In particular, we have that

fR(r) = F ′R(r) =
2

(r + 1)2
.

This completes the proof.

4.2.2 Exponential distribution

A random variable X is distributed according to an exponential distribution with parameter λ > 0, and is
denoted by X ∼ Exp(λ) if it has the following density function:

f(x) =

{
λe−λx if x ≥ 0

0 if x < 0.

This is a distribution for the waiting time for some random event, for example, for a lightbulb to burn
out or for the next earthquake of at

Its distribution function is

F (x) =

{
1− e−λx if x ≥ 0

0 if x < 0.

(prove it!)
These are good exercises to prove that

1. E[X] = 1
λ
, and

2. V ar(X) = 1
λ2
, and

3. (Memoryless property) Pr[X ≥ x+ y | X ≥ y] = Pr[X ≥ x] = e−λx.

The memoryless property means that, starting at any time step, assuming that the event hasn’t occured
yet, the distribution of the remaining waiting time is the same as it was at the beginning.

Exercise 4.10. Which of the discrete distributions that we learnt are memoryless?

Here we’ll only prove the expectation’s formula, but it is highly recommended to prove the rest by
yourselves:

Since we always have X ≥ 0, we can use the formula from Proposition 4.4 to obtain

E[X] =

∫ ∞
0

Pr[X ≥ x]dx =

∫ ∞
0

(1− F (x))dx =

∫ ∞
0

e−λxdx =
1

λ
.

This completes the proof.
In practice, exponential distribution often arises as the distribution of the amount of time until some

specific event occurs.
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4.2.3 Normal distribution

We say that a random variable X is distributed according to a normal (or Gaussian) distribution with
parameters µ and σ2, and write X ∼ N(µ, σ2) for short, if its density function is

f(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
.

Arguably, normal distribution is the most important continuous distribution and it arises in many
areas. In particular, it can be obtained as a continuous limit of the binomial distribution with p fixed and
n → ∞ (we will prove it later in this section). This result is a special case of the so-called Central Limit
Theorem (CLT for short) that will be discussed towards the end of this course. Roughly speaking, the
CLT asserts that the sum of a large number of independent random variables is approximately normally
distributed.

Let us now list the basic parameters that we need to know. Suppose that X ∼ N(µ, σ2), then:

1. Its density function is f(x) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
, for all −∞ < x <∞.

2. E[X] = µ.

3. V ar(X) = σ2.

Proving that
∫∞
−∞ f(x)dx = 1 is a slightly tricky exercise in integration (if you are willing for a challenge,

do it!). Also proving the formula for V ar(X) is not that simple. But, for the expectation, there is a neat
way to prove it by the symmetric nature of the density function as follows:

E[X] =

∫ ∞
−∞

xf(x)dx =

∫ ∞
−∞

(x− µ)f(x)dx+ µ ·
∫ ∞
−∞

f(x)dx

which, by the change of variable x− µ 7→ z, equals∫ ∞
−∞

z
1√

2πσ2
exp

(
− z

2σ2

)
dz + µ.

Now, observe that the function g(z) = z 1√
2πσ2

exp
(
− z

2σ2

)
is odd (that is, g(z) = −g(−z) for all z) and

therefore the integral in the right hand side equals 0. This gives us

E[X] =

∫ ∞
−∞

xf(x)dx = µ

as desired.
Another important property of normal random variables is the following property, which is left as a

simple (and very recommended!) exercise:

Exercise 4.11. Suppose that X ∼ N(µ, σ2). Prove that for all a 6= 0 and b, we have that aX + b ∼
N(aµ+ b, a2σ2).

The next question one should ask is: how can we actually compute probabilities? (in general, we need
the distribution function for that, but here this function is non-elementary so calculating integrals are very
hard (or even impossible) for us). The first step will be the following simple corollary from (4.11).

Corollary 4.12. Let X ∼ N(µ, σ2). Then, the random variable Z = X−µ
σ

is normally distributed with
parameters µY = 0 and σ2

Y = 1. That is, Z ∼ N(0, 1).
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A r.v Z ∼ N(0, 1) is called standard normal r.v or standard gaussian. This corollary is helpful because
now we only care about calculating the cumulative function of a standard gaussian. The standard notation
for the distribution function of a standard gaussian is φ(x). That is, for Z ∼ N(0, 1), we have that

Φ(x) := Pr[Z ≤ x] =
1√
2π

∫ x

−∞
e−t

2/2dt.

The (approximate) values of Φ(x) for positive values of x are given in a table so we don’t need (and
actually, cannot really..) calculate them. For negative values of x we can use the same table plus the
observation that Φ(x) = 1 − Φ(−x), as the density function of a standard gaussian is symmetric around
the origin.

Example 4.13. Let Z ∼ N(0, 1).

• Calculate φ(1.23), Φ(−1), Φ(−2.07).

• Calculate Pr[0 ≤ Z ≤ 1], Pr[−1 ≤ Z ≤ −0.5], Pr[−1 ≤ Z ≤ 0.5].

• Suppose that X ∼ N(µ, σ2). Calculate Pr[X ≥ µ+ σ], Pr[µ− σ ≤ X ≤ µ+ 1.2σ].

4.2.4 The normal approximation to the Binomial distribution

A corner stone in probability, known as the DeMoivre-Laplace limit theorem, states that if n is large, then
a binomial random variable with parameters n, p will have approximately the same distribution as a normal
random variable with the same expectation and variance. This result is a special case (but historically is
the first) of one of the most important results in probability theory, the Central Limit Theorem (that we
will discuss later in this course).

For convenience, let us now state, without a proof, some version of the DeMoivre-Laplace theorem (we
will prove the more general Central Limit Theorem in the near future):

Theorem 4.14 (DeMoivre-Laplace). Let X ∼ Bin(n, p), where p is fixed and n is large. Then, the random
variable Z = X−np√

np(1−p)
is asymptotically standard gaussian. More precisely, for every x ∈ R we have that

Pr

[
X − np√
np(1− p)

≤ x

]
→ Φ(x),

as n tends to infinity.

Note that now we have two approximations for the binomial distribution:

1. When n is large and p is small, we saw in Math 130A that Poisson distribution is a good approximation
for binomial (if you don’t remember it, then please take a look at the book).

2. When n is large and p is large, we can use Theorem 4.14 (in general, this theorem gives a good
approximation as long as np(1− p) ≥ 10).

3. As a quantitative upper bound for the error between the binomail and the normal distributions in
Theorem 4.14, one can prove that it converges to

0.5(p2 + (1− p)2)√
np(1− p)

,

which can be made arbitrarily small if n is large.
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Example 4.15. A roulette wheel has 38 slots: 18 red, 18 black, and 2 green. The ball ends up at one of
these at random. You play many games and each game you place 1USD on red (if the outcome is red then
you earn 1USD, otherwise you lose your money). After n games, what is the probability that you are not
losing money? Answer it for n = 100 and then n = 1000. How would the answer change if it was a fair
game? (meaning – no green slots).

Example 4.16. How many times do you need to toss a fair coin in order to get 100 heads with probability
at least 0.9?

Beat your intuition – a riddle We will end up this section with the following lovely (and famous)
riddle. Suppose that a random real number x have been chosen (according to some distribution) and you
have two sealed envelopes in front of you, one contain the number x and the other one contain the number
2x.

• If you need to guess which of the envelopes contains the number x. What will be your success
probability?

• Now, imagine that you are allowed to pick one envelope and to look at the number in it before you
make a decision. Can you come up with a strategy that gives you a success rate better than in the
previous bullet?

5 Practice problems for Midterm 1

1. A random variable X has density

f(x) =

{
c(x+

√
x) if 0 ≤ x ≤ 1

0 otherwise

(i) Determine c (that is, for which value of c the function f is indeed a density function?).

(ii) Compute E[1/X].

(iii) Compute the density function of Y = X2.

(iv) Compute V ar(X).

(v) Suppose that 10 independent trials are being performed, each of which is distributed as X2 (so
the output of each trial is some number). What is the probability that in exactly 3 of the trials
we will obtain numbers smaller than 1/4?

2. Let X ∼ Poisson(1), Y ∼ Geo(2/3), and suppose that N ∼ N(µ, σ2), where

µ = 9 · Pr[Y ≥ 3 | Y ≥ 1] and σ2 = 4E[X].

Calculate
Pr[−1 ≤ N ≤ 2].

3. A random variable X has density

f(x) =

{
cx3 if 0 ≤ x ≤ 1

0 otherwise

(i) (10 points) Determine c (that is, for which value of c the function f is indeed a density func-
tion?).
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(ii) (15 points) Compute the density function of X2.

(iii) (15 points) Compute the density function of 1/X

(iv) (15 points) Compute V ar(1/X).

(v) (15 points) A trial has a success probability q = Pr[1/4 ≤ X ≤ 1]. Suppose that independent
such trials are being performed and let Y be the first time that a success occurs. Calculate
E[Y 2].

4. (30 points) Let Y ∼ U [0, 2] and suppose that X ∼ N(µ, σ2), where

µ = E[Y 2], and σ2 =
2

9
Pr[Y ≥ 1.5 | Y ≥ 1].

Compute Pr[1 ≤ X ≤ 2].

6 Joint distribution and independence

We are often interested in probability statements concerning two or more random variables, and the way
that they vary together on the same domain Ω. In this section we develop tools to study such scenarios.

6.1 Joint distribution and joint density functions

Definition 6.1. The joint distribution of the random variables X and Y is a function F : R2 → [0, 1]
such that

F (x, y) = Pr[X ≤ x, Y ≤ y].

If X, Y are both discrete random variables, then we can define their joint probability mas function as

p(x, y) := Pr[X = x, Y = y],

and observe that
Pr[X = x] = Pr[X = x, Y <∞] =

∑
y

p(x, y)

is the the probability mass function of X, denoted by pX(x). Similarly, we obtain that

pY (y) =
∑
x

p(x, y).

Observe that for discrete X, Y one can describe their joint probability mass function in a table where
the rows correspond to the values of X, the columns correspond to the values of Y , and for every x, y,
the (x, y) entry equals p(x, y). The above computatuin show that if we sum the entries in the xth row we
obtain pX(x) whereas the sum of the entries in the yth column gives us pY (y). Since these values appear
in the margins of the table, the probability mass functions pX and pY are referred to as their marginal
probability mass functions.

For continuous random variables X and Y , we cannot talk about the probability mass function (because
it is identically 0), so we should define their joint density.

Definition 6.2. The random variables X and Y are jointly continuous with a joint density function
f : R2 → [0,∞) if and only if for all x, y ∈ R we have

F (x, y) =

∫ y

−∞

∫ x

−∞
f(u, v)dudv.
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If F is differentiable at a point (x, y) then we can specify

f(x, y) =
∂2

∂x∂y
F (x, y).

In particular, if A is a sufficiently “nice” subset of R2, then

Pr[(X, Y ) ∈ A] =

∫ ∫
A

f(x, y)dxdy.

Similarly to the discrete case, if we think about an “uncountable table”, the marginal distributions of
X and Y are defined as

FX(x) = Pr[X ≤ x] = Pr[X ≤ x, Y <∞] =

∫ x

−∞

∫ ∞
∞

f(u, v)dvdu

and

FY (y) = Pr[Y ≤ y] = Pr[X <∞, Y ≤ y] =

∫ y

−∞

∫ ∞
∞

f(u, v)dudv

.
In particular it follows that the marginal density of X is

fX(x) =

∫ ∞
−∞

f(x, y)dy,

and the marginal density of Y is

fY (y) =

∫ ∞
−∞

f(x, y)dx.

Note that all probability statements about the pair (X, Y ) can be described (at least in theory) by
their distributions/ joint distribution functions. For example,

Pr[X > x, Y ≤ y] = Pr[Y ≤ y]− Pr[X ≤ x, Y ≤ y] = FY (y)− F (x, y).

Exercise 6.3. Write Pr[a < X ≤ b, c < Y ≤ c] in terms of the distribution functions.

Example 6.4. Let R = [a, b]× [c, d] be a rectangle, and suppose that the r.v (X, Y ) is uniformly distributed
inside R. That is,

f(x, y) =

{
1

(b−a)(d−c) if (x, y) ∈ R
0 otherwise

.

Let us compute the marginal distribution of X (the marginal of Y is left as a simple exercise). Observe
that if x < a then FX(x) = 0, and if x > b then FX(x) = 1 (WHY?). Therefore, we choose x ≥ a and
compute

FX(x) =

∫ x

−∞

∫ ∞
−∞

f(u, v)dvdu =

∫ x

a

∫ d

c

1

(b− a)(d− c)
dvdu =

∫ x

a

1

b− a
du,

which is the distribution function of U [a, b]. In particular, the marginal density function of X is just

fX(x) =

{
1
b−a if a ≤ x ≤ b

0 otherwise.

Exercise 6.5. Consider a circle C of of radius R centred at the origin. Let (X, Y ) be a point within the
circle, chosen uniformly at random. That is,

f(x, y) =

{
1

πR2 if (x, y) ∈ C
0 otherwise.

Compute the marginal distributions of X and Y .
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6.2 Expectation of a function of two random variables

Having defined joint distributions, we can ask for the expectation of a function of the two variables. That
is, suppose that g : R2 → R is a “nice” function. Then we define

E[g(X, Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)f(x, y)dxdy.

6.3 Independent random variables

Recall that two discrete random variables X, Y are called independent if and only if Pr[X = x, Y = y] =
Pr[X = x] · Pr[Y = y] for all x, y. For continuous random variables we define independence based on the
distribution functions:

Definition 6.6. Two continuous random variables X and Y are independent if and only if for all x, y ∈ R
we have

F (x, y) = FX(x) · FY (y).

Note that this is equivalent to saying that f(x, y) = fX(x) · fY (y) for all (x, y) for which F is differentiable
at.

All the notions discussed above can be naturally extended to more than two random variables. That is,
given X1, . . . , Xn random variables, their joint distribution is a function F : Rn → [0, 1] defined as follows:

F (x1, . . . , xn) = Pr[X1 ≤ x1, . . . , Xn ≤ xn].

Then, we can define the joint density as

∂n

∂x1∂x2 . . . ∂xn
F (x1, . . . , xn),

in every point for which F is differentiable at.
Equivalently, the joint density is a function f : Rn → [0,∞) such that for every “nice” set R ⊆ Rn we

have

Pr[(X1, . . . , Xn) ∈ R] =

∫
. . .

∫
R

f(x1, . . . , xn)dx1 . . . dxn.

Finally, the random variables X1, . . . , Xn are independent if and only if for every non-empty subset
I ⊆ [n] the variables (Xi)i∈I are independent. In the continuous setting this is equivalent to say that

f(xi1 , . . . , xik) =
k∏
j=1

fXij (xij),

for all k and all i1 < . . . < ik.

Example 6.7 (Buffon’s needle). A plain is ruled by the lines y = n, n ∈ Z, and a needle of length 1 is
cast randomly on to the plane. What is the probability that the needle intersects some line?

Proof. We let (X, Y ) denote the coordinates of the centre of the needle in the plane. and let Θ be its
angle, modulo π, with the x-axis. The distance of the needle’s centre from the nearest line beneath is
Z = X − bXc. We can assume that

• Z is uniformly distributed in [0, 1],

• Θ is uniformly distributed in [0, π], and
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• Z and Θ are independent (so in particular we have f(z, θ) = fZ(z)fΘ(θ).

By drawing a small diagram one can see that the needle intersects some line if and only if (Z,Θ) has
the form Z ≤ 1

2
sin Θ or 1− Z ≤ 1

2
sin Θ. Therefore

Pr[ intersection occurs] =

∫ ∫
B

f(z, θ)dzdθ = . . . =
2

π
.

Historically, Buffon designed this experiment in order to estimate the value of π.

6.4 Sum of random variables

Suppose X, Y are random variables with F, FX , FY being their joint, and marginal distributions, respec-
tively. How does the random variable X + Y distributed? Or more generally, what is the distribution of
X1 + . . .+Xn?

Observe that

FX+Y (t) = Pr[X + Y ≤ t] =

∫ ∞
−∞

∫ t−x

−∞
f(x, y)dydx.

Now by a change of variable y = z − x, the above expressions equals∫ ∞
−∞

∫ t

−∞
f(x, z − x)dzdx =

∫ t

−∞

∫ ∞
−∞

f(x, z − x)dxdz.

By taking the derivative with respect to t, we obtain that

fX+Y (t) =

∫ ∞
−∞

f(x, t− x)dx.

In case that X and Y are independent, we have that

fX+Y (t) =

∫ ∞
−∞

fX(x)fY (t− x)dx,

which is called the convolution of fX and fY , and is denoted by (fX ∗ fY )(t).
For more variables, we define the convolution inductively as

(fX1 ∗ . . . fXn)(t) =
(
(fX1 ∗ . . . fXn−1) ∗ fXn

)
(t).

Another useful observation is that, for X, Y independent we have

FX+Y (t) =

∫ ∞
−∞

∫ t−y

−∞
fX(x)fY (y)dxdy =

∫ ∞
−∞

FX(t− y)fY (y)dy. (6)

Example 6.8. Let X1, X2, . . . , Xn ∼ U [0, 1] independent random variables. Show that

Pr[X1 + . . .+Xn ≤ 1] =
1

n!
.

Proof. We prove the following stronger statement by induction on n: for all t ∈ [0, 1] we have

Pr[X1 + . . .+Xn ≤ 1] =
tn

n!
.

For n = 1 the statement is trivial. Suppose we know it holds for n and we want to prove it for n + 1.
Let Yn = X1 + . . . Xn and write
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Pr[X1 + . . .+Xn +Xn+1 ≤ t] = Pr[Yn +Xn+1 ≤ t],

which by (6) equals ∫ t

0

FYn(t− x)fXn+1(x)dx,

which by induction equals ∫ t

0

(t− x)n

n!
dx =

−(t− x)n+1

(n+ 1)!
|t0 =

tn+1

(n+ 1)!
.

Exercise 6.9. Prove that if X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2) are indepedent, then

X + Y ∼ N(µ1 + µ2, σ
2
1 + σ2

2).

6.5 Conditional distribution

Let us first start with the discrete case. Suppose that X, Y are (discrete) random variables and suppose
that y ∈ R is such that Pr[Y = y] > 0. Then, we can easily compute the probability mass function of X
conditioned on Y = y:

Pr
X|Y=y

[X = x | Y = y] =
Pr[X = x, Y = y]

Pr[Y = y]
.

Switching to the continuous case we see that the above definition is trickier as Pr[Y = y] = 0 for all y.
The way to go around it is as follows: suppose that we wish to compute Pr[X ≤ x | Y = y], and that the
density function of Y , fY is strictly positive at y (that is, fY (y) > 0). Then, by continuity we have

Pr[X ≤ x | Y = y] ≈ Pr[X ≤ x | y ≤ Y ≤ y + dy] =

∫ x

−∞

f(s, y)

fY (y)
ds.

This leads to the following definition:

Definition 6.10. For any y for which fY (y) > 0, the conditional density function of X given Y = y is
given by

fX|Y (x | y) =
f(x, y)

fY (y)
.

The conditional distribution function of X given Y = y is given by

FX|Y (x | y) =

∫ x

−∞
fX|Y (s | y)ds.

Observe that if X, Y are independent then

fX|Y (x | y) =
f(x, y)

fY (y)
=
fX(x)fY (y)

fY (y)
= fX(x).
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6.6 Joint distribution of functions of random variables

We have already seen example of the following form: suppose that X is a random variable and Y = g(X)
where g is a “sufficiently nice” function (we haven’t defined what “sufficiently nice” means). Then,

Pr[Y ≤ y] = Pr[g(X) ≤ y] = Pr[X ∈ g−1(−∞, y)].

In particular, if X is continuous with density fX , then we have that

FY (y) =

∫
g−1(−∞,y)

fX(x)dx,

which gives us a “recipe” for calculating the distribution of Y based on X. As a simple example, let’s
assume that Y = aX + b and we wish to calculate fY . Then, observe that

FY (y) =

{
FX((y − b)/a) if a > 0

1− FX((y − b)/a) otherwise
.

In particular, by differentiating both sides we obtain that

fY (y) = |a|−1fX((y − b)/a).

This already gives us a hint how to generalize this argument to joint density, which is basically just to do
change of variables in a multpile integral.

So, suppose that X1 and X2 are two random variables with joint density fX1,X2(x1, x2). Let Y1 =
g1(X1, X2) and Y2 = g2(X1, X2) for some functions g1 and g2. How can we find the joint density of Y1 and
Y2?

Assume that g1 and g2 satisfying:

• The transformation (x1, x2)→ (g1(x1), g2(x2)) is invertible on the domain of (X1, X2), and

• the functions g1 and g2 have continuous partial derivative at all points (x1, x2) and the Jacobian is
non-zero on each such point. Recall that the Jacobian of (g1, g2) at the point (x1, x2) is defined by

J(x1, x2) =

∣∣∣∣∣ ∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

∣∣∣∣∣ .
Then, one can easily prove (change of variables in a double integral) that

fY1,Y2(y1, y2) = fX1,X2(x1, x2)|J(x1, x2)|−1.

Example 6.11. Suppose that X1, X2 ∼ Exp(λ) and are independent. Let Y1 = X1 +X2 and Y2 = X1

X2
. We

wish to find the joint density of Y1, Y2 and to show that they are also independent.
Clearly, we have that

J(x1, x2) =

∣∣∣∣ 1 1
1
x2
−x1
x22

∣∣∣∣ = −x1

x2
2

− 1

x2

= −x1 + x2

x2
2

.

Therefore, we have that

fY1,Y2(y1, y2) =
x2

2

x1 + x2

fX1,X2(x1, x2).

Note that X1 = Y1Y2/(1+Y2), X2 = Y1/(1+Y2) and that fX1,X2(x1, x2) = fX1(x1)fX2(x2) = λ2e−λ(x1+x2),
we obtain that

fY1,Y2(y1, y2) = λ2y1e
−λy1 · 1

(1 + y2)2
.

Since the above expression factorizes as g(y1)h(y2) we obtain that Y1 and Y2 are independent.
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7 Properties of expectation

In this chapter we will explore more properties and results coming from the expectation of random variables.

7.1 Expectation of sums of random variables

We’ve already seen in Theorem 3.3 that the expectation of discrete random variables is linear. That is,

E[a0 +
n∑
i=1

aiXi] = a0 +
n∑
i=1

aiE[Xi].

It is not hard to prove that the same holds also for continuous random variables. Moreover, instead of
taking the sum of random variables, one can consider any other function g(X1, . . . , Xn), and for this it is
not hard to prove that

E[g(X1, . . . , Xn)] =

∫
. . .

∫
g(x1, . . . , xn)f(x1, . . . , xn)dx1 . . . dxn,

where f is the joint density function of (X1, . . . , Xn).
Another useful (and yet, simple) property of expectation is monotonicity. That is, suppose that X is

a random variable for which, with probability 1, we have that a ≤ X ≤ b, then a ≤ E[X] ≤ b. More
generally, suppose that X and Y are two random variables for which X ≥ Y on each point of the sampling
space. Then, E[X] ≥ E[Y ] (prove these properties!).

In this section, along with the homework, we will see few neat applications for these two simple prop-
erties (linearity, and monotonicity).

7.2 Application – random walk on the plane

This is example 2` from Chapter 7 in the book.
Consider a particle initially located at a given point in the plane, and suppose that it moves into a

new position after each step by moving one unit of distance from the previous position and at an angle
of orientation from the previous position that is uniformly distributed over [0, 2π). Compute the expected
square of the distance from the origin after n steps.

Proof. Let (Xi, Yi) denote the change of the position at the ith step. That is, if at the end of step i− 1st
the particle was at some position (x, y), then after the ith step it moves to (x+Xi, y + Yi). In particular,
we have that Xi = cos(θi) and Yi = sin(θi) where θi ∼ U([0, 2π)) is the angle chosen at step i.

Let X =
∑n

i=1Xi and Y =
∑n

i=1 Yi be the position of the particle after the nth step. Then, letting D
be the distance of the particle from the origina, we have that

D2 = X2 + Y 2 =
n∑
i=1

(cos(θi)
2 + sin(θi)

2) +
∑
i 6=j

(2 cos θi cos θj + 2 sin θi sin θj).

Therefore, we have that
E[D2] = n.
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7.3 Applications – Probabilistic method

7.3.1 Van der Waerden’s theorem

As a first example, we consider an application about coloring integers. Recall that an arithmetic progression
is a subset of “equally spaced” numbers. More precisely, a k-term arithmetic progression (or a k-AP for
short) is a subset of the form

{a, a+ b, . . . , a+ (k − 1)b},

where a, b are some fixed integers.
A coloring of a subset S ⊆ N is a function c : S → {1, . . . , C}, where the range is considered as the set

of colors. A 2-coloring of S is a coloring with C = 2, where the colors 1 and 2 can be considered as “red”
and “blue”.

The following theorem is known as “Van der Waerden’s Theorem”. It is an example of a result in the
so-called area nowadays known as Ramsey Theory.

Theorem 7.1. For every k ∈ N, there exists an n ∈ such that for every 2-coloring of {1, 2, . . . , n}, there
exists some k-AP which is monochromatic (that is, a k-AP for which all its elements have the same color).

We won’t prove this theorem in these notes as the proof has nothing to do with probability, but feel
free to google it and read its proof.

Now, let W (k) be the smallest possible choice of n in the theorem, for a particular value of k. That is,
W (k) is the smallest value of n for which any 2-coloring of the numbers {1, . . . , n}. Alternativey, W (k)−1
is the largest value of n for which there exists a 2-coloring of {1, 2, . . . , n} with no monochromatic k-AP.

For example, it is not hard to show (do it!) that W (2) = 3. It also turns out that W (3) = 9 which is
not as easy to prove.

These W (k)s are known as van der Waerden numbers and have received a lot of attention. Unfortu-
nately, not too much is known about them, and in particular we only have exact values for W (k) for fairly
small values of k.

Here we are going to prove a lower bound for W (k):

Theorem 7.2. For any k ∈ N,
W (k) ≥

√
k − 1 · 2(k−1)/2.

Proof. Let n be the largest integer strictly smaller than
√
k − 1 · 2(k−1)/2. Our goal is to show that there

exists a 2-coloring of {1, 2, . . . , n} with no monochromatic k-APs. The main point is that we will not
explicitly construct such a coloring (and in fact, such a construction is unknown!). Instead, we will prove
that a randomly chosen coloring has a positive probability of being good. In particular, this implies that
there exists such a coloring. Indeed, if there was no such coloring, the chance of getting such a coloring
would have to be zero! This approach is known as “the probabilistic method”.

So let us take a random coloring of {1, 2, . . . , n} by assigning, for each 1 ≤ i ≤ n, a color C(i) ∈ {1, 2}
uniformly at random, where all the C(i)s are independent random variables. Now define the random
variable

X = #monochromatic k-APs in the set {1, . . . , n}.

Our goal is to show that Pr[X = 0] > 0. The strategy is quite simple. We are going to show that (X) < 1,
and then, by the following lemma we will obtain the desired.

Lemma 7.3. Let Y be any random variable taking on only nonnegative integer values, and satisfying
E[Y ] < 1. Then Pr(Y = 0) > 0.

Proof. We have

E[Y ] =
∞∑
i=0

i · Pr[Y = i] ≥
∞∑
i=1

Pr[Y = i] = 1− Pr[Y = 0].
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Rearranging,
Pr[Y = 0] ≥ 1− E[Y ] > 0.

In order to compute E[X] we will use linearity of expectation. Define, for any a, b ∈ N for which
Aab := {a, a + b, . . . , a + (k − 1)b} ⊆ [n], an indicator random variable Xab for which Xab = 1 if and only
if the corresponding k-AP is monochromatic.

Then
X =

∑
(a,b):Aab⊆{1,...,n}

Xab.

Thus, using linearity of expectation,

E[X] =
∑

(a,b):Aab⊆{1,...,n}

E[Xab]

=
∑

(a,b):Aab⊆{1,...,n}

Pr[Aab is monochromatic].

Clearly, for any a, b we have

Pr[Aab is monochromatic] =
1

2k
· 2 =

1

2k−1
.

The number of k-APs is easily upper bounded by n · n
k−1

= n2

k−1
(n choices for a and at most n/(k − 1)

choices for b such that a+ (k − 1)b ≤ n).
All in all, by linearity of expectation we have

E[X] ≤ n2

k − 1
· 1

2k−1
,

which, by the way we defined n, is smaller than 1. This completes the proof.

Note that this proof does not tell us how to find such a coloring (except perhaps by trying random
colorings until we find one that works), and doesn’t tell us what these colorings look like. There are many
examples where we can prove existence of certain structures, using the probabilistic method, but have no
explicit deterministic construction! The statements proved with the method have (typically) nothing to
do with probability; probability is introduced for the purpose of the proof.

7.3.2 Ramsey numbers

In the 1950s, the Hungarian sociologist S. Szalai studied friendship relationships between children. He
noticed that among 20 children, he was always able to find four children each pair of which were friends, or
four children such that no two of them were friends. Before deducing any sociological conclusions, Szalai
asked three distinguished mathematicians from Hungary: Erdős, Turán, and Sós who noticed that indeed
this is a mathematical phenomenon and not a sociological one. To see this, form the friendship graph
between children, any two children that are friends form an edge. In any graph on 20 vertices there are
four vertices which form a clique (a subset of vertices, each pair of which form an edge) or an independent
set (a subset of vertices, no pair of which form an edge). Let’s look at a smaller case:

Proposition 7.4. Among any six people, there are three any two of whom are friends, or there are three
such that no two of them are friends.

This is not a sociological claim, but a very simple graph-theoretic statement. In other words, in any
graph on 6 vertices, there is a triangle or three vertices with no edges between them.
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Proof. Let G = (V,E) be a graph and |V | = 6, i.e. G has six vertices. Fix a vertex v ∈ V . We consider
two cases.

Case 1: The degree of v is at least 3. In this case, consider three neighbors of v, call them x, y, z. If any
two among {x, y, z} are friends, we are done because they form a triangle together with v. If not, no two
of {x, y, z} are friends and we are done as well.

Case 2: The degree of v is at most 2, then there are at least three other vertices which are not neighbors
of v, call them x, y, z. In this case, the argument is complementary to the previous one. If {x, y, z}
are mutual friends, then we are done. Otherwise, there are two among {x, y, z} who are not friends, for
example x and y, and then no two of {v, x, y} are friends.

The number 6 in the above proposition cannot be replaced by 5. This is because the 5-cycle C5 has
neither a triangle nor three vertices with no edges between them.

The above proposition is a special case of Ramsey’s theorem proved in 1930, which is a foundational
result in Ramsey theory. This consists of a large body of deep results in mathematics that which roughly
say, according to Motzkin, that “complete disorder is impossible.” In other words, any very large system
contains a large well-organized subsystem.

Definition 7.5. The Ramsey number R(s, t) is the minimum n such that ever graph with n vertices
contains a clique of order s or an independent set of order t.

So Proposition 7.4 can be stated as R(3, 3) = 6.
By replacing a graph by its complement, we can deduce that R(s, t) = R(t, s). Further, we have

R(2, t) = t as any graph on t vertices either contains an edge or is an independent set of order t, and any
smaller empty graph has neither an edge nor an independent set of order t.

Theorem 7.6. For any positive integers s and t, the Ramsey number R(s, t) exists. Further, it satisfies

R(s, t) ≤
(
s+ t− 2

s− 1

)
.

The bound given here is due to Erdős and Szekeres, and is considerably better then the bound in
Ramsey’s proof.

Proof. We claim that
R(s, t) ≤ R(s− 1, t) +R(s, t− 1), (7)

and then deduce the desired theorem. To show this, let n = R(s − 1, t) + R(s, t − 1), and consider any
graph G on n vertices. Fix any vertex v. We consider two cases:
Case 1: The degree of v is at least R(s− 1, t). Then, by the definition of R(s, t− 1), the set of neighbors
of v either contains a clique of order s − 1, or an independent set of order t. In the second case, we are
done as this is an independent set in G. In the first case, we can extend the clique by adding v, and hence
G contains a clique of order s, completing this case.
Case 2: The degree of v is at most R(s− 1, t)− 1. In this case, v has at least n− 1− (R(s− 1, t)− 1) =
R(s, t−1) nonneighbors. Then, by the definition of R(s, t−1), the set of nonneighbors of v either contains
a clique of order s, or an independent set of order t−1. In the first case, we are done as this is a clique in G.
In the second case, we can extend the independent set by adding v, and hence G contains an independent
set of order t, completing the proof of the claim.

Given (7), it follows by induction that these Ramsey numbers are finite. Moreover, we get an explicit
bound. First R(s, t) ≤

(
s+t−2
s−1

)
holds in the base case s = 1 or t = 1 since every graph contains a clique of

order 1 and an independent set of order 1. The inductive step is:
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R(s, t) ≤ R(s− 1, t) +R(s, t− 1) ≤
(
s+ t− 3

s− 2

)
+

(
s+ t− 3

s− 1

)
=

(
s+ t− 2

s− 1

)
,

where the equality is Pascal’s identity for binomial coefficients.

How good is the above bound for the diagonal case s = t? We get the upper bound

R(s, s) ≤
(

2s− 2

s− 1

)
≤ 4s√

s
.

This upper bound has not been significantly improved in roughly 70 years! All we know currently is that
the exponential growth is the right order of magnitude, but the base of the exponential is not known. The
following is an old lower bound of Erdős. Note that to get a lower bound, we need to show that there is
a large graph without cliques and independent sets of a certain order. This is quite difficult to achieve by
an explicit construction. (The early lower bounds on R(s, s) were only polynomial in s.)

The amazing thing about Erdős’ proof below is that he never presents a specific graph. He simply shows
that one exists by considering a random graph almost always works. This was one of the first occurences of
the probabilistic method in combinatorics. The probabilistic method has been used in discrete mathematics
ever since with phenomenal success.

Theorem 7.7. For s ≥ 3,
R(s, s) ≥ 2s/2.

Proof. Let n be the largest integer less than 2s/2. Consider a random graph G on n vertices, where each
pair is an edge with probability 1/2 chosen independently from the other edges. For any particular set S of

s vertices, the probability that S forms a clique is 2−(s2), and the probability that S forms an independent

set is 2−(s2). Since these are disjoint events, the probability that S forms a clique or independent set is

21−(s2). The number of such sets S on s vertices is
(
n
s

)
. By linearity of expectation, the expected number

of cliques or independent sets in the random graph G is(
n

s

)
21−(s2) =

n!

s!(n− s)!
2

2s(s−1)/2
<

2ns

s!2s(s−1)/2
≤ 21+s/2

s!
< 1,

the inequality ≤ comes from the constraint on n and s. Since the number of cliques or independent sets of
order s is a nonnegative integer, and the expected (i.e. average) number is less than one, the probability
that that there is no clique or independent set of order s must be positive. Thus there must be a graph on
n vertices (a point in our sample space) with no clique or independent set of order n. We conclude that
R(s, s) ≥ 2s/2.

Determining Ramsey numbers exactly, even for rather small values of s, is a notoriously difficult prob-
lem. It is known that R(4, 4) = 18, but even R(5, 5) is not known (it is known to be between 43 and 49),
and determining R(6, 6) seems hopeless (it is between 102 and 165).

7.3.3 Independent sets in graphs

Recall that a graph G = (V,E) consists of a set of vertices V , and a set of edges E, where each edge is
an unordered pair of vertices. For every vertex v ∈ V , we let d(v) denote its degree; that is, d(v) is the
number of edges e ∈ E for which v ∈ e. The following simple exercise is useful for us:

Exercise 7.8. Prove that for every graph G = (V,E) we have that
∑

v∈V d(v) = 2|E|.

Given a graph G = (V,E), a subset X ⊆ V is called an independent set if and only if it contains no
edges of G. We also let α(G) be the size of the largest independent set in G.

In this section we prove the following (deterministic) theorem using the probabilistic method:

38



Theorem 7.9. Let G = (V,E) be a graph on n vertices and with |E| = nd/2, where d ≥ 1. Then,
α(G) ≥ n

2d
.

Proof. Let S ⊆ V be a random subset defined by

Pr[v ∈ S] = p,

independently at random, for all v ∈ V (p will be determined shortly).
Consider the random variable |S| (that is, the size of the random subset S), and Y= the number of

edges within S. For each edge e = xy ∈ E, we let Ye be an indicator random variable for the event ‘e ⊆ S’.
That is, Pr[Ye = 1] = p2 for all e ∈ E. Observe that

Y =
∑
e∈E

Ye,

and therefore, by linearly of expectation we have that

E[Y ] = |E|p2.

Moreover, as we clearly have
E[|S|] = np,

(WHY?) it follows that

E[|S| − Y ] = np− |E|p2 = np− ndp2

2
.

We can now determine p = 1
d

(which maximizes the right hand side of the above equation) and obtain

E[|S| − Y ] =
n

2d
.

In particular, it means that there exists a specfic set S ⊆ V for which |S|−Y ≥ n
2d

. In words, it means
that there exists a subset S for which the number of its vertices minus the number of the edges that it
contain is at least n/2d. Clearly, by deleting one vertex from each edge we “kill” all the edges and are left
with an independent set. Therefore, there exists an independent set of size at least n/2d as desired.

7.4 Expectation and independence

An important property of expectation is multiplicativity for independent factors. It is not hard to find
random variables X, Y for which E[XY ] 6= E[X]E[Y ]. Apparently, for independent random variables n
even stronger property holds:

Theorem 7.10. Two random variables X, Y are independent if and only if for every two ‘nice’ function
f, g we have that

E[f(X)g(Y )] = E[f(X)]E[g(Y )].

Proof. Let’s start with the (perhaps) easier direction: suppose that for every two ‘nice’ function f, g we
have that

E[f(X)g(Y )] = E[f(X)]E[g(Y )],

and we wish to prove that X and Y are indepdent. Recall that X, Y are independent if and only if

F (x, y) = FX(x)FY (y)

for all x, y.
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Fix x, y and let Ix and Iy be the indicator random variables for the events

‘X ≤ x′ and ‘Y ≤ y′, respectively.

By the assumption we have

F (x, y) = Pr[X ≤ x, Y ≤ y] = E[IxIy] = E[Ix]E[Iy] = FX(x)FY (y)

as desired.
For the other direction, observe that

E[f(X)g(Y )] =

∫ ∫
f(x)g(y)fX,Y (x, y)dxdy

=

∫ ∫
g(y)fX(x)fY (y)dxdy

=

(∫
f(x)fX(x)dx

)(∫
g(y)fY (y)dy

)
= E[f(X)]E[g(Y )].

This completes the proof.

The following exercise will be very important for us later in this course.

Exercise 7.11. Suppose that X1, . . . , Xn ∼ Ber(1/2) and are independent. Calculate

E[et
∑n
i=1Xi ].

7.5 Variance of sum of random variables

Observe that if X, Y are independent, then by Theorem 7.10 we have that

E[XY ]− E[X]E[Y ] = 0.

Observe that this condition is not equivalent to independence, as for example, if we take Pr[X = 1] =
Pr[X = 0] = Pr[X = −1] = 1

3
, and Y = X2, it is clear that X and Y are not independent (prove it!) but

E[XY ]− E[X]E[Y ] = E[X3]− E[X]E[X2] = 0.

In general, even though E[XY ]−E[X]E[Y ] = 0 is not equivalent to independence, it does give us some
correlation between the variables.

Definition 7.12. Given random variables X, Y , we define their covariance by

COV (X, Y ) = E[(X − E[X])(Y − E[Y ])].

As an easy exercise, convince yourselves that

COV (X, Y ) = E[XY ]− E[X]E[Y ].

We say that X, Y are uncorrelated if and only if COV (X, Y ) = 0 (in particular, if X and Y are
independent, then they are also uncorrelated).

Note that if X and Y are indicators random variables for events A and B, respectively, then

COV (X, Y ) = Pr[A ∩B]− Pr[A] Pr[B] = Pr[A] (Pr[B | A]− Pr[B]) .
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In particular, if COV (X, Y ) > 0 then the events A and B are positively correlated (in the sense that
knowing A increases the probability that B occurs) and if COV (X, Y ) < 0 then they are negatively
correlated.

For general random variables X and Y , if COV (X, Y ) > 0 we say that X and Y are positively correlated
in the sense that “on average”, increasing Y will result in a larger X, and if COV (X, Y ) < 0 we say that
X and Y are negatively correlated in the sense that increasing Y , on average, will result in a smaller X.

We will get back to these definitions later in this course, and we now try to show the connection between
the covariance and the the variance of a sum of random variables.

First, let us summarize some basic properties of covariance, and the proofs are left as easy exercises:

Proposition 7.13. The following properties hold:

1. COV (X, Y ) = COV (Y,X)

2. COV (X,X) = V ar(X)

3. COV (aX, Y ) = aCOV (X, Y ) for all a ∈ R

4. COV (
∑n

i=1 Xi,
∑m

j=1 Yj) =
∑n

i=1

∑m
j=1COV (Xi, Yj).

Now we are ready to prove the following theorem:

Theorem 7.14. Let X1, . . . , Xn be random variables. Then,

V ar(
n∑
i=1

Xi) =
n∑
i=1

V ar(Xi) + 2
∑

1≤i<j≤n

COV (Xi, Xj).

Proof. Recall that by the definition of the variance, linearity of expectation, and by Proposition 7.13 we
have that

V ar(
∑
i

Xi) = E[(
∑
i

Xi −
∑
i

E[Xi])
2]

= E[(
∑
i

(Xi − E[Xi]))
2]

=
n∑
i=1

n∑
j=1

E[(Xi − E[Xi])(Xj − E[Xj])]

=
∑
i

V ar(Xi) +
∑
i 6=j

COV (Xi, Xj)

=
n∑
i=1

V ar(Xi) + 2
∑

1≤i<j≤n

COV (Xi, Xj).

This completes the proofs.

7.6 Conditional expectation

Recall that if X and Y are jointly discrete random variables, then the conditional probability mass function
of X given that Y = y, is defined, for all y such that Pr[Y = y] > 0, by

pX|Y (x|y) := Pr[X = x | Y = y] =
p(x, y)

pY (y)
.
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Moreover, observe that X | Y = y is a random variable and that pX|Y (x|y) is its probability mass
function. Therefore, its expectation is

E[X | Y = y] =
∑
x

xpX|Y (x|y).

For continuous random variables X and Y we defined the conditional density of X given Y = y by

fX|Y (x | y) =
f(x, y)

fY (y)
.

In particular, we obtain that

E[X | Y = y] =

∫ ∞
−∞

xfX|Y (x|y)dx,

provided that fY (y) > 0 (otherwise it is undefined). Now, given X and Y , we can define the random
variable E[X | Y ] which is a function of Y and its value at Y = y is given by E[X | Y = y]. Having defined
this random variable, we are ready to state (and prove) the following theorem which is one of the most
important properties of conditional expectation.

Theorem 7.15. For every two random variables X and Y we have that

E[E[X | Y ]] = E[X].

Note that in the discrete case the theorem asserts that

E[X] =
∑
y

E[X | Y = y] Pr[Y = y].

We now prove the theorem for the continuous setting while the discrete case is being left as an exercise.

Proof. Note that

E[E[X | Y ]] =

∫ ∞
−∞

E[X | Y = y]fY (y)dy

=

∫ ∞
−∞

∫ ∞
−∞

xfX|Y (x|y)fY (y)dxdy

=

∫ ∞
−∞

x

(∫ ∞
−∞

f(x, y)dy

)
dx

=

∫ ∞
−∞

xfX(x)dx

= E[X].

Example 7.16. A miner is trapped in a mine containing 3 doors. The first door leads to a tunnel that
will take him to safety after 3 hours of travel. The second door leads to a tunnel that will return him to
the mine after 5 hours of travel. The third door leads to a tunnel that will return him to the mine after 7
hours. If we assume that the miner is at all times equally likely to choose any one of the doors, what is
the expected length of time until he reaches safety?
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Proof. Let X denote the amount of time (in hours) until the miner reaches safety, and let Y denote the
door he initially chooses.

Now,

E[X] = E[X | Y = 1] Pr[Y = 1] + E[X | Y = 2] Pr[Y = 2] + E[X | Y = 3] Pr[Y = 3]

= 3 Pr[Y = 1] + (5 + E[X]) Pr[Y = 2] + (7 + E[X]) Pr[Y = 3].

To complete the proof, just isolate E[X] in the above expression and recall that Pr[Y = 1] = Pr[Y = 2] =
Pr[Y = 3] = 1

3
.

Example 7.17 (Expectation of a sum of a random number of random variables). Suppose that the number
of people entering a store on a given day is a random variable with expectation 50. Suppose further that the
amounts of money spent by these customers are independent random variables having a common expectation
of 8USD. Finally, suppose that the amount of money spent by a customer is independent of the total number
of customers who enter the store. What is the expected amount of money spent in the store at a given day?

Proof. Let N be the number of customers entering the store on a given day, and let Xi be the amount of
money spent by Customer i. Then, the total amount of money spent by the customers is

∑N
i=1Xi. Now,

E[
N∑
i=1

Xi] = E[E[
N∑
i=1

Xi | N ]],

and observe that

E[
N∑
i=1

Xi | N = n] = E[
n∑
i=1

Xi] = nE[X1] = 8n.

In particular, this can be written as

E[
N∑
i=1

Xi | N ] = NE[Xi].

Therefore, we conclude that

E[
N∑
i=1

Xi] = E[NE[X1]] = E[N ]E[X1] = 50 · 8 = 400.

This completes the proof.

7.7 Moment generating function

The kth moment of a random variable X is defined as E[Xk]. Moments of random variables encode impor-
tant information about their distribution. For example, the first moment (k = 1) is just the expectation,
and the second moment is closely related to the variance.

In this chapter we will learn a new quantity, called the moment generating function of X which encodes
information of all of these moments in some way. Our starting point is the following fact from Calculus
about the Taylor’s expansion of the exponential function:

etx =
∞∑
k=0

(tx)k

k!
.
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Now, suppose that t 6= 0 is some fixed real and that X is some random variable, then we obtain

E[etX ] =
∞∑
k=0

tk

k!
· E[Xk].

Let us now define the moment generating function of X as

M(t) := E[etX ].

To justify the name “moment generating function”, observe that by successively differentiating M(t)
and then evaluating at t = 0 we can obtain all the moments of X. Indeed,

M (k)(t) =
dE[etX ]

dtk
= E

[
detX

dtk

]
= E[XketX ],

and therefore,
M (k)(0) = E[Xk].

The main application that we will see for moment generating function is in proving Chernoff’s bounds
on the next chapter. First, we will give some example for calculating it for general distributions.

Bernoulli distribution Let X ∼ Ber(p). Then,

MX(t) = E[etX ] = (1− p)e0 + pet = 1 + p(et − 1).

Binomial distribution Let X ∼ Bin(n, p). Recall that one can write

X =
n∑
i=1

Xi,

where the Xis are iid random variables with distribution Ber(p). Therefore, we have that

MX(t) = E[etX ] = E[
n∏
i=1

etXi ].

Now, since the Xis are independent and the fact that we’ve already computed the generating function for
Bernoulli r.v, we have

MX(t) =
n∏
i=1

E[etXi ] =
n∏
i=1

MXi(t) = (1 + p(et − 1))n

.

Exercise 7.18. Calculate the variance of Bin(n, p) from its generating function.
Hint: differentiate once to obtain E[X], and then differentiate again to obtain E[X2].

Normal distribution Suppose that Z ∼ N(0, 1). Then,

MZ(t) = E[etZ ] =
1√
2π

∫ ∞
−∞

etxe−x
2/2dx

=
1√
2π

∫ ∞
−∞

e
−(x−t)2

2 et
2/2dx

= et
2 1√

2π

∫ ∞
−∞

e−s
2/2ds

= et
2/2.

(in the third line we had a change of variable x− t→ s).
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Exercises 7.19. Calculate MX(t) where

1. X ∼ N(µ, σ2).

2. X ∼ Exp(λ).

3. X ∼ Geo(p).

4. X ∼ U [a, b] (continuous uniform distribution).

A very important result is that the moment generating function of a random variable X uniquely
determines its distribution. That is, if MX(t) exists and is finite in some region around t = 0, then the
distribution of X is uniquely determined. For example, if some given random variable X has a moment
generating function et

2/2, then we know that X has a standard normal distribution. This result will be
extremely useful in the chapter about limit theorems.

Exercises 7.20. 1. Suppose that MX(t) = e7t. What is E[X2]?

2. Suppose that MX(t) = et
2/2, what is Pr[−1 ≤ X ≤ 1]?

8 Practice problems for Midterm 2

1. Every day, Alice comes to the bus stop exactly at 7am. She takes the first bus that arrives. The
arrival of the first bus is an exponential random variable with expectation 20 minutes. Also, every
working day, and independently, Bob comes to the same bus stop at a random time, uniformly
distributed between 7 and 7:30am.

(a) (10 points) What is the probability that tomorrow Alice will wait for more than 30 minutes?

(b) (15 points) Assume day-to-day independence. Consider Bob late if he comes after 7:20. What
is the probability that Bob will be late on 2 or more working days among the next 10 working
days?

(c) (15 points) What is the probability that Alice and Bob will meet at the station tomorrow?

2. Let X, Y, and Z be independent random variables, each of which is uniformly distributed on the
interval [0, 1].

(a) (15 points) Find the joint density function of XY and Z2, and compute Pr[XY < Z2].

(b) (15 points) Compute V ar(XY + Z).

3. (30 points) Let Kn be the complete graph on n vertices; that is, its edge-set consists of all
(
n
2

)
possible

unordered pairs of vertices. Suppose that some coloring of the edge-set of Kn is given. A triangle is
called rainbow if it has at most one edge from each color. Show that there exists a coloring of the
edges of Kn using three colors with at least

(
n
3

)
2
9

rainbow triangles.

4. Let X, Y be independent exponential random variables with parameter λ = 1. Find the joint density
function of U = X + Y and V = X/(X + Y ), and prove that V is uniformly distributed on the
interval [0, 1].

5. The joint density of X, Y is given by

f(x, y) =

{
3x if 0 ≤ y ≤ x ≤ 1

0 otherwise.
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(a) Find the marginal densities fX and fY .

(b) Compute COV (X, Y ).

(c) Compute V ar(X + Y ).

6. Show that there exists some constant c > 0 such that for all n sufficiently large, there exists a subset
S ⊆ {1, . . . , n} of size at least |S| ≥ cn1/3 such that S does not contain non-trivial solutions to
a+ b = c+ d (where a, b, c, d ∈ S, a 6= b, c 6= d, and {a, b} 6= {c, d}). That is, show that no two pairs
of elements of S have the same sum.

7. Let G = (V,E) be a simple graph. Recall that an independent set in G is a set of vertices, no
two of which have an edge between them. The independence number α(G) is the size of the largest
independent set in G. Here we’ll prove that

α(G) ≥
∑

v∈V (G)

1

d(v) + 1
. (8)

(a) Choose an ordering v1, . . . , vn of V (G) uniformly at random. Let S be the set of all vetices that
appear before all of their neighbors in the ordering. Show that S is an independent set.

(b) For each vertex v, let Xv be the indicator random variable which has value 1 if v ∈ S and 0
otherwise. Compute E[Xv]. Use this to compute E[|S|] and deduce (8).

9 Concentration inequlities

In this section we will learn basic techniques to prove that certain random variables (in particular, random
variables that can be represented as a sum of “many” random variables with “not too many” dependencies)
typically have values which are “close” to their expectation. Such results are referred to as concentration
inequalities because they measure how much a random variable is concentrated around its mean.

9.1 Markov’s inequality

Let us start with the most basic inequality, due to Markov, which is the key ingredient in all the extensions
that we will see below.

Theorem 9.1 (Markov’s inequality). Let X be a random variable for which Pr[X ≥ 0] = 1. Then, for
every k > 0 we have that

Pr[X ≥ k] ≤ E[X]

k
.

Observe that the above bound is non-trivial only in case that k > E[X].

Proof. We prove it for the case that X has a continuous distribution. The discrete case is left as an
exercise. First, observe that

E[X] =

∫ ∞
0

xfX(x)dx ≥
∫ ∞
k

kfX(x)dx.

Indeed, since Pr[X ≥ 0] = 1 we can start integrating from 0 (and not from −∞), and since xfX(x) is
positive, by monotonicity of the integral (meaning, we calculate a smaller area) we clearly have that∫ ∞

0

xfX(x)dx ≥
∫ ∞
k

xfX(x)dx.
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Then, the above inequality is obtained by observing that for x ≥ k we have that

xfX(x) ≥ kfX(x).

Now, recall that, by definition, we have∫ ∞
k

fX(x)dx = Pr[X ≥ k],

and therefore, we obtain that
E[X] ≥ k Pr[X ≥ k].

The desired result is obtained by dividing both sides by k. This completes the proof.

Example 9.2. Suppose that X ∼ Bin(n, 1
4
). Then we have that E[X] = n

4
, and X is non-negative by

definition. Therefore, by Markov’s inequality we obtain that

Pr[X ≥ n

2
] ≤ E[X]

n/2
=

1

2
.

9.2 Chebyshev’s inequality

Now, based on Markov’s inequality, we can prove way stronger bounds (in particular for binomial random
variables). The first inequality we want to consider is the following classical inequality due to Chebyshev.

Theorem 9.3 (Chebyshev’s inequality). Let X be a random variable and t > 0 be any positive real. Then,

Pr[|X − E[X]| ≥ t] ≤ V ar(X)

t2
.

Proof. First, observe that
Pr[|X − E[X]| ≥ t] = Pr[(X − E[X])2 ≥ t2].

Now, considering the random variable Y = (X − E[X])2, we clearly have that Pr[Y ≥ 0] = 1, and
therefore, by Markov’s inequality we obtain

Pr[Y ≥ t2] ≤ E[Y ]

t2
=

E[(X − E[X])2]

t2
=
V ar(X)

t2
.

This completes the proof.

Let us illustrates its strength by the following example:

Example 9.4. Suppose that X ∼ Bin(n, 1
4
). Then we have that E[X] = n

4
V ar(X) = 3n

16
. Now,

Pr[X ≥ n

2
] ≤ Pr[|X − E[X]| ≥ n

4
],

and therefore, by Chebyshev’s inequality we obtain that

Pr[X ≥ n

2
] ≤ V ar(X)

n2/16
≤ C

n
,

for some absolute constant C that doesn’t depend on n. Compare this bound with the one from Example
9.2.
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Exercise 9.5. Try to find the smallest k for which, using Chebyshev’s inequality, we obtain

Pr[|X − n

4
| ≥ k] ≤ 1

1000
,

where, as before, X ∼ Bin(n, 1
4
).

It is not that hard to come up with examples to show that both Markov’s inequality and Chebyshev’s
inequality are tight (try to do it!). In particular, it means that they are best possible in general. This
leads to the question of whether we can do better in a more restricted, yet interesting, class of random
variables. This question brings us to consider the case of a random variable that is the sum of a number
of independent random variables. Such random variables play a central role in probability, randomized
algorithms and other areas.

So, can Markov’s and Chebyshev’s Inequalities be improved for this particular kind of random variable?
First, let us check what Chebyshev’s Inequality (the stronger of the two) gives us for a sum of inde-

pendent random variables.

Theorem 9.6. Let X1, X2, . . . , Xn be independent random variables with E[Xi] = µi and Var(Xi) = σ2
i .

Then, for any a > 0:

Pr[|
n∑
i=1

Xi −
n∑
i=1

µi| ≥ a] ≤
∑n

i=1 σ
2
i

a2

Proof. This follows from Chebyshev’s Inequality applied to
∑n

i=1 Xi and the fact that Var(
∑n

i=1 Xi) =∑n
i=1 Var(Xi) for independent variables.

Note that in Example 9.4 we actually used this bound without saying, since a binomial random variable
is a sum of indicators.

Since often we will use the above inequality for i.i.d (independent and identically distributed) random
variables, let us state the following immediate coroallary for this scenario:

Suppose that X1, . . . , Xn are i.i.d random variables with expectation µ and variance σ2, then

Pr

[∣∣∣∣∑n
i=1Xi

n
− µ

∣∣∣∣ ≥ t

]
≤ σ2

nt2

for any t > 0. Please pause reading and try to prove this inequality to make sure that we are all on the
same page.

You can now wonder whether this result be improved or is it tight? Note that we used the independence
of the variables {Xi} to get Var(

∑n
i=1Xi) =

∑n
i=1 Var(Xi). However, we only used pairwise independence

of the variables {Xi}. Indeed, it is possible to show that Theorem 9.6 is tight when all the variables {Xi}
are just guaranteed to be pairwise independent.

We are now ready to tackle the case of a sum of independent random variables, and present the strongest
general concentration inequality known for this setting.

9.3 Chernoff’s inequality

There are many different forms of Chernoff’s bounds, each tuned to slightly different assumptions. We
will start with the statement of the bound for the simple case of a sum of independent Bernoulli random
variables.

Theorem 9.7 (Chernoff Bounds). Let X =
∑n

i=1Xi, where Xi = 1 with probability pi and Xi = 0 with
probability 1− pi, and all Xi are independent. Let µ = E[X] =

∑n
i=1 pi. Then

(i) Upper Tail: Pr[X ≥ (1 + δ)µ] ≤ e−
δ2

2+δ
µ for all δ > 0;
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(ii) Lower Tail: Pr[X ≤ (1− δ)µ] ≤ e−µδ
2/2 for all 0 < δ < 1;

Note that, curiously, the lower and upper tail don’t look exactly the same.
For δ ∈ (0, 1), we can combine the lower and upper tails in Theorem 9.7 to obtain the following simple

and useful bound:

Corollary 9.8. Let X =
∑n

i=1Xi, where Xi = 1 with probability pi and Xi = 0 with probability 1 − pi,
and all Xi are independent. Let µ = E[X] =

∑n
i=1 pi. Then,

Pr[|X − µ| ≥ δµ] ≤ 2e−µδ
2/3 for all 0 < δ < 1.

Before proving Theorem 9.7 we will give some applications that you might find helpful in your projects.

Example 9.9. Let X ∼ Bin(n, 1
4
). Then, in particular we can write X =

∑n
i=1Xi, where the Xis are

i.i.d Bernoulli random variables with Pr[X1 = 1] = 1
4

and Pr[X1 = 0] = 3
4
. Therefore, for evry ε > 0, by

chernoff’s inequality we obtain that

Pr[|X − n

4
| ≥ εn] ≤ 2e−

nε2

12 .

Compare this bound to the one obtained in Example 9.4.

Example 9.10. Let Gn,p be a graph on n the vertex set {1, . . . , n}, for which every pair {i, j} is being
added to E(Gn,p) with probability p, independently. Show that for every ε > 0 and p = ω

(
logn
n

)
, with

probability 1− o(1) we have that for every vertex v ∈ [n] we have (1− ε)(n− 1)p ≤ d(v) ≤ (1 + ε)(n− 1)p.
Check what would be the smallest p (if any) for which you can prove such a statement using Chebyshev’s.

Now we can prove Chernoff’s bounds.

Proof. First, let us describe the general strategy: Let X be any random variable, and a ∈ R. We will
make use of the same idea which we used to prove Chebyshev’s inequality from Markov’s inequality, where
instead of squaring the expression we will exponentiate it. Specifically, for any s > 0,

Pr[X ≥ a] = Pr[esX ≥ esa]

≤ E[esX ]

esa
(9)

So we have some upper bound on Pr[X ≥ a] in terms of E[esX ]. Similarly, for any s > 0, we have

Pr[X ≤ a] = Pr[e−sX ≥ e−sa]

≤ E[e−sX ]

e−sa

Next, since X =
∑
Xi and the Xis are independent, we know that the Moment generating function

of X can be written as a product of the moment generating functions of the Xis (WHY?). Therefore, to
prove the theorem it will be enough to bound the moment generating function of each Xi individually.

Note that since the generating function of Xi ∼ Ber(pi) is 1 + pi(e
s − 1), and since 1 + x ≤ ex holds

for all x ∈ R, we obtain that
MXi(s) = 1 + pi(e

s − 1) ≤ epi(e
s−1).

Therefore, we obtain that

MX(s) =
n∏
i=1

MXi(s) ≤
n∏
i=1

epi(e
s−1) = e(es−1)

∑n
i=1 pi ≤ e(es−1)µ, (10)
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where we used the fact that
∑n

i=1 pi = E[X] = µ.
For the proof of the upper tail, we can now apply the strategy described in Equation 9, with a = (1+δ)µ

and choosing s = ln(1 + δ) (where δ is given in the statement of the theorem):

Pr[X ≥ (1 + δ)µ] ≤ e−s(1+δ)µe(es−1)µ)

=

(
eδ

(1 + δ)1+δ

)µ
.

(Our choice of s is motivated as follows: since we try to minimize the upper bound on the tail probability,
we try to minimize our expression for the upper bound as a function of s. Taking the derivative of the
exponent shows that this minimum is achieved exactly at s = log(1 + δ). Prove it!)

Taking the natural logarithm of the right-hand side yields

µ(δ − (1 + δ) ln(1 + δ)).

Using the following inequality for x > 0 (left as an exercise):

ln(1 + x) ≥ x

1 + x/2
,

we obtain

µ(δ − (1 + δ) ln(1 + δ)) ≤ − δ2

2 + δ
µ.

Hence, we have the desired bound for the upper tail:

Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ
≤ e−

δ2

2+δ
µ.

The proof of the lower tail is entirely analogous. It proceeds by taking s = ln(1 − δ) and applies the
following inequality for the logarithm of (1− δ) in the range 0 < δ < 1 :

ln(1− δ) ≥ −δ +
δ2

2
.

Details are left as an exercise.

10 Central Limit Theorem

The Central Limit Theorem (CLT for short), is one of the most important results in probability theory, with
tons of applications. Roughly speaking, it asserts that the sum of “many” independent random variables
is approximately distributed like a normal distribution (with the corresponding mean and variance). Here
we will state and prove the following simple form of CLT:

Theorem 10.1 (CLT). Let X1, X2, . . . be a sequence of i.i.d random variables, each of which has mean µ
and variance σ2. Then, as n tends to infinity, we have that

Pr

[
X1 + . . .+Xn − nµ

σ ·
√
n

≤ a

]
→ φ(a),

where φ(a) = 1√
2π

∫ a
−∞ e

−x2/2dx, is the distribution function of a standard gaussian.
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11 Derandomization

The probabilistic method supplies, in many cases, effective randomized algorithms for various algorithmic
problems. In some cases, these algorithms can be derandomized and converted into deterministic ones. In
this chapter we discuss some examples.

In this section we will show some examples of how to convert probabilistic algorithms into deterministic
ones (that is, to derandomize the algorithms). To explain the basic idea, let us start with a simple example.
The starting point is the following, relatively trivial, theorem:

Proposition 11.1. There exists a 2-coloring of the edges of Kn (the complete graph on n vertices) such
that the number of monochromatic copies of K4 is at most

(
n
4

)
1
25

.

The proposition is trivial as the above quantity is just the expected number of monochromatic K4s in
case that we take a random coloring. This naturally leads to the question:

Can we actually find deterministically such a coloring in time which is polynomial in n?
Let us describe a procedure that does it, and is a special case of a general technique called the method

of conditional probabilities.
We want to define, for every partial coloring of E(Kn), a weight function. Given a coloring of some of

the edges of Kn by red and blue, we define, for each copy K of K4 in Kn, a weight ω(K) as follows: If at
least one edge of K is colored red and at least one edge is colored blue, then ω(K) = 0. If no edge of K is
colored, then ω(K) = 25, and if r ≥ 1 edges of K are colored, all with the same color, then ω(K) = 2r−6.
Also define the total weight W of the partially colored Kn as the sum

W =
∑
K

ω(K).

Observe that the weight of each copy of K4 is precisely the probability that it will be monochromatic, if
all the presently uncolored edges of Kn will be assigned randomly and independently.

Hence, by Linearity of Expectation, the total weight W is simply the expected number of monochro-
matic copies of K4 in such a random extension of the partial coloring of Kn to a full coloring.

We can now describe the procedure for finding a coloring as in the Proposition.
Let e1, . . . , eN , where N =

(
n
2

)
, be an arbitrary ordering of the edges of Kn. Construct the desired

two-coloring by consecutively coloring each edge either red or blue, where in each turn i we color the edge
ei. Suppose e1, . . . , ei−1 have already been colored, and we wish to color ei. Let W be the weight of Kn, as
defined above, with respect to the given partial coloring of e1, . . . , ei−1. Similarly, let Wred be the weight of
Kn with respect to the partial coloring obtained from the current coloring by assigning ei red, and let Wblue

be the weight of Kn with respect to the partial coloring obtained from the current coloring by assigning ei
blue. By the definition of W (and as follows from its interpretation as an expected value), we have

W =
Wred +Wblue

2
.

The color of ei is now chosen to minimize the resulting weight. That is, if Wred ≤ Wblue, then we color
ei red, otherwise we color it blue. By the above inequality, the weight function never increases during the
algorithm. Since at the beginning its value is exactly

(
n
4

)
·2−5, its value at the end is at most this quantity.

However, at the end all edges are colored, and the weight is precisely the number of monochromatic copies
of K4. Thus the procedure above produces, deterministically and in polynomial time, a 2-edge-coloring of
Kn, satisfying the conclusion of the Proposition. This completes the proof.

The second, and more interesting, example that we want to consider is related to the area of positional
games. In a positional game there are two players, I and II, alternating turns in claiming previously
unclaimed elements of some board V , with I going first. There is also a predetermined family of subsets
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of V , denoted by F which is considered as the collection of winning sets (the pair (V,F) is considered as
the hypergraph of the game). The winner of the game is the first player to fully occupy all the elements
of one of the winning sets in F . If there is no winner by the time that all the elements in V have been
previously claimed, the game is declared as a draw.

A complicated definition? not so... let us illustrate the definition by a simple example, namely the
traditional child-game Tic-Tac-Toe. This game is played on a 3 × 3 board, where the players alternate
turns in marking 0/X in previously unmarked spots. The winner is the first player to fully mark some
combinatorial line (that is, horizontal, vertical, or diagonal line). This game can be easily described as a
positional game! (do it).

A pioneering result in combinatorics is the following theorem by Erdős and Selfridge from 1973. The im-
pact of their result completely changed the subject and initiated the so-called “derandomization” technique
in this area.

Theorem 11.2 (Erdős-Selfridge). Let F be an n-uniform hypergraph, and assume that

|F|+MaxDed(F) < 2n.

Then, playing on F the second player can force a strong draw.

Remark 11.3. Beck has managed to extend this theorem to the biased case. That is, when player I is
allowed to take a elements per turn and Player II claims b elements per turn.

Remark 11.4. Note that if the second player can force a draw then so does the first.

Proof. Let F = {A1, . . . , AM}. Assume that at some round of the game the first player has already
occupied the elements x1, . . . , xi and the second player has occupied y1, . . . , yi−1. Note that by choosing an
element yi, the second player “turns off” all the hyperedges containing yi and refer to those sets as “dead
sets”. The winning sets which are not “dead” are referred to as “survivors”, and they all have a chance
to be occupied by the first player. We wish to define a potential function measuring the “danger” of each
“survivor” and to measure the “danger” of the whole position. To do so we define

Di =
∑
s∈Si

2−us

where us is the number of unoccupied elements of s and Si is the set of all survivors at the current round.
A natural choice for second will thus be an element yi which minimizes the danger function Di+1. How

to do so? suppose yi and xi+1 are the next two steps of the players. Let us measure the effect on the
danger function. Clearly,

Di+1 ≤ Di −
∑
s∈Si

2−us1yi∈s +
∑
s∈Si

2−us1xi+1∈s.

All in all, a natural choice for yi is the unoccupied z for which
∑

s∈Si 2−us attains its maximum. Then,
we obtain

Di+1 ≤ Di.

Therefore, the second player can force

D1 ≥ D2 ≥ . . . ≥ Dlast.

Note that if first wins then there exists an s ∈ Slast with us = 0 and therefore Dlast ≥ 1. On the other
hand, by assumption we have

D1 =
∑
s∈S1

2−n+11x1∈s +
∑
s∈Si

2−n1x1 /∈s ≤ (|F|+MaxDeg(F))2−n < 1.

This completes the proof.
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Remark 11.5. Note that if the two players play completely at random, then the expected number of
monochromatic edges is

2−n+1|F|.

Now, if the expectation if smaller than 1 then there exists a drawing position (it doesn’t mean that either
of the players can actually force such a position!). This explains the beauty of the argument – the proof
is a “derandomization” of the above argument. It “upgrades” the existing drawing position to a Drawing
strategy! Moreover, note that this condition is tight (a binary tree with n levels has 2n−1 edges and first
player clearly can occupy a full branch).

Remark 11.6. A non-uniform version can be stated as follows: If∑
A∈F

2−|A| < 1/2

then the second player can force a strong draw. (Exercise!)

12 Practice problems for the Final

1. Let X, Y ∼ U [0, 1], be independent and let Z = max{X, Y }.

(a) (10 points) Calculate Pr[Z ≤ a].

(b) (10 points) Calculate the density function of Z.

(c) (5 points) Calculate V ar(Z).

2. Let X be uniformly distributed on the interval [0, π
2
] and let Y be exponentially distributed with

mean 1/3. Assume X and Y are independent.

(a) Compute the joint density function of U and V , where U and V are given by

U = eY cos(X), V = eY sin(X).

(b) Compute E[U + V ] and [U + V ].

3. A factory produces bolts of a certain width. The bolts don’t come out perfectly each time – their
widths deviate from the specified width by a random amount X, measured in micrometers. Suppose
X has density function f(x) = C

1+(x/10)2
, where −20 ≤ x ≤ 20.

(a) Find the value of C such that f is indeed a probability density function.

(b) Calculate the mean and variance of X.

(c) Suppose the factory produces 10,000 bolts a day. Assuming that each bolt is produced inde-
pendently, estimate the number of bolts whose widths deviate from specification by more than
10 micrometers.

4. Video projector light bulbs are known to have a mean lifetime of µ = 100 hours and standard
deviation σ = 75 hours. The university uses the projectors for 9000 hours per semester.

(a) (15 points) Use the central limit theorem to estimate the probability that 100 light bulbs will
last the whole semester?

(b) (10 points) Explain how to estimate the number of light bulbs necessary to have a 1% chance of
running out of light bulbs before the semester ends. Don’t actually do the whole computation.
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5. You and one million other people have bought tickets for this week’s lottery. Each person has a one
in one million chance of selecting winning numbers. If there is more than one person with winning
numbers, one winner is randomly chosen from them to win the prize.

Suppose your ticket has winning numbers. Let X be the number of other matching tickets belonging
to the other one million players. Since there are one million other tickets, each of which has a one
in one million chance of winning, we can assume that X is approximately a Poisson random variable
with parameter 1.

(a) What is the probability that you have the only winning ticket?

(b) The prize winner is chosen at random from all the winning ticket holders. What is the probability
that you win, given that there are x other winners?

(c) What is the probability that you win, given that you have a matching ticket? Hint: conditional
expectation.

6. Suppose that X is random variable with a moment generating function MX(t) =
(

1+e100t

2

)n
.

(a) (10 points) Find E[X].

(b) (7 points) Find E[X2] and then compute V ar(X).

(c) (5 points) What is the probability that X ≥ 10E[X]? Use Chebyshev’s inequality to upper
bound this quantity.

(d) (3 points) Do you see how to obtain a better bound than the one you obtained with Chebyshev’s?
if yes, then explain in words without computing.

7. Suppose that X is uniformly distributed on the set of n even numbers {2, 4, 6, 8, . . . , 2n}.

(a) Calculate MX(t).

(b) Calculate E[X3].

(c) Let X1, . . . , Xk be independent copies of X and let Sk = X1 + . . .+Xk. Calculate MSk(t).

8. Let X be any set, and let F be a collection of subsets of X, each of size exactly n (you can assume
that n is sufficiently large if needed).

(a) (15 points) Prove that if |F| ≤ 2n−1 − 1 then there exists a partition X = X1 ∪ X2 such that
for all F ∈ F we have that F ∩X1 6= ∅ and F ∩X2 6= ∅.

(b) (10 points) Prove, using Chernoff’s bounds, that if |F| ≤ n100, then there exists a partition
X = X1 ∪ X2 such that for all F ∈ F we have

∣∣|F ∩X1| − n
2

∣∣ ≤ C
√
n log n, for some fixed

constant C > 0 that doesn’t depend on n.

9. You and your friend are playing a game. You start by selecting a number X uniformly at random
from [0, 1]. Your friend picks numbers Y1, Y2, . . . uniformly in [0, 1] until they pick a number larger
than X/2.

(a) (10 points) Find the expected number of times, N , your friend needs to pick a number. Hint:
Condition on X = x.

(b) (10 points) Find the expected sum of your friend’s numbers given that they had to pick N
numbers.

(c) (5 points) Find the expected sum of your friend’s numbers.
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10. (a) Let X be a random variable. Use Chebyshev’s inequality to show that

Pr[X = 0] ≤ [X]

E[X]2
.

Deduce that if Xn is a sequence of random variables and [Xn] = o(E[Xn]2), then Xn = 0 with
high probability.

(b) Show that if p ≥ Cn−2/3 for some large constant C, then the random graph G(n, p) contains a
clique of size 4 with high probability.

13 Asymptotics estimates and ‘big O’ notation

In most of the undergrad courses we deal with exact formulas. Among many more examples, in calculus
we learnt Taylor’s expansion and saw that ex =

∑∞
k=1

xk

k!
, cosx =

∑∞
k=0(−1)kx2k2k!, etc. In Math 130A

we saw many identities of the form 2n =
∑n

k=0

(
n
k

)
,
(
n+1
m+1

)
=
∑n

k=m

(
k
m

)
, and more.

In the real world, however, in most scenarios it will be very hard and even impossible to obtain a closed
formula. There are many natural and simple-to-state problems in combinatorics, probability, number
theory and more, which an exact formula is still unknown, or even worse – it is known that an exact
formula does not even exist.

What we do in such cases is to derive “asymptotic estimates” for these quantities. That is, we derive
approximations of the quantities by “simple” functions, which show how these quantities behave “asymp-
totically”. For example, in Section 1.2 we showed that the number of triangles in every graph on n vertices
with at least (1/4 + ε)n2 edges is “of order” cn3, without finding the exact constant c (Which clearly is
not unique for all graphs and depends on the graph structure).

Let us start by introducing a convenient (and nowadays standard) notation.

Definition 13.1. Given two functions f, g : R→ R, we say that

1. f = O(g) if and only if there exist constants C1 > 0 and C2 > 0 such that

for all x ≥ C1 we have f(x) ≤ C2g(x).

2. f = Ω(g) if and only if g = O(f). Or equivalently, f = Ω(g) if and only if there exist constants
C1 > 0 and C2 > 0 such that

for all x ≥ C1 we have f(x) ≥ C2g(x).

3. f = Θ(g) if and only if both f = O(g) and f = Ω(g).

4. f = o(g) if and only if limx→∞
f
g

= 0.

5. f = ω(g) if and only if g = o(f).

As simple exercises try to write the full definition of items 3− 5.
Let us try to get a feeling for this notation that we’ve just introduces. For example, try to convince

yourselves formally that the following hold:

1. x2 + 150x+ 2100 = O(x2),

2. x1000 = o(2x),

3. x3 + 1010x2 + 100 = Ω(10000x3),
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4. 1
x

= o(1),

5. (1 + 1
x
)x = Θ(1),

6. (1 + 1
x
)x

2
= ω(1).

We now describe (Without proofs) some asymptotic estimates which will be very useful in our course.

Stirling’s approximation Perhaps the most famous estimate is Stirling’s approximation for factorial.
It gives:

n! =
√

2πn ·
(n
e

)n
·
(

1 +O

(
1

n

))
.

Harmonic numbers The nth harmonic number Hn is defined as follows

Hn =
n∑
k=1

1

k
.

It is known that
Hn = lnn+ γ + o(1),

where γ = 0.5772 . . . is the Euler constant.

Binomial coefficients One of the most useful inequalities in discrete mathematics is the following:(n
k

)k
≤
(
n

k

)
≤
(en
k

)k
.

The proof of the lower bound is more or less trivial (prove it!). For the upper bound, we will prove it
as follows:

Recall from the binomial formula that

(1 + x)n =
n∑
i=0

(
n

i

)
xi.

Therefore, if we choose x ≥ 0 we obtain that

(1 + x)n ≥
k∑
i=0

(
n

i

)
xi,

which implies that

(1 + x)n

xk
≥

k∑
i=0

(
n

i

)
xi−k.

Now, suppose that 0 < x < 1 and observe that for all i ≤ k we have xi−k ≥ 1. This implies that

(1 + x)n

xk
≥

k∑
i=0

(
n

i

)
.

Finally, choose x = k
n

(and observe that 0 < x < 1 and therefore this is a legal choice), and obtain that(
n

k

)
≤

k∑
i=0

(
n

i

)
≤ (1 + x)n

xk
=

(1 + k
n
)n(

k
n

)k ≤
(en
k

)k
.

This completes the proof of the upper bound.
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General estimates We will also make use of the following estimates:

1. ex =
∑∞

k=0
xk

k!
for all x,

2. ln(1 + x) = x− x2

2
+ x3

3
− x4

4
+ . . ., for all −1 < x < 1,

3. 1 + x ≤ ex for all x,

4. 1− x ≥ e−x−x
2/2 for all 0 < x < 1.

The following exercises are highly recommended:

Exercises 13.2. 1. Let f be a function satisfying limx→∞ f(x) =∞. Show that ln Θ(f) = Θ(ln f).

2. Show that if f = O(g) then we also have f + g = O(g).

3. Show that
∑∞

k=1
k log k

2k
= O(1).

4. Arrange the following functions according to the relation f < g if and only if f = o(g) (this is not a
total ordering):

√
x, x!, 2x, xx, x2, log x, (log log x)log log x, 100.

5. Show that
(
n
αn

)
= 1+o(1)√

2πα(1−α)n
· 2H(α)n, where H(α) = −α log2 α − (1 − α) log2(1 − α) is the binary

entropy function.
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