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1 Useful inequalities and estimates

In this note we will survey few useful inequalities and estimates which we like. Many of the

inequalities are summarized from the lovely book of Steele entitled “Cauchy-Schwarz master class”,

which is highly recommended to read.

1.1 Rearrangement inequality

In this section we prove the following useful inequality

Lemma 1.1 (Rearrangement inequality). Suppose −∞ < a1 ≤ a2 ≤ . . . ≤ an <∞ and −∞ < b1 ≤
b2 ≤ . . . ≤ bn <∞. Then, for every permutation σ ∈ Sn we have

a1bn + a2bn−1 + . . .+ anb1 ≤ a1bσ(1) + a2bσ(2) + . . .+ anbσ(n) ≤ a1b1 + a2b2 + . . .+ anbn.

Proof. We will only prove the upper bound and leave the lower bound (which can be obtained as an

immediate corollary) as an exercise for the reader.

Let σ ∈ Sn be such that the sum
n∑
i=1

aibσ(i)

is maximal, and among all permutations which give a maximal sum, σ has the maximum number of

fixed points.

We will show that if σ is not the identity permutation, then one can find a permutation τ that

attains the maximum and has more fixed points than σ. This will be a contradiction.

Let 1 ≤ j ≤ n be the first index for which σ(j) 6= j. Since σ is not the identity permutation, j is

well defined. Now, let k be such that σ(k) = j, and observe that, since j is the first point which is

not fixed under σ, we have σ(j) > j, and k > j. Therefore, by the assumption on the labeling of the

sequences, we have that

1. aj ≤ ak, and

2. bj ≤ bσ(j).

In particular, this implies that

(ak − aj)(bσ(j) − bj) ≥ 0,

which translates to

akbσj + ajbj ≥ ajbσ(j) + akbj .

Therefore, the permutation τ which is obtained from σ by setting τ(j) = j and τ(k) = σ(j), and

τ(i) = σ(i) for all i 6= j, k attains the maximum as well, and has more fixed points. Contradiction.

Exercise 1.2. Let Sn denote the n-dimensional unit sphere. Show that for all x ∈ Sn we have that∑
i

x2
i = max

y∈Sn
〈x, y〉.

2



1.2 Reverse Cauchy-Schwarz

Here the objective is to determine, under certain circumstances, when can we write an inequality

of the following form: (
n∑
k=1

a2
k

)1/2( n∑
k=1

b2k

)1/2

≤ ρ
n∑
k=1

akbk. (1)

To get some feeling it makes sense to study the first non-trivial case where n = 2 (and for

convenience we will normalize both a1 = b1 = 1). In this case (1) translates to

(1 + a2)(1 + b2) ≤ ρ · ab.

Observe that if, for example, we choose b = 1
a , and we allow a → ∞, then the left hand side

is unbounded while the right hand sided is always ρ. In particular, it means that obtaining (1) is

hopeless unless we add some constraints on the ratios ak
bk

.

Suppose that m ≤ ak
bk
≤M holds for all k. In order to obtain a bound that involves both quadratic

and linear elements, it might seem natural to consider the following:(
M − ak

bk

)(
ak
bk
−m

)
≥ 0.

This translates to

a2
k + (mM) · b2k ≤ (m+M)akbk.

Now, summing over all k we obtain that∑
k

a2
k + (mM)

∑
k

b2k ≤ (m+M)
∑
k

akbk. (2)

Recall the AM-GM inequality (
n∏
k=1

xk

)1/n

≤ 1

n

(
n∑
k=1

xk

)
,

which by combining with (2) gives(
n∑
k=1

a2
k

)1/2(
(mM)

n∑
k=1

b2k

)1/2

≤ m+M

2

(∑
k

akbk

)
,

as desired. We summarize the above in the following theorem

Theorem 1.3. Let (ak)
n
k=1 and (bk)

n
k=1 be two sequences of non-negative real numbers. Suppose that

for some m ≤M we have m ≤ ak
bk
≤M for all k. Then the following inequality holds:

(
n∑
k=1

a2
k

)1/2( n∑
k=1

b2k

)1/2

≤ m+M

2
√
mM

(∑
k

akbk

)
.
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1.3 Basic convexity inequalities

Recall that a function f : [a, b]→ R is convex if for all x, y ∈ [a, b] and for all p ∈ [0, 1] we have

f(px+ (1− p)y) ≤ pf(x) + (1− p)f(y). (3)

This basic property serves as the key property for establishing many relatively simple, but yet

powerful, inequalities. Let us start with the most fundamental inequality due to Jensen:

Lemma 1.4 (Jensen’s inequality). Suppose f : [a, b]→ R is a convex function and suppose that the

nonnegative numbers p1, . . . , pn satisfy

p1 + p2 + . . .+ pn = 1.

Then, for all xj ∈ [a, b], j = 1, . . . , n we have

f

 n∑
j=1

xjpj

 ≤ n∑
j=1

pjf(xj).

Proof. Observe that for n = 2 Jensen’s inequality is just (3) which is just the definition of convexity,

and therefore it is natural to proceed by induction. For the induction step, note that:

n∑
j=1

pjxj = p1x1 + (1− p1)
n∑
j=2

pj
1− p1

xj .

Therefore, by the induction hypothesis we have that

f

 n∑
j=1

xjpj

 ≤ p1f(x1) + (1− p1)f

 n∑
j=2

pj
1− p1

xj

 ,

which again, by induction hypothesis is at most

n∑
j=1

pjf(xj),

as desired. This completes the proof.

Among other examples, the functions ex, x2,− log x are all convex in their entire domain (can you

prove it? if not, wait for the next section).

As a quick application, let us prove the AM-GM (Arithmetic Mean- Geometric Mean) inequality:

Lemma 1.5 (The AM-GM inequality). Let x1, . . . , xn ≥ 0. Then

(x1 · · ·xn)1/n ≤
∑n

j=1 xj

n
.

Proof. Write

(x1 · · ·xn)1/n = exp

 1

n

n∑
j=1

log xj

 ,
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and observe that the function ex is convex, and therefore, by Jensen’s inequality we have that

exp

 1

n

n∑
j=1

log xj

 ≤ 1

n
·
n∑
j=1

elog xj =

∑n
j=1 xj

n
,

as desired. This completes the proof.

Exercise 1.6. Prove the following general version of the AM-GM inequality: Let x1, . . . , xn ≥ 0,

and let p1, . . . , pn ≥ 0 satisfy p1 + . . . pn = 1. Then,

n∏
j=1

x
pj
j ≤

n∑
j=1

pjxj .

Let us now give a quick application of the AM-GM inequality to achieve another useful inequality.

Lemma 1.7. Let a, b, c ≥ 0. Then

ab+ ac+ bc ≤ a2 + b2 + c2.

Proof. By the AM-GM inequality we have that

ab ≤ 1

2
(a2 + b2), and ac ≤ 1

2
(a2 + c2), and bc ≤ 1

2
(b2 + c2).

Summing up all the above bounds give the desired.

A more general setting: suppose that a1, . . . , an ≥ 0, and let G be any graph on n vertices. Define

the operation

Σ(G; a1, . . . , an) :=
∑

ij∈E(G)

aiaj .

For example, observe that the LHS in 1.7 is just Σ(G; a, b, c), where G = K3 is the complete graph

on 3 vertices.

Note that the above operation can be naturally generalized to hypergraphs as well: given any

subset S ⊆ [n], we define aS :=
∏
i∈S ai. Therefore, given any set system H ⊆ 2[n] (also referred to

as a hypergraph), we can define

Σ(H; a1, . . . , an) =
∑
S∈H

aS .

Lemma 1.8. Let H be a k-uniform, d-regular hypergraph on n vertices. Then, for all a1, . . . , an ≥ 0

we have

Σ(H; a1, . . . , an) ≤ d

k

n∑
j=1

akj .

1.3.1 Differential criterion for convexity

Note that in order to use Jensen’s inequality on some function f , we first need to establish the

convexity of f . It turns out that even though the definition for convexity is very simple, in most

cases it is not that simple to prove that a function f is convex by applying the definition to f directly.

The most common way to prove convexity is by applying the following differential criterion:
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Lemma 1.9 (Differential criterion for convexity). Suppose that f : (a, b)→ R is twice differentiable

and that f ′′(x) ≥ 0 for all x ∈ (a, b). Then, f is convex on (a, b).

Proof. Recall the fundamental theorem of calculus that gives us, for a differentiable function and

some x0 in its domain, that

f(x) = f(x0) +

∫
x0

f ′(t)dt, (4)

holds for all x in its domain.

Moreover, since f ′′(x) ≥ 0 for all x, we have that f ′(t) is a non-decreasing function.

Now, let x < y ∈ (a, b) and p ∈ [0, 1]. We wish to show that (3) holds. In particular, setting

∆ := pf(x) + (1− p)f(y)− f(px+ (1− p)y),

we wish to show that ∆ ≥ 0.

To this end, observe that by applying the fundamental theorem of calculus (4) to x, y and x0 :=

px+ (1− p)y, we obtain that

∆ = p

(
f(x0) +

∫ x

x0

f ′(t)dt

)
+ (1− p)

(
f(x0) +

∫ y

x0

f ′(t)dt

)
− f(x0),

which translates to

∆ = p

∫ x

x0

f ′(t)dt+ (1− p)
∫ y

x0

f ′(t)dt = (1− p)
∫ y

x0

f ′(t)dt− p
∫ x0

x
f ′(t)dt. (5)

By monotonicity of f ′ we obtain the bounds

(1− p)
∫ y

x0

f ′(t)dt ≥ (1− p)f ′(x0)(y − x0) = (1− p)pf ′(x0)(y − x),

and

p

∫ x0

x
f ′(t)dt ≤ pf ′(x0)(x0 − x) = p(1− p)(y − x),

which are matching bounds. Plugging these estimates into (5) completes the proof.

Exercise 1.10. Show that f(x) = − log(cosx) is convex in −π/2 < x < π/2.

Exercise 1.11. Show that for −π/2 < θi < π/2, i = 1, . . . , n, we have

n∏
j=1

cos(θj) ≤ cos

(
θ1 + . . .+ θn

n

)n
.

1.3.2 An application: on the maximum of the product of two edges

As a neat application to Jensen’s inequality we solve the following problem:

Problem 1.12. In an equilateral triangle with area A, the product of any two sides is (4/
√

3)A.

Show that every triangle has two sides with product which is at least (4/
√

3)A.
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Recall that for a triangle with sides of lengths a, b, c and with angles α, β, γ opposite to the sides,

respectively, the area A satisfies:

A =
1

2
ab sin γ =

1

2
ac sinβ =

1

2
bc sinα.

By averaging, we obtain that

1

3
(ab+ ac+ bc) =

2A

3

(
1

sinα
+

1

sinβ
+

1

sin γ

)
.

Now, observe that the function f(x) = 1/ sinx satisfies f ′′(x) = 1/ sinx+ 2 cos2 x
sin3 x

which is positive

for all x ∈ (0, π). Therefore, f(x) is convex in (0, π). Moreover, since α + β + γ = π, by Jensen’s

inequality we obtain

2√
3

=
1

sin(π/3)
≤ 1

3

(
1

sinα
+

1

sinβ
+

1

sin γ

)
.

Plugging it into the first equality, we obtain that

1

3
(ab+ ac+ bc) ≥ 4A√

3
,

which gives us the desired.

1.3.3 Estimating the error in Jensen’s inequality

Lemma 1.13 (Hölder’s Defect Formula). Let f : [a, b]→ R be twice differentiable, and assume that

0 ≤ m ≤ f ′′(x) ≤ M holds for all x ∈ [a, b]. Then, for any choice of a ≤ xi ≤ b, where i = 1, . . . , n,

and nonnegative p1, . . . , pn with p1 + . . .+ pn = 1, there exists µ ∈ [m,M ] for which

∑
k

pkf(xk)− f

(∑
k

pkxk

)
=

1

4
µ

n∑
j=1

n∑
k=1

pjpk(xj − xk)2.

Proof. Probably the main difficulty in approaching this problem is to understand how to use the

condition 0 ≤ m ≤ f ′′(x) ≤M .

Define two auxiliary functions g(x) = 1
2Mx2 − f(x) and h(x) = f(x) − 1

2mx
2. Observe that by

the assumption on f ′′ we have that both g and h are convex (check their second derivatives!). Now,

let x̄ =
∑

j pjxj , and observe that, by Jensen’s, we have

g(x̄) ≤
n∑
j=1

pj

(
1

2
Mx2

j − f(xj)

)
.

By rearranging, this bound translates to∑
j

pjf(xj)

− f(x̄) ≤ 1

2
M
{(∑

pjx
2
j

)
− x̄2

}
=

1

2
M
∑

pj(xj − x̄)2.

Doing the same with h, we obtain
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∑
j

pjf(xj)

− f(x̄) ≥ 1

2
m
{(∑

pjx
2
j

)
− x̄2

}
=

1

2
m
∑

pj(xj − x̄)2.

In order to complete the proof one need to observe that∑
pj(xj − x̄)2 =

1

2

∑
j

∑
k

pjpk(xj − xk)2,

which is left as an easy exercise.

2 Combinatorial linear algebra

In this note we introduce few known and original results in what I consider as “combinatorial

linear algebra”.

2.1 Background in linear algebra

In this section we provide a (very) brief background in linear algebra.

2.1.1 Some basic notions and results

Suppose that A is an n× n real-valued matrix and that x ∈ Rn. Then,

• Its spectral norm is defined as ‖A‖ := max‖x‖2=1 ‖Ax‖2. Moreover, it is well known that

‖A‖ = max‖x‖2=‖y‖2=1 |xTAy|, and that

‖A‖ = max
{√

λ | λ is an eigenvalue of ATA
}
.

• W (A) =
(∑

i,j a
2
ij

)1/2
is the Euclidean norm of A.

• tr(A) =
∑n

i=1 aii is its trace. Moreover, tr(A) =
∑

i λi, where λi are all the eigenvalues of A

(with multiplicities).

2.1.2 Spectral decomposition

Theorem 2.1 (Spectral decomposition). Let A be a real-valued, symmetric matrix. Then, A can be

decomposed as

A =
n∑
i=1

λiviv
T
i ,

where λi’s are its eigenvalues and the vi’s are corresponding eigenvectors which form an orthonormal

basis.

Proof. Let v1, . . . , vn be any orthonormal basis of Rn. Then, every vector x ∈ Rn can be written as

x =
n∑
i=1

〈vi, x〉vi,
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where 〈u, v〉 = uT v is the standard inner product.

Now, observe that for every x we have

x =

n∑
i=1

〈vi, x〉vi =

n∑
i=1

vi〈vi, x〉 =

(
n∑
i=1

viv
T
i

)
x,

and therefore, we obtain that

In =
n∑
i=1

viv
T
i .

Next, since A is a real-valued, symmetric matrix, one can find an orthonormal basis v1, . . . , vn
which consists of eigenvectors of A (this fact is called “the spectral theorem”). For such a basis, if

we multiply the above identity by A we obtain

A = AIn =
n∑
i=1

Aviv
T
i =

n∑
i=1

λiviv
T
i .

This completes the proof.

2.2 Gram matrices and applications

2.3 Intersection of vector spaces with the boolean hypercube

In this section we investigate problems related to the size of the intersection between a vector

subspace of Rn and the boolean hypercube Qn := {0, 1}n.

As a first natural question one should probably ask

Question 2.2. Suppose V ⊆ Rn is a subspace of dimension r. How large can |V ∩Qn| be?

A simple observation due to Odlyzko answers the above question:

Observation 2.3 (Odlyzko). Suppose V ⊆ Rn is a subspace of dimension r. Then,

|V ∩Qn| ≤ 2r.

Proof sketch. Let v1, . . . , vr be a basis of V . Since dim(V ) = r, all the linear combination of v1, . . . , vr
depend on r “free” coordinates (and the rest are forced). Therefore, there are at most 2r many

combinations for 0/1 vectors on these coordinates.

Next, let us try to investigate the structure of such subspaces V with dim(V ) = r and with a

maximal intersection |V ∩Qn| = 2r. As it turns out, these subspaces have a very simple structure.

Lemma 2.4. Let V ⊆ Rn be a subspace of dimension r and with |V ∩Qn| = 2r. Then, there exists a

partition [n] = I1 ∪ . . .∪ Ir+1 such that for every v ∈ V and for every k, ` ∈ Ij (where 1 ≤ j ≤ r+ 1)

we have vk = v`.

In order to prove Lemma 2.4 we will prove something slightly stronger:

Lemma 2.5. Let V ⊆ Rn be a subspace of dimension r, and let v1, . . . , vr be any basis of V . Let M

be the r× n matrix with the vi’s as its rows. Then, there exists a partition [n] = I1 ∪ . . .∪ Ir+1 such

that for all 1 ≤ j ≤ r + 1, all the columns of M with indices in Ij are the same.

9



Exercise 2.6. Show that Lemma 2.5 indeed implies Lemma 2.4.

Proof. Given a matrix A, we let span(A) be the subspace spanned by its rows. In particular, we have

that span(M) = V . Now, observe that any matrix M ′ obtained by applying gaussian elimination

to M still has span(M ′) = V . Moreover, observe that by exchanging columns of M , even though

the span of its rows changes, we still have the same size of intersection with Qn. Therefore, we

can assume without loss of generality that the first r columns of M form a non-singular matrix,

and then, by applying a guassian elimination to M , we can obtain a matrix M ′ for which its first

r columns form the identity matrix Ir, and for which |span(M ′) ∩ Qn| = |V ∩ Qn| = 2r. The main

advantage is that, for M ′, every v ∈ Qr is such that vTM ′ ∈ Qn. Finally, observe that every columns

has support of size at most 1. Indeed, let u ∈ Rr, if its support is larger than 1, then it cannot be

that vTu ∈ {0, 1} for all v ∈ Qr. Moreover, if the support of u is of size 1, then the only non-zero

element must be 1. To summarize, in M ′ every column belongs to {e1, . . . , er, 0̄}, and therefore, in

M , let u1, . . . , ur be the first r columns, then we have that every columns is in {u1, . . . , ur, 0̄}. This

completes the proof.

2.4 Siegel’s lemma

Suppose A is an M × N matrix with M < N . Clearly, as M < N , there must be non-trivial

solution to Ax = 0. The problem that we are interested at is in finding a non-trivial solution x ∈ RN
for which ‖x‖|infty = max1≤j≤N{|xj |} is as small as possible. Such a bound is given by the following

lemma due to Siegel.

Lemma 2.7 (Siegel’s Lemma). Let

Lm(x) =
N∑
n=1

amnxn, m = 1, . . . ,M,

be M non-trivial linear forms in N variables xn, and assume that amn ∈ Z for all m,n.

For Am :=
∑N

n=1 |amn|, m = 1, . . . ,M , we have that there exists a non-trivial solution z ∈ ZN to

the system of linear equations with

1 ≤ max
1≤n≤N

|zn| ≤ b(A1 · · ·AM )
1

N−M c.

Proof. Let A := b(A1 · · ·AM )
1

N−M c, and observe that

A1 · · ·AM < (A+ 1)N−M .

In particular, we have that

M∏
j=1

(AjA+ 1) ≤
M∏
j=1

(Aj(A+ 1)) < (A+ 1)N .

Now, consider the N -dimensional box B1 := [0, A]N in ZN , and observe that it contains (A+ 1)N

many distinct vectors. Moreover, observe that for each m = 1, . . . ,M and for each x ∈ B1 we have∑
amn<0

amnxn ≤ Lm(x) ≤
∑

amn>0

amnxn.
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Let Nm := −
∑

amn<0 amn and Pm :=
∑

amn>0 amn be the absolute values of the sums of the

negative and positive coefficients of Lm, respectively. Observe that Nm + Pm = Am and that

−NmA ≤ Lm(x) ≤ PmA,

for all x ∈ B1.

Now, define the box B2 :=
∏M
m=1[−NmA,PmA] in ZM , and observe that it contains

M∏
m=1

((Nm + Pm)A+ 1) =

M∏
m=1

(AmA+ 1) < (A+ 1)N

many vectors.

In particular, there are two distinct vectors x, y ∈ B1 which give the same solution in B2. This

implies that z := x− y 6= 0 is also a solution and it clearly satisfies ‖z‖∞ ≤ A.

2.5 Quantitative Halász-type inequality

In connection with their study of random polynomials, Littlewood and Offord introduced the

following problem. Let a := (a1, . . . , an) ∈ (Z\{0})n and let ε1, . . . , εn be independent and identically

distributed (i.i.d.) Rademacher random variables, i.e., each εi independently takes values ±1 with

probability 1/2 each. Estimate the largest atom probability ρ(a), which is defined by

ρ(a) := supx∈Z Pr [ε1a1 + · · ·+ εnan = x] .

They showed that ρ(a) = O(n−1/2 log n) for any such a. Soon after, Erdős used Sperner’s theorem

(we will give a simple proof using Fourier’s in a later section) to give a simple combinatorial proof

of the refinement ρ(a) ≤
(

n
bn/2c

)
/2n = O(n−1/2), which is tight, as is readily seen by taking a to be

the all ones vector.

The results of Littlewood–Offord and Erdős generated considerable interest and inspired further

research on this problem. One such direction of research was concerned with improving the bound of

Erdős under additional assumptions on a. The first such improvement was due to Erdős and Moser,

who showed that if all coordinates of a are distinct, then ρ(a) = O(n−3/2 log n). Subsequently,

Sárkőzy and Szemerédi improved this estimate to O(n−3/2), which is asymptotically optimal. Soon

afterwards, Halász proved the following very general theorem relating the “additive structure” of the

coordinates of a to ρ(a).

Theorem 2.8 (Halász’s inequality). Let a := (a1, . . . , an) ∈ (Z \ {0})n. For an integer k ≥ 1, let

Rk(a) denote the number of solutions to ±ai1 ± ai2 · · · ± ai2k = 0, where repetitions are allowed in

the choice of i1, . . . , i2k ∈ [n]. There exists an absolute constant C > 0 such that

ρ(a) ≤ C
√
kRk(a)

22kn2k+1/2
+ e−n/max{k,C}.

It is easy to see that Halász’s inequality, applied with k = 1, yields the estimate ρ(a) = O(n−1/2)

for every a ∈ (Z\{0})n; if one further assumes that the coordinates of a are distinct, then R1(a) ≤ 2n

and one obtains the stronger bound ρ(a) = O(n−3/2), recovering the result of Sárkőzy and Szemerédi.

We emphasize that Theorem 2.8 is valid even when k grows with n (the constant C does not depend

on either k, n, or a). This fact will prove to be crucial for the results in this section.
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Here, we wish to investigate the structure of vector with large atom probability over finite fields.

The starting point for our approach is the anti-concentration inequality of Halász 2.8. For a vector

a ∈ Fnp , we define ρFp(a) and Rk(a) as above, except that all arithmetic is done over the p-element

field Fp, and we let supp(a) = {i ∈ [n] : ai 6= 0 mod p}.

Theorem 2.9 (Halász’s inequality over Fp). There exists an absolute constant C such that the

following holds for every odd prime p, integer n, and vector a := (a1, . . . , an) ∈ Fnp \ {0}. Suppose

that an integer k ≥ 0 and positive real M satisfy 30M ≤ |supp(a)| and 80kM ≤ n. Then,

ρFp(a) ≤ 1

p
+

CRk(a)

22kn2k ·M1/2
+ e−M .

The proof of this theorem is a straightforward adaptation of Halász’s original argument. For the

reader’s convenience, we provide complete details in Section 2.6.

Note that Halász’s inequality may be viewed as a partial inverse Littlewood–Offord theorem.

Indeed, if ρFp(a) is “large”, then it must be the case that Rk(a) is also “large”. Hence, an upper

bound on the number of vectors a for which Rk(a) is “large” is also an upper bound on the number

of vectors with “large” ρFp(a). Moreover, since ρFp(a) ≤ ρFp(b) for every subvector b ⊆ a, when

ρFp(a) is “large”, so is Rk(b) for every b ⊆ a. As we shall show, the number of vectors a with

such “hereditary” property can be bounded from above quite efficiently using direct combinatorial

arguments. Consequently, our approach yields strong bounds on the number of vectors a with

ρFp(a) ≥ ρ for a significantly wider range of ρ than the range amenable to the “structural” approach

of Tao-Vu described above (NOT YET, ADD TO NOTES).

Instead of working directly with Rk(a), however, we will find it more convenient to work with the

following closely related quantity.

Definition 2.10. Suppose that a ∈ Fnp for an integer n and a prime p and let k ∈ N. For every

α ∈ [0, 1], we define Rαk (a) to be the number of solutions to

±ai1 ± ai2 · · · ± ai2k = 0 mod p

that satisfy |{i1, . . . , i2k}| ≥ (1 + α)k.

It is easily seen that Rk(a) cannot be much larger than Rαk (a). This is formalized in the following

simple lemma.

Lemma 2.11. For all integers k, n with k ≤ n/2, any prime p, vector a ∈ Fnp , and α ∈ [0, 1],

Rk(a) ≤ Rαk (a) +
(
40k1−αn1+α

)k
.

Proof. By definition, Rk(a) is equal to Rαk (a) plus the number of solutions to ±ai1±ai2 · · ·±ai2k = 0

that satisfy |{i1, . . . , i2k}| < (1 + α)k. The latter quantity is bounded from above by the number of

sequences (i1, . . . , i2k) ∈ [n]2k with at most (1 + α)k distinct entries times 22k, which is the number

of choices for the ± signs. Thus

Rk(a) ≤ Rαk (a) +

(
n

(1 + α)k

)(
(1 + α)k

)2k
22k ≤ Rαk (a) +

(
4e1+αk1−αn1+α

)k
,

where the final inequality follows from the well-known bound
(
a
b

)
≤ (ea/b)b. Finally, noting that

4e1+α ≤ 4e2 ≤ 40 gives us the desired bound.
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The following counting theorem provides an upper bound on the number of sequences a for which

every “relatively large” subsequence b has “large” Rαk (b). In particular, the sequences a that are

not counted have a “relatively large” subsequence b with “small” Rαk (b) and thus also “small” Rk(b)

(by Lemma 2.11), and hence small ρFp(b) (by Theorem 2.9). Since ρFp(a) ≤ ρFp(b) whenever b ⊆ a,

each sequence a that is not counted has “small” ρFp(a).

Theorem 2.12. Let p be a prime, let k, n ∈ N, s ∈ [n], t ∈ [p], and let α ∈ (0, 1). Denoting

Bα
k,s,≥t(n) :=

{
a ∈ Fnp : Rαk (b) ≥ t · 22k · |b|2k

p
for every b ⊆ a with |b| ≥ s

}
,

we have

|Bα
k,s,≥t(n)| ≤

( s
n

)2k−1
(αt)s−npn.

2.6 Halász’s inequality

2.7 VC-dimension and the Sauer-Shelah lemma

Let F be a collection of subsets of [n]. For a subset S ⊆ [n], we define the projection of F onto

S as

ΠF (S) = {F ∩ S | F ∈ F}.

We say that a set S is shattered by F if |ΠF (S)| = 2|S|. That is, a set is shattered by F is and

only if every subset of S can be obtained as F ∩ S for some F ∈ F .

With this notation in hands we can define the VC-dimension of F as follows:

Definition 2.13. Let F be a collection of subsets of [n]. The VC-dimension of F is defined to be

V C(F) = max{|S| | S is shattered by F}.

The following lemma was first proved by Vapnik-Chervonenkis and rediscovered many times. It

is nowadays known as the Sauer-Shelah lemma.

Lemma 2.14 (Sauer-Shelah lemma). Let F be a collection of subsets of n with V C(F) = d < ∞,

and define

ΠF (m) = max{|ΠF (S)| | S ⊆ [n], |S| = m}.

Then,

ΠF (m) ≤
d∑

k=0

(
m

k

)
= O(md).

Note that it is often convenient to use the following equivalent form of this lemma

Lemma 2.15 (Sauer-Shelah lemma). Let F be a collection of subsets of n with V C(F) = d < ∞.

Suppose that

ΠF (m) >

d∑
k=0

(
m

k

)
= O(md),

then there exists a subset S ⊆ [n] of size |S| = d+ 1 which is shattered by F .
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There are many proofs for this lemma and here we will give lovely proof by Peter Frankl and

Janos Pach which is a bit less known.

Proof. Fix a set S of size m, and consider the family of subsets S := ΠF (S). One can naturally

view S as a family of subsets of [m] (simply identify S = [m] arbitrarily). Moreover, as the lemma

is trivial for m = d, we assume that m > d. Let
([m]
≤d
)

denote the collection of all subsets of [m] of

size at most d. Clearly, we have

Φd(m) :=

∣∣∣∣([m]

≤ d

)∣∣∣∣ =
d∑

k=0

(
m

k

)
.

For each A ∈ S define a function fA :
([m]
≤d
)
→ {0, 1} as follows: fA(X) = 1 if and only if X ⊆ A.

Note that since the functions fA can be viewed as vectors in RΦd(m), it is enough to show that they

are linearly independent.

Assume towards a contradiction, that there are coefficients αA, A ∈ S, not all of them are 0, for

which ∑
A∈S

αAfA = 0.

Our goal is to show that there exists a subset T ⊆ [m] of size at least d+ 1 which is shattered by F .

This will clearly be a contradiction.

In order to prove that, we first define, for every X ⊆ [m], the parameter

σ(X) =
∑

A∈S,X⊆A
αA.

Next, we crucially observe that for every X ∈
([m]
≤d
)

we have

0 =
∑
A∈S

αAfA(X) = σ(X).

Now, let T ⊆ [m] be the smallest set for which σ(T ) 6= 0 (show that it is well defined!). Clearly,

we have that |T | ≥ d+ 1. It thus remain to show that T is shattered by S (and therefore, it is also

shattered by F which is a contradiction).

To this end, consider any X ⊆ T . We wish to show that there exists some A ∈ S for which

A ∩ T = X. We show that by proving ∑
A∈S,X=A∩T

αA 6= 0.

Recall the following generalized version of the inclusion-exclusion formula:∑
A∈S,X=A∩T

αA =
∑

X⊆Y⊆T
(−1)|Y−X|σ(Y ).

Now, since σ(Y ) = 0 for all X ⊆ Y ⊂ T (recall that T is minimal with respect to σ(T ) 6= 0), we

conclude that ∑
A∈S,X=A∩T

αA = (−1)|T−X|σ(T ) 6= 0.

This completes the proof.
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3 Cancellation

Given any sum of real or complex numbers, we can always upper bound it by applying the triangle

inequality and taking the absolute values of the summands. As this approach is tight whenever all

the numbers are positive, it is intuitively clear that in many cases we should be able to do much

better! This is the aim of this chapter.

3.1 Abel’s inequality

As a first example illustrating the power of cancellations we give the following powerful (and yet

simple) inequality due to Abel.

Lemma 3.1 (Abel’s inequality). Let z1, . . . , zn ∈ C, and let Sk = z1 + . . .+ zk, for all k. Then, for

each sequence of real numbers a1 ≥ a2 ≥ . . . ≥ an ≥ 0 we have

|
∑
i

aizi| ≤ a1 max
1≤k≤n

|Sk|.

Proof. Since Sk − Sk−1 = zk for all k ≥ 2 and S1 = z1, we have that

a1z1 + a2z2 + . . .+ anzn = a1S1 + a2(S2 − S1) + . . .+ an(Sn − Sn−1).

By rearranging, we obtain that∑
i

aizi = (a1 − a2)S1 + (a2 − a3)S2 + . . .+ (an−1 − an)Sn−1 + anSn.

Using the triangle inequality and the fact that aj − aj+1 ≥ 0 for all j, we obtain

|
∑
i

aizi| ≤ (max |Sk|) ((a1 − a2) + (a2 − a3) + . . .+ (an−1 − an) + an) = a1 max |Sk|.

This completes the proof.

3.2 Exponential sums

First, we need some notation: we define the exponential function e(t) := exp(2πit), where

exp(2πit) = cos 2πt + i sin 2πt. Moreover, for every t ∈ R we define its distance from the near-

est integer ‖t‖ = min{|t− k| : k ∈ Z}.
The following observations are going to be our bread and butter:

Observation 3.2.
∫ 1

0 e(t)dt = 0.

Or, alternatively, in the discrete case, we have

Observation 3.3.
∑n−1

k=0 e(k/n) = 0.

Observation 3.4. e(t)+e(−t)
2 = cos 2πt, and e(t)−e(−t)

2i = sin 2πt.

The above observation we mostly be used to bring sin or cos into play as follows:
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Observation 3.5. For all t, k, n ∈ R we have

e(kt)− 1

e(nt)− 1
=

e(kt/2)

e(nt/2)
· e(kt/2)− e(−kt/2)

e(nt/2)− e(−nt/2)
=

e(kt/2)

e(nt/2)
· sinπkt

sinπnt
.

We will also make use of the following simple observation

Observation 3.6. Let z1, . . . , zn ∈ C. Then,

|
n∑
k=1

zn|2 =
n∑
k=1

|zk|2 + 2Re
n−1∑
h=1

n−h∑
m=1

zm+hz̄m.

We encourage the reader, as a first warm-up, to prove these observations.

As a first non-trivial example, we prove the following simple bound for linear exponential sums:

Lemma 3.7 (Linear exponential sums). For all t ∈ R and all M,N ∈ Z we have∣∣∣∣∣
M+N∑
k=M+1

e(kt)

∣∣∣∣∣ ≤ min

{
N,

1

| sinπt|

}
≤ min

{
N,

1

2‖t‖

}
.

Proof. First, since |e(t)| = 1 for all t ∈ R, we trivially have that∣∣∣∣∣
M+N∑
k=M+1

e(kt)

∣∣∣∣∣ ≤ N.
Second, observe that the above sum is a geometric summation, and therefore we have

M+N∑
k=M+1

e(kt) = e ((M + 1)t) ·
(

e(Nt)− 1

e(t)− 1

)
.

Now, by Observation 3.5, the RHS equals

e ((M + 1)t)
e(Nt/2)

e(t/2)

sinπNt

sinπt
,

and therefore, by putting absolute values, we obtain that∣∣∣∣∣
M+N∑
k=M+1

e(kt)

∣∣∣∣∣ ≤
∣∣∣∣sinπNtsinπt

∣∣∣∣ ≤ 1

| sinπt|
.

Finally, observe that 2‖t‖ ≤ | sinπt| holds for all t (prove it!).

Then, we prove a similar type of bound for quadratic exponential sums:

Lemma 3.8 (Quadratic exponential sums). For b, c ∈ R and all integers 0 ≤M < N we have∣∣∣∣∣
M∑
k=1

e
(
(k2 + bk + c)/N

)∣∣∣∣∣ ≤√2N(1 + logN).
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Proof. Given a polynomial P (k) = αk2 + βk + γ, we want to estimate the sum

SM (P ) =

M∑
k=1

e(P (k)).

Setting zk = e(P (k)) for all k and n = M in Observation 3.6, we obtain that

|SM (P )|2 = M + 2Re

M−1∑
h=1

M−h∑
m=1

e (P (m+ h)− P (m)) .

Now, since

P (m+ h)− P (m) = 2αmh+ αh2 + βh,

we obtain that

|SM (P )|2 = M + 2Re

M−1∑
h=1

M−h∑
m=1

e
(
αh2 + βh

)
e (2αmh)

which equals

M + 2Re

M−1∑
h=1

e
(
αh2 + βh

)(M−h∑
m=1

e (2αmh)

)
.

Putting absolute values and using Lemma 3.7 on the inner sum, we obtain

|SM (P )|2 ≤M + 2
M−1∑
h=1

1

| sin 2πhα|
≤ N +

N−1∑
h=1

1

‖2hα‖
.

From here it is a simple exercise to complete the proof.

The above proof relied on the following simple corollary of Observation 3.6∣∣∣∣∣
N∑
n=1

cn

∣∣∣∣∣
2

≤
N∑
n=1

|cn|2 + 2
N−1∑
h=1

∣∣∣∣∣
N−h∑
m=1

cm+hc̄m

∣∣∣∣∣ . (6)

It is thus natural to examine the inner sum

ρN (h) =
N−h∑
m=1

cm+hc̄m for all 1 ≤ h < N.

Note that, at least intuitively, if the sums ρN (h) are small in average, then we also expect (6) to

be small. For example, in the proof of Lemma 3.8 we used the sharp estimates from Lemma 3.7 to

upper bound |ρN (h)|, which in turns gave us the more general upper bound in 3.8. Unfortunately,

for general sums, it is harder to bound ρN (h) that tightly. The general problem we want to discuss

now is the following:

Problem 3.9. Suppose that c1, . . . , cN ∈ C and satisfy:

• |cn| ≤ 1 for all n, and

• limN→∞
ρN (h)
N = 0 for all h = 1, 2, . . ..
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Does it follow that

lim
N→∞

|c1 + . . .+ cN |
N

= 0?

Observe that (6) is not very helpful, since, for example, if we take a sequence (cn)∞n=1 with

|ρN (h)| = Θ(hN1/2), then the conditions in Problem 3.9 are still satisfied but the RHS in (6) is

completely useless as it is larger than N2 (CHECK IT!).

Therefore, in order to solve Problem 3.9 (spoiler, the answer is YES!), we need to do something

smarter than the trivial (6). This leads us to prove the following lemma which is due to van der

Corput:

Lemma 3.10 (A qualitative van der Corput inequality). Let c1, . . . , cN ∈ C, and let 1 ≤ H < N .

Then, ∣∣∣∣∣
N∑
n=1

cn

∣∣∣∣∣
2

≤ 4N

H + 1

(
N∑
n=1

|cn|2 +

H∑
h=1

|ρN (h)|

)
.

Before proceeding to the proof, try to show that this indeed solves Problem 3.9.

Proof. For simplicity, let us extend the sequence cn for all n ∈ Z by setting cn = 0 for all n /∈ [1, N ].

Then, as a simple exercise we obtain that

(H + 1)
N∑
n=1

cn =
N+H∑
n=1

H∑
h=0

cn−h.

Now, let us square this identity and use the triangle inequality to obtain

(H + 1)2

∣∣∣∣∣
N∑
n=1

cn

∣∣∣∣∣
2

=

∣∣∣∣∣
N+H∑
n=1

H∑
h=0

cn−h

∣∣∣∣∣
2

≤

(
N+H∑
n=1

∣∣∣∣∣
H∑
h=0

cn−h

∣∣∣∣∣
)2

.

To continue, observe that by Cauchy-Schwarz on the RHS we obtain that

(H + 1)2

∣∣∣∣∣
N∑
n=1

cn

∣∣∣∣∣
2

≤ (N +H)

N+H∑
n=1

∣∣∣∣∣
H∑
h=0

cn−h

∣∣∣∣∣
2

.

Next, we need to expand the square in the RHS to bring in the ρN (h) parameter:

N+H∑
n=1

∣∣∣∣∣
H∑
h=0

cn−h

∣∣∣∣∣
2

=

N+H∑
n=1

 H∑
j=0

cn−j

H∑
k=0

c̄n−k

 ,

which with a bit of algebra (that we omit) is at most

≤ (H + 1)

N∑
n=1

|cn|2 + 2

H∑
h=1

(H + 1− h)

∣∣∣∣∣
N∑
n=1

cnc̄n+h

∣∣∣∣∣ .
Finally, to complete the proof, all we need to do is to bring in the parameters ρN (h) and bound the

coefficients in the obvious way. This is left as an exercise.
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