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1 A general introduction

1.1 Why number theory?

Number Theory, unsurprisingly, is about the theory of numbers. By “Numbers” we mean the natural num-
bers N := {1, 2, 3, . . .}, or the set of integers Z := {. . . ,−2,−1, 0, 1, 2, . . .}. One of the most fundamental
reasons to study Number Theory is that the entire math can be built from natural numbers!

For example, in order to build the set of integers Z from N, one needs to define negation (and zero). To
build the set of rational numbers Q from Z one needs to define division. To build the real line R out of Q
one can define Dedekind cuts, and to build the set of complex numbers C one needs to add i :=

√
−1 to the

set of real numbers. As the famous 19th cetury German mathematician Leopold Kronecker (1823-1891)
once said: God made the integers, all the rest is the work of man.

In Number Theory, at large, we are trying to understand non-trivial relationships among different sorts
of numbers. Among other examples, we consider the following:

• Odd numbers: 1, 3, 5, 7, . . .

• Even numbers: 2, 4, 6, 8, . . .

• Squares: 12, 22, 32, 42, . . .

• Primes: 2, 3, 5, 7, 11, . . .

• Composite: 4, 6, 8, 9, 10 . . .

• 1 mod 4: 1, 5, 9, 13, 17, . . .

• Triangular: 1, 3, 6, 10, . . .

• and more.

The type of problems we are interested at are:

• Can the sum of two squares be a square?

• Can the sum of two cubes be a cube?

• How many primes are? How many primes are of the form 1 mod 4? 3 mod 5?

• which numbers are sums of two squares?

• Are there infinitely many twin primes? (that is, are there infinitely many primes p for which p + 2
is also a prime?)

• Are there infinitely many primes of the form n2 + 1?
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1.2 How to solve?

I found the following summary of George Polya’s lessons on few websites (I’m not sure about its origin but
I highly recommend you to take a look. I copy pasted from https://lindseynicholson.org/2018/03/

polyas-problem-solving-techniques/).
In 1945 George Polya published a book How To Solve It, which quickly became his most prized publi-

cation. It sold over one million copies and has been translated into 17 languages. In this book he identifies
four basic principles of problem solving.

Polya’s First Principle: Understand the Problem This seems so obvious that it is often not even
mentioned, yet students are often stymied in their efforts to solve problems simply because they don’t
understand it fully, or even in part. Polya taught teachers to ask students questions such as:

• Do you understand all the words used in stating the problem?

• What are you asked to find or show?

• Can you restate the problem in your own words?

• Can you think of a picture or diagram that might help you understand the problem?

• Is there enough information to enable you to find a solution?

Polya’s Second Principle: Devise a Plan Polya mentions that there are many reasonable ways to
solve problems. The skill at choosing an appropriate strategy is best learned by solving many problems.
You will find choosing a strategy increasingly easy. A partial list of strategies is included:

• Guess and check

• Look for a pattern

• Make an orderly list

• Draw a picture

• Eliminate the possibilities

• Solve a simpler problem

• Use symmetry

• Use a model

• Consider special cases

• Work backwards

• Use direct reasoning

• Use a formula

• Solve an equation

• Be ingenious
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Polya’s Third Principle: Carry Out the Plan This step is usually easier than devising the plan. In
general, all you need is care and patience, given that you have the necessary skills. Persist with the plan
that you have chosen. If it continues not to work, discard it and choose another. Don’t be misled, this is
how things are done, even by professionals.

Polya’s Fourth Principle: Look Back Polya mentions that much can be gained by taking the time
to reflect and look back at what you have done, what worked, and what didn’t. Doing this will enable you
to predict what strategy to use to solve future problems.
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2 Pythagorean triples

A classical theorem of Pythgoras asserts that if a, b are the sides of a right triangle, and c is its hypotenuse,
then a2 + b2 = c2.

In general, a triple of integers (a, b, c) with a2 + b2 = c2 is called a Pythagorean triple. For example,
(3, 4, 5) is a pythagorean triple. In this section we will deal with the following problem:

Problem 2.1. Find all the Pythagorean triples.

It is a simple exercise to show that if (a, b, c) is a pythagorean triple, then so does (ax, bx, cx) for all x.
In particular it gives us infinitely many such triples. It is thus natural to restrict ourselves to those triple
for which (a, b, c) have no common divisor. Such triples are called primitive Pythagorean triples (or PPT
for short). For example: (3, 4, 5) is a PPT while (6, 8, 10) is a pythagorean triple which is not primitive.

Following the above discussion, it is clear that in order to be able to find all pythagorean triples, it is
enough to find all the PPTs (WHY?).

Now, suppose that (a, b, c) is a PPT, and let’s try to explore some properties of its coordinates. For
example, is it possible that both a, b are even and c is odd? It is a trivial exercise to show that this is not
possible (show it!).

Here we show the less trivial observation that it cannot be the case that both a, b are odd and c is even.
Indeed, suppose that a = 2x+ 1, b = 2y + 1, and c = 2z for some x, y, z. Then,

a2 + b2 = c2

translates to
2x2 + 2x+ 2y2 + 2y + 1 = 2z2,

which is an absurd. Hence, from now on we may assume that a is odd, b is even, and (a, b, c) is a PPT.
As a next step, observe that a2 + b2 = c2 is equivalent to

a2 = (c− b)(c+ b).

Therefore, it makes sense to also investigate the numbers c− b and c+ b. For example, is it possible that
these numbers have a common factor? suppose that x divides both numbers. Then, in particular we have
that x divides (c − b) + (c + b) = 2c, (c + b) − (c − b) = 2b, and a2. Since x must be odd (a is odd..) it
means that x is a common factor of (a, b, c), which is a contradiction.

The above observation actually gives us a little bit more information! since (c−b)(c+b) = a2, and since
c − b and c + b have no common factors, it follows that both of them must be squares! (this observation
will be made formal only in few lectures). Therefore, one can write

c− b = t2 and c+ b = s2

for some odd numbers s, t ∈ N (recall that c is odd and b is even and therefore both c± b are odd).
Now, solving these equations, we get that

c =
s2 + t2

2
and b =

s2 − t2

2
.

Moreover, by a simple calculation we get that a = st, and therefore, we showed that if (a, b, c) is a PPT,
then there exist s, t odd such that

(a, b, c) = (st,
s2 − t2

2
,
s2 + t2

2
).

This gives us half way for proving the following theorem:
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Theorem 2.2 (PPT theorem). The collection of triples (st, s
2−t2
2
, s

2+t2

2
) with s > t ≥ 1 being odd numbers

with no common factors give us all the PPTs.

Proof. We’ve already shown that every PPT can be written in such a way for some s > t ≥ 1 odd numbers
with no common factors. It is thus enough to show that every such triple is indeed a PPT. To this end,
observe that

(st)2 +

(
s2 − t2

2

)2

=
s4 + 2s2t2 + t4

4
=

(
s2 + t2

2

)2

as desired. We also need to check that the triple (st, s
2−t2
2
, s

2+t2

2
) has no common factors, but for making

this formal, we will have to wait few lectures. This (almost) completes the proof.

The above theorem looks quite magical at first glance, and I’m not sure it actually sheds much light on
why PPTs have so much structure. The proof we presented might look like a pure luck, but it is not really
the case. In the next section we will show that there is a nice method which extends a bit more generally,
and it also gives us much more intuition about the structure.
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3 Pythagorean triples and the unit circle

Here we will show a different way to find all the possible Pythagorean triples. Observe that a2 + b2 = c2

is equivalent (in case that c 6= 0) to (a
c

)2
+

(
b

c

)2

= 1.

Moreover, as the set of all (x, y) ∈ R × R for which x2 + y2 = 1 forms the unit circle, and since a
pythagorean triple corresponds (after scaling by c) to a point of the form (a

c
, b
c
) on the unit circle, we are

interested in finding all the rational points on the circle. One to do so is the following: let us fix some
rational point on the unit circle, say (−1, 0). Now, let `m(x) be the line passing through (−1, 0) and with
slope m. That is, `(x) = m(x+ 1). Observe that for all m ∈ R, this line has exactly two intersections with
the circle (WHY?) and that for each point p := (x, y) on the circle there exists a unique mp ∈ R for which
`mp passes through p. Moreover, every rational point p on the circle corresponds to an mp ∈ Q and every
rational m ∈ Q corresponds to a rational point pm on the circle (WHY?). Therefore, writing y = m(x+ 1)
with m ∈ Q we wish to solve

x2 + y2 = 1,

which gives us (after a small calculation) that

(x, y) =

(
1−m2

1 +m2
,

2m

1 +m2

)
.

In particular, we proved that

Theorem 3.1. Every point on the circle x2 + y2 = 1 with rational coordinates can be obtained from the
formula

(x, y) =

(
1−m2

1 +m2
,

2m

1 +m2

)
,

where m ∈ Q (except for the point (−1, 0) which is obtained by taking m→∞).

We can compare the formula we’ve just obtained to the formula from the previous section as follows:
write m = t

s
, and obtain that (

1−m2

1 +m2
,

2m

1 +m2

)
=

(
s2 − t2

s2 + t2
,

2st

s2 + t2

)
which corresponds to the triple

(a, b, c) = (s2 − t2, 2st, s2 + t2).

Dividing the above by 2 we obtain the familiar formula for PPT.
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4 Sum of higher powers and Fermat’s last theorem

Fermat’s last theorem asserts that the equation

an + bn = cn

has no non-trivial integer solutions for all n ≥ 3.
This theorem was solved in 1994 by Andrew Wiles (it is highly recommended to watch the documentary

about this problem! see for example https://topdocumentaryfilms.com/fermats-last-theorem/), 350
years after Fermat declared that he has a proof for it but “this margin is too small to contain”!

We won’t give too much math content here. For a more detailed historical review please read Chapter
4 in the book [1].
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5 Divisibility and the Greatest Common Divisor

Suppose that m,n are two given integers. We say that m divides n, and denote it by m | n, if and only if
there exists some integer k for which n = m · k. If m doesn’t divide n then we write m - n. A number that
divides n is called a divisor of n. The Greatest Common Divisor (or GCD for short) of two numbers a, b,
which is denoted by gcd(a, b), is an extremely important quantity in number theory, as we will see many
times during our class.

Definition 5.1. The Greatest Common Divisor of two numbers a, b (not both zero) is the largest integer
that divides both a and b. It is denoted by gcd(a, b). If gcd(a, b) = 1 then we say that a and b are relatively
prime.

In this section we deal with the problem of calculating the GCD of two given numbers efficiently, using
the so called Euclidean algorithm.

Euclid’s algorithm Euclid’s algorithm (or the Euclidean algorithm) is a very efficient and ancient
algorithm to find the greatest common divisor gcd(a, b) of two integers a and b. It is based on the following
observations. First, gcd(a, b) = gcd(b, a), and so we can assume that a ≥ b. Secondly gcd(a, 0) = a by
definition. Thirdly and most importantly, if

a = zb+ c

where z is an integer then gcd(a, b) = gcd(b, c). Indeed any divisor of a and b will divide c, and conversely
any divisor of b and c will divide a. We can compute c by taking the remainder after dividing a by b, i.e. c
is a mod b. (We will discuss the mod operation in greater details in the next section, but at this point, we
only need the definition of c as the remainder of dividing a by b.) But c < b < a and thus we have made
progress by reducing the numbers we have to compute their gcd of. And therefore, we can proceed and
express b as:

b = yc+ d,

(thus d = b mod c) and thus gcd(b, c) = gcd(c, d). We continue until we express gcd(a, b) as gcd(g, 0) = g,
and at that point, we have found the gcd.

Example. Let a = 365 and b = 211. Then c = 154 and we have that gcd(365, 211) = gcd(211, 154).
Continuing, we get:

gcd(365, 211) = gcd(211, 154)

= gcd(154, 57)

= gcd(57, 40)

= gcd(40, 17)

= gcd(17, 6)

= gcd(6, 5)

= gcd(5, 1)

= gcd(1, 0)

= 1.
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The gcd of 365 and 211 is 1, which means that they are relatively prime.
We now state an easy consequence of Euclid’s algorithm

Lemma 5.2. For any positive integers, there exist integers s and t such that gcd(a, b) = sa+ tb.

Indeed, Euclid’s algorithm also allows to find such integers s and t. This clearly proves that no common
divisor to a and b is greater than gcd(a, b) since any common divisor to a and b is also a divisor to sa+ tb.
To find s and t, we proceed bottom up. Suppose we have found u and v such that

gcd(b, c) = ub+ vc.

Then, knowing that a = zb+ c allows us to replace c by a− zb and therefore get:

gcd(a, b) = gcd(b, c) = ub+ v(a− zb) = va+ (u− vz)b.

Thus, we have expressed the gcd as an integer combination of a and b, knowing it as an integer combination
of b and c. Thus bottom up we can find s and t such that

gcd(a, b) = sa+ tb.

This procedure is often referred to as the extended Euclidean algorithm.

Example. Consider again the example with a = 365 and b = 211. We express their gcd(365, 211) = 1
by going bottom up in the derivation above, and derive:

1 = 6− 5
= 6− (17− 2 · 6) = −17 + 3 · 6
= −17 + 3 · (40− 2 · 17) = −7 · 17 + 3 · 40
= 3 · 40− 7 · (57− 40) = 10 · 40− 7 · 57
= 10 · (154− 2 · 57)− 7 · 57 = 10 · 154− 27 · 57
= 10 · 154− 27 · (211− 154) = 37 · 154− 27 · 211
= 37 · (365− 211)− 27 · 211 = 37 · 365− 64 · 211

Exercise 5.3. Show that gcd(a, b) is the minimal positive integer z for which the equation ax+ by = z has
integer solutions.

We want to investigate solutions to linear equations of the form ax + by = c where a, b, c are given
integers and (x, y) are integers. As we saw above, there exists a solution if and only if c is divisible by g.
Can you find more solutions?

To get some intuition, recall that ax+ by = c is a linea equation, and therefore we are looking for the
set of all integer points along this line (if there are any).

So from now on assume that c is divisible by g, and that some solution (x0, y0) is given. First of
all, we want to show that we can find infinitely many solutions. Indeed, consider the pair (x, y) =
(x0 + (b/g)n, y0 − (a/g)n), where n is any integer. Clearly we have that

ax+ by = ax0 + bx0 + (ab/d)n− (ab/d)n = c.
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Next we want to convince ourselves that all solutions have this form. Indeed, let (x, y) be an arbitrary
solution. Then in particular we have that

a(x− x0) = −b(y − y0),

and therefore
a

g
(x− x0) = − b

g
(y − y0).

Since a
g

and b
g

are relatively primes, it follows that

a

g
| y − y0.

In particular we have that y − y0 = a
g
n for some integer n. Therefore, we have that

a

g
(x− x0) = − b

g

a

g
n,

which gives us

x− x0 = − b
g
n

as desired.

Exercise 5.4. A farmer wishes to buy 100 animals and spend exactly 100. Cows are 10, sheep are 3 and
pigs are 0.50. Is this possible?
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6 Factorization and the Fundamental theorem of arithmetic

A number p ∈ N is called a prime number if it only divisible by ±1 and by itself. For example, 2, 3, 5, 7, 11
are all primes. The numbers 4, 6, 9 are not as they can be written as 4 = 2 · 2, 6 = 2 · 3, and 9 = 3 · 3.

The following lemma about prime numbers is extremely important and also non-obvious:

Lemma 6.1. Let p be any prime and suppose the p | a · b, where a, b ∈ Z. Then, p | a or p | b.

Proof. Suppose that p - a, as otherwise there is nothing to prove. We will show that in this case we must
have p | b. Since p is prime, it follows that gcd(p, a) = 1 (WHY?). Therefore, there are x, y ∈ Z such that
ax+ py = 1. Multiplying this expression by b we obtain

abx+ pby = b.

Now, since p | abx and p | pby, it follows that p | b. This completes the proof.

Observe that the above proof can be easily generalized to prove the following:

Theorem 6.2 (Prime divisibility property). Let p be a prime number, and suppose that p | a1 · a2 · · · ar.
Then, p | ai for some 1 ≤ i ≤ r.

Proof. Exercise!

The following theorem is the most fundamental theorem in Number Theory:

Theorem 6.3 (The Fundamental Theorem of Arithmetic). Every integer n ≥ 2 can be written as a factor
of (not necessarily distinct) primes

n = p1 · · · pr
in a unique way (up to the order of the factors).

Proof. Here we will only give a sketch of the proof and hopefully the completion will be obvious. Basically,
the theorem follows from the following two assertions:

Assertion 1 The number n can be factored into prime factors in some way.

Assertion 2 There is a unique such factorization.
The idea is quite simple. For Assertion 1 we can just go by induction: n = 2, 3, 4, 5 are obvious.

Suppose you know it for n and want to prove it for n+1. If n+1 is prime, then we can write n+1 = n+1.
Otherwise, there exists some prime p < n+ 1 such that n+ 1 = p ·m, and m < n+ 1. Now, by induction
we can factorize m and we’re done.

For the second assertion: Suppose n =
∏r

i=1 pi =
∏`

j=1 qj, where all the pi and qj are primes. Fix
some arbitrary prime pi. Since it appears in the product, it must divide n. In particular we have that
pi |

∏`
j=1 qj. Therefore, by our prime divisibility property we have that pi | qj for some j. But, since qj

is also a prime, it must be the case that pi = qj. Dividing both expressions by pi, we can continue by
induction.

Exercise 6.4. Let s > t ≥ 1 be two integers with gcd(s, t) = 1. Show that the three number st, s
2−t2
2
, s

2+t2

2

are pairwise relatively prime.
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Solution. Suppose that there exists some integer x ≥ 2 dividing the three of them and we can assume
that x is prime (WHY?). Now, x | s2−t2

2
and x | s2+t2

2
, and therefore we have that

x | s
2 + t2

2
+
s2 − t2

2
= s2,

and

x | s
2 + t2

2
− s2 − t2

2
= t2.

Since x is a prime, we have that x | s and x | t which contradicts the fact that gcd(s, t) = 1.
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7 Congruences

In this section we will discuss congruences and define modular arithmetic. Congruences give a convenient
way to describe divisibility properties.

First let us give an easy definition: for integers a, b,m we say that a is congruent to b modulo m, and
write a ≡ b (mod m), if a − b is a multiple of m. That is, if a − b = xm for some integer x ∈ Z. The
number m is called the modulus of the congruence.

For any integer n ∈ Z there is a unique integer r in {0, 1, . . . ,m− 1} such that n ≡ r mod m. Then r
is called the residue of n modulo m, and by slight abuse of notation we will refer to it as n mod m. One
can find the residue of a number n by taking the remainder when dividing by m. Although we will often
use them interchangeably, there is a slight difference between a = n mod m and a ≡ n (mod m); in the
former case, a is the residue and thus between 0 and m − 1. In later notes, however, we typically simply
write a = n (mod m) and the interpretation is usually clear.

Congruences with the same modulus behave in many ways like ordinary equations. That is, if a1 ≡
b1 mod m and a2 ≡ b2 mod m, then

a1 ± a2 ≡ b1 ± b2 mod m and a1 · a2 ≡ b1 · b2 mod m.

Indeed, let us check the former: we know that a1 = xm+b1 and a2 = ym+b2 for some integers x, y ∈ Z.
Therefore, we have that

a1 + a2 = (x+ y)m+ (b1 + b2),

so (a1 + a2)− (b1 + b2) is divisible by m. You can prove the other cases in a similar fashion (do it!).

Warning! It is not always possible to divide congruences! that is, if ab ≡ ac mod m, it does not
necessarily imply that a ≡ c mod m, even if both a, c 6= 0 mod m. Indeed, suppose that m = 8, and
observe that for a = 4, b = 2, c = 4 we have

ab ≡ ac mod 8 = 0 mod 8.

Congruences with unknowns can be solved in the same way that equations are solved. For example,
suppose we wish to solve

x+ 10 ≡ 3 mod 12.

Then we clearly have that
x ≡ −7 mod 12.

It is an easy observation that −7 mod 12 ≡ 5 mod 12 (WHY?), so we can use either of them.
Note that some congruences have no solutions. For example, x2 = 3 mod 10 has no solutions (one can

simply check all the residues).
In general, there is a deeper theory behind this “modular arithmetic” which is not explained in the

text book, but I feel obliged to explain.
Let us define binary operations ⊕,⊗ on the set Zm := {0, 1, . . . ,m − 1} as follows. For a, b ∈ Zm we

define a⊕ b to be the residue of (a + b) modulo m. Similarly, we define a⊗ b to be the residue of (a× b)
modulo m (so one can think about these operations as “addition modulo m” and “multiplication modulo
m”, respectively).
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Example. In Z5, one has 3⊕ 4 = 2 and 3⊗ 4 = 2.

For a ∈ Zm, we denote 	a the residue of −a modulo m. Here are a few very easy facts that you are
invited to check. If a ∈ Zm and d = 	a then

a⊕ 0 = 0⊕ a = a,

and
a⊕ d = d⊕ a = 0.

Moreover, for all a, b, c ∈ Zm,
(a⊕ b)⊕ c = a⊕ (b⊕ c).

The above relation are precisely the conditions showing that (Zm,⊕) is a group. It is not a class about
group theory so we won’t talk much about groups in general, but it is important (in my opinion) at least
to know that we are talking about some special cases of more general algebraic structures.

If we consider the operation⊗ (instead of⊕), the role of 0 for⊕ is now played by 1 since a⊗1 = 1⊗a = a.
1 is the multiplicative identity, in the same way as 0 was the additive identity. However 0 never has a
multiplicative inverse (in the same way as 	a is playing the role of the additive inverse); the multiplicative
inverse of an element a is defined as an element b such that b⊗ a = 1. Even if we exclude 0 and consider
Zm − {0}, we will see that some nonzero elements may not have a multiplicative inverses. However, when
m is a prime number, (Zm − {0},⊗) is a group (or in other words: each element has a multiplicative
inverse).

Let us go back to congruences, and our first task is to solve congruences of the form

ax ≡ c mod m.

Observe that some congruences of this type have no solutions. For example, if we wish to solve

8x ≡ 21 mod 248,

then we need to find integer solutions to 8x− 21 = 248y which we clearly don’t have (WHY?).
In general, we know that ax + my = c has integer solutions if and only if gcd(a,m) | c. Moreover,

we derived a formula to obtain all these solutions based on a private solution (which can be found by the
Euclidean algorithm).

Let us explain once again how to solve it: let g := gcd(a,m) and we wish to solve ax ≡ c mod m, where
g | c. First, we can find a solution to

as+mt = g.

Then, we can multiply both parts by c/g to obtain

a · (sc/g) +m · (tc/g) = c,

as desired.
This means that

x =
sc

g
mod m and y =

tc

g
mod m

is a solution to the congruence. Are there any other solutions?

16



Suppose that (x1, y1) is another solution. Then in particular we have that

ax ≡ ax1 mod m

and therefore m divides a(x−x1). Since gcd(a,m) = g, and since a/g,m/g are relatively prime, we obtain
that m/g divides x− x1. In particular, we have that x1 = x+ n · m

g
for some n ∈ Z.

Now, since any two solutions that differ by a factor of m are considered the same modulu m, there are
exactly g different solutions. Namely, n = 0, . . . , g − 1.

To summarize our findings, let us state Theorem 8.1 from Chapter 8 in the book.

Theorem 7.1. Let a, c, and m be integers with m ≥ 1, and let g = gcd(a,m).

1. If g - c then the congruence ax = c mod m has no solutions.

2. If g | c then the congruence ax = c mod m has exactly g distinct solutions in Zm. To find all
solutions we dirst need to find one solution (s, t) to the lineae equation as+mt = c (for example, by
the Euclidean algorithm). Then, x = s+k·m

g
is a solution to the congruence for every k = 0, . . . , g−1.

Next, let us show that if m is a prime then every element in Z∗m has a multiplicative inverse. Indeed,
let a ∈ Z∗m, since a 6= 0 mod m, and since m is prime, we know that gcd(a,m) = 1. In particular, there
are x, y ∈ Z such that ax + my = 1. This is equivalent to saying that ax ≡ 1 mod m. Let r ∈ Zm be the
unique residue with x ≡ r mod m, we obtain that ar = 1 mod m as desired.

Exercise 7.2. Let m ∈ N, and let a ∈ Z∗m. Show that if a has a multiplicative inverse, then it is unique.

In general, we can show that for all a,m with gcd(a,m) = 1, the congruence ax = c mod m has exactly
one solution for all c ∈ [m]. In particular we have that a is invertible mod m. On the other hand, if
gcd(a,m) 6= 1, then it can easily be shown that a is not invertible mod m.

We can also ask ourselves about the number of solutions to polynomial equations over Zm. Recall that
over the reals, each linear equation of the form ax = c has a unique solutions (unless a = 0, which is
the only non-invertible element in R). Moreover, we know that for a polynomial of degree d, P (x), the
equation P (x) = c can have at most d solutions. This follows from the fact that R is a field. It is not hard
to show that Zm is a field if and only if m is a prime (try to do it, we won’t do it in class). Therefore, we
have the following

Theorem 7.3 (Polynomial roots mod p). Suppose p is a prime and P (x) is a polynomial of degree exactly
d ≥ 1 with integer coefficients such that the leading coefficient is not divisible by p. Then, the congruence
P (x) = 0 mod p has at most d distinct solutions.
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8 Congruences, powers, and Fermat’s Little Theorem

Suppose that we want to compute 13270 mod 131. Do you see a simple way to do it?
Let us state a simple and extremely useful theorem:

Theorem 8.1. Fermat’s Little Theorem Let p be a prime, and let a be any integer with a 6= 0 mod p.
Then, ap−1 ≡ 1 mod p.

Proof. There are many proofs for this theorem. Here we will give a direct one, but in general, it is not
hard to show that for every group G and every element a ∈ G, we have that a|G| = eG, where eG is the
identity element of G.

First, observe that a, 2a, . . . , (p− 1)a correspond to all the non-zero distinct residues modp. Indeed, if
sa ≡ ta mod p, then (s− t)a ≡ 0 mod p, which yields p | a, contradiction.

So we know that modulo p we have that

{a, 2a, . . . , (p− 1)a} = {1, 2, . . . , p− 1}.

In particular, we have that
ap−1(p− 1)! = (p− 1)! mod p,

and since (p− 1)! 6= 0 mod p, it must be invertible modulo p so we can multiply by its inverse and obtain
the desired.

Complete the example.

Exercise 8.2. Try to find a formula for (p−1)! mod p for any prime p. Hint: distinguish the cases p = 2
and p > 2.

Exercise 8.3. Try to do the same for general numbers. That is, find a formula to compute (m−1)! mod m.
Do you see how to distinguish the cases m is a prime or not?
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9 Congruences, Powers, and Euler’s formula

In the previous section we proved that if p is prime and p - a, then ap−1 ≡ 1 mod p. This formula is
certianly not true if we replace p by some composite number m (find example!). So, the question we
are interested at is whether there exists some power x, depending on m, for which ax ≡ 1 mod m. First
observe that if gcd(a,m) 6= 1, then this is impossible! Indeed, suppose that ak ≡ 1 mod m for some k ≥ 1.
Therefore, it follows that gcd(a,m) divides ak −my = 1 for some integer y, but this is clearly an absurd.

Next, we will restrict our attentions only to these residues a ∈ Zm for which gcd(a,m) = 1. Let Z∗m be
the set of all these residues. It is not hard to show that Z∗m is a multiplicative group (for our discussion,
just convince yourselves that if a, b ∈ Z∗m then we also have that ab ∈ Z∗m). Let us define the following
function, known as Euler’s phi function, as follows:

φ(m) = |Z∗m| = |{a ∈ Zm | gcd(a,m) = 1}| .

Note that if p is prime, then we clearly have that φ(p) = p− 1 = p(1− 1
p
). It is not hard to show that

φ(pk) = pk − pk−1 = pk(1− 1
p
).

In general, we will see later that the function is multiplicative in the sense that if gcd(a, b) = 1, then
φ(ab) = φ(a) · φ(b). In particular it gives that:

Lemma 9.1. Euler’s product formula For every n we have that

φ(n) = n ·
∏
p|n

(1− 1

p
).

Do you see how to prove this lemma “by hands”?
The main goal of this chapter is to prove the following theorem, known as Euler’s formula:

Theorem 9.2 (Euler’s formula). For all m ∈ N and a ∈ Z∗m we have that

aφ(m) ≡ 1 mod m.

Note that this theorem extends Fermat’s little theorem to all values of m. In particular, if m is a prime,
then since φ(m) = m− 1, Fermat’s little theorem just follows.

Proof. We can prove it either by using group theory (the structure (Z∗m,×) is a group, and it is known that
for every finite group G and every element a ∈ G we have that a|G| = e, where e is the identity element of
the group). Since we don’t assume background in group theory, we will give a direct proof here:

Let Z∗m = {b1, . . . , bt}, where t = φ(m), be all the distinct elements of Z∗m. As we have already convinced
ourselves, for every a, b ∈ Z∗m, we have that a · b ∈ Z∗m. In particular we have that {ab1, . . . , abt} =
{b1, . . . , bt} (WHY?). Therefore, we have that

aφ(m) ·
∏

bi =
∏

bi mod m.

Since
∏
bi ∈ Z∗m, it has a multiplicative inverse, and therefore we conclude that

aφ(m) ≡ 1 mod m.

This completes the proof.
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10 Public Key Cryptosystems

In this section we will talk about a topic that I originally planned to do at the end of the course. The
reason is that it is a good time to pause, review all the material that we learnt, and motivate some topics
that we need to learn in order to complete the arguments.

The topic is about one of the main applications of Number Theory in our everyday life: Cryptography.
Our goal is to construct secret codes. A sender would like to encrypt his message to protect its content

while the message is in transit. The receiver would like to easily decode the received message.

Question 10.1. Can you think about unbreakable codes? Can you list their disadvantages?

The traditional way of creating secret codes is that both the sender and the receiver share a secret,
called a key. The sender scrambles the message in a complicated way that depends on the key. The
receiver then uses the key to unscramble the message. If these codes are constructed properly (something
which is surprisingly hard to do), it seems virtually impossible for somebody without the key to decode
the message, even if they have many examples of pairs of messages and their encodings to work from in
trying to deduce the key.

For example, imagine that I’m having coffee with a friend and I want to be able to send him private
messages which I’m not interested anyone else to read. I can generate a random matrix A and tell him
its inverse (finding an inverse of a matrix is computationally not very hard). Whenever I want to send
him some message x (think about x as a string of numbers), then I simply send him the value y := Ax.
Therefore, unless x is an eigenvector (very unlikely to have...), the message is “well mixed”. Regarding my
friend, in order to read my message, he needs to multiply y by A−1 and then he recovers A. Can someone
break this code? it is very unlikely that you can guess which matrix A I chose, and basically you gain
no information from the messages y which theoretically you can see (imagine that I post the vector y in
facebook).

The drawback of this method is ensuring that every pair of people who need to communicate secretly
have a shared secret key (that is, I cannot just post the matrix A online because then everyone can find its
inverse very easily!). Distributing and managing these keys is very difficult and it makes it hard for secret
communication over the internet. For example, suppose you want to send your credit card securely to a
store you have never before heard of, how can you do that?

Here we will learn a better way to do it. In general, if you think about it a bit, we don’t really need
unbreakable codes. We need “efficient” codes (whatever it means), which are “very hard” to break (let’s
say, if it takes around 10,000 years to break it using a home computer). These are the basic needs in
modern cryptography.

A “good” coding scheme have the following properties:

1. encoding is easy to perform;

2. decoding is extremely difficult (for protection against eavesdroppers);

3. decoding is easy if you are in possession of some secret “key”.

In 1976 Diffie and Hellman came up with a scheme for handling such communications, called a public
key cryptosystem. It is based on the assumption that there is a wide class of functions that are relatively
easy to compute but extraordinarily difficult to invert unless you possess a secret (and here Number Theory
comes into the play).
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According to this scheme, each communicator or recipient, say Bob or B, publishes in a well defined
place (a kind of telephone directory) a description of his function, fB from this class; this is Bob’s public
key. Bob knows also the inverse of fB, this is his private key. The assumption is that this inverse is
extremely difficult to compute if one does not know some private information.

Suppose now that someone, say Alice or A, would like to send a message m to B. She looks up Bob’s
public key and sends m′ = fB(m). Since Bob knows his own private key, he can recover m = f−1B (m′).
The problem here is that Bob has no guarantee that Alice sent the message. Maybe someone else claiming
to be Alice sent it. So, instead, suppose that Alice sends the message m′ = fB(f−1A (m)) to Bob. Notice
that Alice needs to know Bob’s public key (which she can find in the diretory) and also her own private
key, which is known only to her. Having received this message, Bob can look up Alice’s public key and
recover m by computing m = fA(f−1B (m′)); again, for this purpose, knowledge of Bob’s private key and
Alice’s public key is sufficient. Anyone else would have to solve the said-to-be-extraordinarily-difficult task
of inverting the action of one or another of these functions on some message in order to read the message
or alter it in any way at all. This is the basic setup for a public-key cryptosystem. One can also use it for
digital signatures. If Alice wants to show to anyone that she wrote message m, she can publish or send
m′ = f−1A (m), and anyone can test it came from Alice by computing fA(m′).

In what follows, we will talk about the so-called RSA public key cryptosystem. It was invented by
Ron Rivest, Adi Shamir and Len Adleman in 1977. Their scheme is based on the fact that it is easy to
multiply two large numbers together, but it appears to be very hard to factor a large number. The record
so far for factoring has been to factor a 768-bit number (i.e., 232 digits) given in an RSA challenge, and
this took the equivalent of 20,000 years of computing on a single-core machine... The task of factoring a
1024-bit number appears to be 1,000 harder with the current algorithms.

10.1 The RSA code

For this code, choose two very large prime numbers (say with several hundred digits), p and q, and form the
product N = pq. Choose a number z < N such that z is relatively prime to (p− 1)(q− 1) = N − p− q+ 1.
Knowing p and q (or (p− 1)(q− 1)) we can find the multiplicative inverse y to z modulo (p− 1)(q− 1) by
the extended Euclidean algorithm. The pair (N, z) constitutes the public key, and (N, y) constitutes the
private key.

If we want to encode a message, we first view it as a number in base N . Every digit is a number between
0 and N − 1 and we will encode each digit 0 ≤ m < N separately. The sender computes s = mz mod N
and transmits s. Upon receiving s, the receiver, who knows the private key, computes sy mod N . The
claim is that this is precisely m, i.e. m = sy mod N .

If one could factor N into N = pq then one can easily compute y from z (by the extended Euclid
algorithm) and therefore break this public-key cryptosystem. However, as we said previously, factoring
large numbers appears to be very challenging.

Why does this scheme work? Let x = sy; we want to show that m = x mod N . We have that

x = sy = myz (mod N),

and since z and y are multiplicative inverses modulo (p− 1)(q − 1), we get that

x = m1+k(p−1)(q−1) = mmk(p−1)(q−1) (mod N).

We want to prove that this is equal to m mod N . We will first show that x ≡ m (mod p) and x ≡ m
(mod q), and then we wish to conclude that x ≡ m mod pq (this will be a simple observation from a
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theorem called “the Chinese Remainder Theorem” that we will earn soon). To show that x ≡ m (mod p),
we need to consider two cases. First, if m is a multiple of p, then x is also a multiple of p, and so x ≡ m ≡ 0
(mod p). Otherwise, if m is not a multiple of p then it must be relatively prime to p (since p is prime):
gcd(m, p) = 1. Thus we can apply Fermat’s Little Theorem, which tells us that mp−1 ≡ 1 (mod p), and
thus

mk(p−1)(q−1) ≡ 1k(q−1) ≡ 1 (mod p).

Multiplying by m, we indeed obtain x ≡ m (mod p).
Similarly, we will show that the same conclusion holds for q. Therefore, we can conclude (for now,

informally) that x ≡ m mod N , which concludes the correctness of RSA.
What do we need to do in order to use RSA?

• Find large primes.

• Calculate the inverse of z (and also finding some z with gcd(z, (p− 1)(q − 1)) = 1).

• Compute mz mod N (or sy mod N) when z is very large.

We are already familiar with parts of the above list, but we still need to learn some new ingredients.
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11 Euler’s Phi function and the Chinese remainder theorem

Recall that in the previous section we proved Euler’s theorem which asserts that

aφ(m) ≡ 1 mod m,

for all a ∈ Z∗m. This theorem won’t be useful unless we can find an efficient way to calculate φ(m). We
already gave a hint for how a formula for φ(m) should look like, and here we will prove it.

Theorem 11.1. If gcd(m,n) = 1 then φ(mn) = φ(m) · φ(n).

Proof. We will show that
|Z∗mn| = |Z∗m| · |Z∗n|

by define a bijection between these sets. Let us define:

f(a) = (b, c) where b ≡ a mod m and c ≡ a mod n.

First, observe that this is well defined, as we must have that b is in Z∗m and c ∈ Z∗n. Indeed, if
gcd(b,m) = g > 1, then since a = b + ym, we obtain that gcd(a,m) ≥ g > 1 and hence gcd(a,mn) > 1,
contradiction. Similarly, we can prove that c ∈ Z∗n.

Second, we show that f is one-to-one. Suppose that f(a) = f(a′) = (b, c) for some a, a′ ∈ Z∗mn, and we
wish to show that a = a′. Note that f(a) = f(a′) implies that

m | a− a′ and n | a− a′.

Since gcd(m,n) = 1, it follows that mn | a− a′, and therefore we have that a ≡ a′ mod mn.
Lastly, we wish to show that f is onto. Indeed, let (b, c) ∈ Z∗m × Z∗n, and we wish to show that there

exists an a ∈ Z∗mn for which f(a) = (b, c). Since gcd(m,n) = 1, there exists an integer solution (x, y) to
mx+ ny = 1. Define, a = cmx+ bny (or more formally, the residue of the above a modulo mn). OBserve
that

a = c(1− ny) + bny ≡ c mod n and a = cmx+ b(1−mx) ≡ b mod n.

Therefore, in order to complete the proof, it is enough to show that a ∈ Z∗mn. Suppose that a /∈ Z∗mn. Then
we have gcd(a,mn) = g > 1. Let p be some prime dividing g. Since gcd(m,n) = 1 and p | mn we have
that p | m or p | n. Suppose that p | m (the case p | n is similar) and observe that since a = b + mz for
some integer z, it follows that p | b. But then we have that gcd(b,m) ≥ p > 1, contradiction to the fact
that b ∈ Z∗m. This completes the proof.

A similar proof strategy as in the above theorem can help us to prove the so-called “Chinese remainder
theorem”. This theorem was discovered by the Chinese mathematician Sun Tzu in the 4-th century AD
and written in his book the Sun Tzu Suan Ching. It says the following. If a and b are relatively prime then
there is a bijection between the possible remainders modab and the pairs of possible remainders moda
and modb. In other words, the two numbers (the remainder of x upon dividing by a and the remainder of
x upon dividing by b) uniquely determines the number x upon dividing by ab, and vice versa. Let’s look
at an example. Let a = 7 and b = 13, then ab = 91. Any arbitrary remainder, say 73 mod 91, is equivalent
to the pair (3, 8) = (73 mod 7, 73 mod 13). No other remainder mod 91 leads to the pair (3, 8).

23



Theorem 11.2 (Chinese Remainder Theorem). Suppose that m,n are relatively prime. Then, the system
of equations

x = a mod m

x = b mod n

has a unique solution for x ∈ Zmn.

Proof. We will see two proofs.
Proof 1: same like previous proof.
Proof 2: Let (a, b) ∈ Zm × Zn. Since gcd(m,n) = 1 we have that m ∈ Z∗n and n ∈ Z∗m. Therefore, one

can find a multiplicative inverse m′ for m mod n, and a multiplicative inverse n′ for n mod m. Let

x = ann′ + bmm′ mod mn.

Clearly we have that x is a solution to the above congruent.

This theorem implies that we can represent elements in Zmn by pairs in Zm × Zn. Moreover, this
correspondence goes even further: suppose that a, a′ ∈ Zmn and (b, c), (b′, c′) are the corresponding pairs,
respectively. Then, a moment’s thought reveals that a+a′ corresponds to (b+b′, c+c′), and aa′ corresponds
to (bb′, cc′) (convince yourself!).

Now let us play a little bit with the remainder pairs representations. For example, let’s try to find the
solutions of the equation x2 = 1 mod ab where a and b are relatively prime. Since the remainder 1 mod ab
is represented by the remainder pair (1, 1) (where the pair represents the values modulo a and b), it is easy
to see that this equation has four solutions: the remainder pairs (1, 1), (−1, 1), (1,−1), (−1,−1). (Here,
(−1, 1) is a convenient notation for (a− 1, 1).) Try to convince yourself that there are no other solutions.

Exercise 11.3. Find all solutions to x2 = 1 mod 15.

Here we will give an extension of the Chinese Remainder Theorem for more variables:

Theorem 11.4. Let m1, . . . ,mr be pairwise relatively primes integers (that is, gcd(mi,mj) = 1 for all
i 6= j). Then, for all a1, . . . ar, the system of r congruences

x = a1 mod m1

x = a2 mod m2

.

.

.

x = ar mod mr

has a unique solution modulo M = m1 ·m2 · · ·mr.

Exercise 11.5. Solve the following problem which is the first recorded instance of the Chinese Remainder
Theorem (by Sun Tzu Suan Ching): “We have number of things, but we do not know exactly how many.
If we count them by threes, we have two leftovers. If we count them by fives, we have three leftovers. If we
count them by sevens, we have two left overs. How many things are there?”
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12 Prime Numbers

The fact that primes are basic building blocks in arithmetic is a sufficient reason to study their properties,
and in this section we will mention some interesting such properties.

Let us start with one of the oldest results in Number Theory which appeared in Euclid’s book “El-
emenets” more than 2000 years ago!

Theorem 12.1. There are infinitely many primes.

We will now give two proofs for this theorem (many other proofs exist!), each contain some interesting
and useful ideas.

First proof (Euclid). Suppose that there are only finitely many primes p1, . . . , pr, and we wish to show
that there must exists a prime number q which is not in this list. This will give us a contradiction.

Indeed, let us consider the number

N = p1 · p2 · · · pr + 1.

Since N > pi for all i it follows that if N is a prime then we are done. Therefore, assume that N is not a
prime and let q be any prime number dividing N . We show that q 6= pi for all i. Indeed, assume otherwise,
then since q | N and q | p1 · · · pr, we have that q | 1 which is impossible.

Second proof. Let π(x) = |{1 ≤ p ≤ x | p is a prime}|. That is, π(x) is the number of all prime numbers
between 1 and x. Our goal is to show that π(x) → ∞ as x → ∞. In fact, we will show the stronger
statement that log x ≤ π(x) + 1, which also gives us some clue about the “density” of primes.

Recall from calculus that for all n ∈ N and n ≤ x < n+ 1 we have

log x ≤ 1 +
1

2
+

1

3
+ . . .+

1

n
.

Moreover, we can upper bound the above sum by

S :=
∑

m has only prime
divisors smaller than x

1

m
.

Since every m like in the above sum can be factorized to primes smaller than x in a unique way, letting
P := {p1, . . . , pr, . . .} be an enumeration of all primes in an increasing order, we see that

S =
∏
p∈P
p≤x

(
∞∑
k=0

1

pk

)
.

As the inner sum is a geometric series we have that

log x ≤
∏
p∈P
p≤x

(
1

1− 1
p

)
=

π(x)∏
k=1

pk
pk − 1

.
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Finally, as we trivially have that pk ≥ k + 1 for all k, we conclude that

pk
pk − 1

≤ k + 1

k
,

which gives us that

log x ≤
π(x)∏
k=1

pk
pk − 1

≤
π(x)∏
k=1

k + 1

k
= π(x) + 1.

This completes the proof.

Next we will prove that infinitely many primes are congruent to 3 mod 4.

Theorem 12.2. Infinitely many primes are congruent to 3 mod 4.

Proof. The proof strategy is similar to the proof of Euclid that there are infinitely many primes. Indeed,
let us assume towards a contradiction that there are finitely many such primes. Let 3, p1, p2, . . . , pr be an
enumeration of all such primes, and let us define the integer

N = 4p1p2 · · · pr + 3.

Observe that N ≡ 3 mod 4, and that N > pi for all i (and also N > 3). Now, if N is prime, then we
are done because it is not in our list. Otherwise, there must be some prime q ≡ 3 mod 4 for which q > 3
and q | N (WHY?). Observe that if q appears in our list, then q | N−4p1p2 · · · pr = 3, which is impossible.
This completes the proof.

The above theorem is a special case of a famous theorem in Number Theory which we won’t prove in
our class (it involves some complex analysis). It is highly recommended to the curious reader to google it
and read its proof!

Theorem 12.3 (Dirichlet’s Theorem). For every a,m ∈ N for which gcd(a,m) = 1, infinitely many primes
are congruent to a mod m.

Indeed, our previous theorem is a special case if we take a = 3 and m = 4.
To conclude this section, we will prove a nice theorem using both Chinese Remainder Theorem and the

fact that there are infinitely many primes. Before stating the theorem, we need some definition. Consider
the infinite grid Z2. For each point p := (a, b) ∈ Z2, draw a line segment `p from the origin to (a, b). If
this line passes through another grid point but (0, 0) and (a, b) then we say that (a, b) is invisible from the
origin. Otherwise, we say that (a, b) is visible from the origin.

Theorem 12.4. For every n ∈ N, there exists a point (a, b) ∈ Z2 for which all the points (a + k, b + `),
with 1 ≤ k, ` ≤ n are invisible from the origin.

Proof. The crucial part of the proof is the simple observation that (a, b) is invisible from the origin if and
only if gcd(a, b) > 1 (prove it!). Therefore, we wish to show that for every n ∈ N, one can find a point
(a, b) ∈ Z2 such that for all 1 ≤ k, ` ≤ n we have gcd(a+ k, b`) > 1.

To this end, let us take n2 distinct primes pij, 1 ≤ i, j ≤ n. The existence of such primes follows from
the fact that there are infinitely many primes.
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Now, define, for each 1 ≤ i ≤ n, the integer Ri =
∏n

j=1 pij, and for each 1 ≤ j ≤ n, the integer
Cj =

∏n
i=1 pij. It is useful to think about the chosen primes in a matrix form, where each ijth entry equals

pij. In this notation, Ri is just the product of all primes in row i and Cj is the product of all primes in
column j.

Observe that gcd(Ri, Rj) = 1 and gcd(Ci, Cj) = 1 for all i 6= j, and that gcd(Ri, Cj) = pij > 1 for all
i, j.

By the Chinese remainder theorem we can find a ∈ Z such that a ≡ −i mod Ri for all i, and b ∈ Z
such that b ≡ −j mod Cj for all j. Fix such a, b and consider the point (a, b) ∈ Z2. Observe that for all
1 ≤ k, ` ≤ n we have that

(a+ k, b+ `) ≡ (0 mod Rk, 0 mod C`),

and therefore we have that gcd(a+ k, b+ `) ≥ pk` > 1. This completes the proof.
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13 Counting primes

A natural question is about the density of primes up to some given number x. That is, let π(x) be the
number of primes p ≤ x, we wish to study the asymptotic behavior of π(x). One of the corner stones of
Number Theory is the following theorem:

Theorem 13.1 (The Prime Numbers Theorem). We have that

lim
x→∞

π(x)

(x/ lnx)
= 1.

In other words, the above theorem says that for every ε > 0, there exists x0 such that for all x ≥ x0 we
have

(1− ε)x
lnx

≤ π(x) ≤ (1 + ε)x

lnx
.

The proof of the above theorem is quite involved, so here we will prove the following weaker statement
which will suffice for our applications:

Theorem 13.2. There exists 0 < C1 < C2 such that for all x we have that

C1x

log x
≤ π(x) ≤ C2x

log x
.

We will split the proof of the above theorem into two parts: one for the upper bound and the other
part for the lower bound.

For the upper bound, we will need the following simple but yet impressive result due to Erdős:

Lemma 13.3. For all n ∈ N we have that
∏

p≤n
p is prime

p ≤ 4n−1.

Proof. Let P (n) =
∏

p≤n
p is prime

p ≤ 4n−1, and we prove the lemma by induction on n. For n = 2 we have

2 ≤ P (2) = 42−1 = 4. Now, suppose that statement is true for n and we want to prove it for n + 1.
Observe that if n + 1 is even, then we trivially have P (n + 1) = P (n) ≤ 4n−1 < 4(n+1)−1. Therefore, it is
enough to prove it for and odd number n + 1. Since n + 1 is odd, we can find some integer m for which
n+ 1 = 2m+ 1. Now, observe that

P (2m+ 1) = P (m+ 1) ·
∏

m+1<p≤2m+1
p is prime

p. (1)

The crucial part of the proof is the following claim:

Claim 13.4. For all m ∈ N we have that ∏
m+1<p≤2m+1
p is prime

p ≤
(

2m+ 1

m

)
.
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Proof. Recall that
(
2m+1
m

)
= (2m+1)!

(m+1)!m!
and is an integer. Moreover, since all primes m + 1 < p ≤ 2m + 1

appear in the numerator and non of them appears in the denominator, we conclude that

the number

 ∏
m+1<p≤2m+1
p is prime

p

 divides

(
2m+ 1

m

)

and this completes the proof of the claim.

Next, observe that since
(
2m+1
m

)
=
(
2m+1
m+1

)
, and since

∑
k

(
2m+1
k

)
= 22m+1, it follows that(

2m+ 1

m

)
≤ 22m = 4m.

Plugging everything into (1) and using the induction hypothesis, we obtain that

P (2m+ 1) ≤ 4m · 4m = 42m

as desired. This completes the proof.

Now we are ready to prove the upper bound in Theorem 13.2.

Proof. From Lemma 13.3 we know that ∏
p≤x

p ≤ 4x.

Moreover, if we fix any t > 0, then we can easily see that

tπ(x)−π(t) ≤
∏
p≤x

p ≤ 4x.

Now, using the trivial bound π(t) ≤ t, we obtain that

tπ(x)−t ≤ 4x,

which by talking logs gives us
(π(x)− t) log t ≤ x log 4,

which is equivalent to

π(x) ≤ x log 4

log t
+ t.

Observe that the above inequality holds for all t > 0 and since we are interested on upper bounding
π(x) we are interested in minimizing the right hand side (this can be done by differentiating this expression
as a function of t). For our purpose, we can just observe that if we choose t = Cx/ log x for some large
enough constant C, the we get the desired bound.

For the lower bound we also need some short preparation. First, let us prove the following simple
theorem by Legendre:
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Theorem 13.5 (Legendre’s). For every n ∈ N and every prime number p, the largest power of p that
divides n! is exactly ∑

k≥1

⌊
n

pk

⌋
.

Proof. Indeed, there are exactly
⌊
n
p

⌋
numbers appearing in n! which are divisible by p, there are exactly⌊

n
p2

⌋
numbers appearing in n! which are divisible by p2, etc.

We will also need the following simple estimate on the largest power of primes dividing
(
2n
n

)
.

Lemma 13.6. The number
(
2n
n

)
contains the prime factor p exactly

r :=
∑
k≥1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)
,

that is, r is the largest integer for which pr |
(
2n
n

)
.

Moreover, we have that ∑
k≥1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)
≤ max {r | pr ≤ 2n} .

Proof. The first assertion of the lemma follows immediately from Legendre’s theorem (13.5) and the fact
that

(
2n
n!·n!

)
.

For the second assertion, observe that each summand is either 0 or 1. Indeed,⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋
<

2n

pk
− 2 ·

(
n

pk
− 1

)
= 2,

and since it must be integer we obtain that it should be either 0 or 1. Next, observe that if pk > 2n
then the corresponding summands are 0 and therefore pk does not divide

(
2n
n

)
in case that pk > 2n. This

completes the proof.

Now we are ready to prove the lower bound in the weak version of the prime number theorem.

Proof. Recall from any introductory class that 4n

2n
≤
(
2n
n

)
(this can be proved by a simple induction. In

fact, for large values of n we have, from Stirling’s approximation that
(
2n
n

)
≈ 4n√

πn
which is a much better

estimate). On the other hand, we want to upper bound
(
2n
n

)
by writing its prime factorization. To this

end we will use Lemma 13.6 and observe that for every p ≤
√

2n we have that the largest power r for
which pr |

(
2n
n

)
must satisfy pr ≤ 2n. Moreover, every prime p >

√
2n can divide

(
2n
n

)
with power at most

1. Recall the definition of π(n), we obtain that

4n

2n
≤
(

2n

n

)
≤

∏
p≤
√
2n

p is prime

2n ·
∏

√
2n<p≤2n
p is prime

p

≤ (2n)π(n).
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In particular, we see that for the above inequality to be true for all values of n we must have

π(n) ≥ cn

log n

as otherwise the right hand side is smaller than exponential in n. This completes the proof.

With not too much effort we can prove another nice and famous result, known as Bertrand’s postulate:

Theorem 13.7 (Bertrand’s postulate). For every integer n ∈ N, there must exist at least one prime
n < p ≤ 2n.

Proof. We will only sketch the proof here. The interested reader is encouraged to complete the details be
herself/himself.

First, observe that all the numbers 2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 4001 are all primes
and each is smaller than twice the previous. Therefore, Bertrand’s postulate holds for n < 4000. Therefore,
it is enough to prove the theorem for n ≥ 4000.

The key part of the proof is the following simple observation:

Observation 13.8. No prime 2n
3
< p ≤ n divides

(
2n
n

)
.

Proof. Indeed, since for each such prime we have that 3p > 2n, it follows that the only product of p that
appear in the denominator of (2n)!

n!n!
are p and 2p, and that there are no large powers of p. Moreover, since

p ≤ n, we have two appearances of p in the denominator, one from each of the n!s. Therefor, all the
appearances of p vanish.

Next, we will use a similar estimate like in the proof of the lower bound for the weak version of the
prime number theorem and write:

4n

2n
≤
(

2n

n

)
≤

∏
p≤
√
2n

p is prime

2n ·
∏

√
2n<p≤2n/3
p is prime

p ·
∏

n<p≤2n
p is prime

p

≤ (2n)
√
2n ·

∏
p≤2n/3
p is prime

p ·
∏

n<p≤2n
p is prime

p.

If we assume that there are no primes between n and 2n, then the last factor is 1, and by Lemma 13.3
we obtain that

4n

2n
≤ (2n)

√
n42n/3,

which is clearly false for all n < 4000 (show it!). This completes the proof.

Exercise 13.9. Try to prove using the same method as above, that in fact there are at least cn
logn

many

primes in the interval [n, 2n] (assuming that n is large enough).

Let us conclude this section with a list of few interesting open problems that involve prime numbers:

Conjecture 13.10 (Goldbach’s Conjecture). Every even integer n ≥ 4 can be written as a sum of two
primes.

Conjecture 13.11 (The Twin Primes Conjecture). There are infinitely many pairs (p, p+ 2) where both
elements are primes.

Conjecture 13.12 (The N2 + 1 conjecture). There are infinitely many primes of the form N2 + 1.
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14 Review exercises

1. Prove the following:

(a) For all m ∈ N we have gcd(m,m+ 1) = 1.

(b) Suppose that m,n ∈ N are such that gcd(m,n) = 1. Show that gcd(m+n,m−n) can be either
1 or 2.

(c) Show that for all m ∈ N we have that gcd(3m+ 2, 5m+ 3) = 1.

(d) Show that if gcd(m,n) = 1 then gcd(2m+ n, 2n+m) is either 1 or 3.

(e) Compute g := gcd(12345, 67890) and find an integer solution to 12345x+ 67890y = g.

(f) Compute g := gcd(54321, 9876) and find an integer solution to 54321x+ 9876y = g.

(g) Is 45867723 a prime? (Hint: think about a divisibility criteria that we learnt in class).

2. Prove the following:

(a) Show that for all n ∈ N we have that (n− 1)3 + 1 is divisible by n.

(b) Prove that m3 + 1 can never be a prime unless m = 1.

(c) Prove that m2 − 1 is divisible by 8 for all odd integers m.

3. Prove the following:

(a) Prove that N := n! + 1 must have a prime divisor larger than n and explain how to show, best
on what you proved, there are infinitely many primes.

(b) Show that for all a ≥ 5 we have that a, a+ 2, a+ 4 cannot be all primes.

4. Solve the following:

(a) Find all the solutions to x2 = 4 (mod 143) (explain why there are no other solutions than the
ones you found).

(b) Suppose that n ∈ N is such that φ(n) = 36. List all the primes that might possibly divide n.

(c) Find all integers n for which φ(n) = 36.

5. Solve the following:

(a) Compute φ(3750).

(b) Find a number 1 ≤ a ≤ 5000 which is not divisible by 7 and for which a = 73003 mod 3750.

6. Solve the following:

(a) Either find all integer solutions or prove that there are no integer solutions for the equation
21x+ 7y = 147.

(b) A grocer orders apples and bananas at a total cost of 8.4 USD. If the apples cost 25 cents each
and the bananas 5 cents each, how many of each type of fruit did he order?

7. Prove the following:
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(a) Let a be an integer such that 13 - a, 7 - a. Show that a12 ≡ 1 (mod 91).

(b) Let n be a positive integer such that 2n ≡ 1 (mod 91), show that 12|n.

8. Solve the following:

(a) Find a positive integer x such that x ≡ 5 (mod 24), x ≡ 17 (mod 18).

(b) Does there exist an integer x such that x ≡ 20 (mod 24), x ≡ 16 (mod 18)?
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15 Mersenne Primes

Mersenne primes are primes that can be written as an − 1 for some a ∈ Z. For example, 22 − 1 = 3 and
23 − 1 = 7 are Mersenne primes.

It is relatively easy to see that if an− 1 then we must have that a = 2 (can you see why?). Now, let us
try to investigate which power n ∈ N can potentially make 2n − 1 being prime.

For example, suppose that n is even. Then, since 2 ≡ −1 mod 3, we have that 2n ≡ 1 mod 3 and
therefore 2n − 1 is divisible by 3 (and therefore it cannot be a prime unless it equals 3). In general, if n is
divisible by k, then we can easily show that 2k − 1 divides 2n − 1 as follows:

2n − 1 = 2km − 1 = (2k − 1)(1 + 2k + 22k + 23k + . . .+ 2k(m−1)).

In particular we obtain the following simple proposition:

Proposition 15.1. If an − 1 is a prime, then a = 2 and n must be a prime.

We can now rewrite the definition and say that a Mersenne prime is a prime of the form 2p − 1, where
p is some prime. It is easy to show that not all number of the form 2p − 1 are primes (do it!). There is a
lot of work on finding arbitrary large Mersenne primes and quite large ones are known, but the following
question is still open:

Question 15.2. Are there infinitely many Mersenne primes?
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16 Mersenne Primes and Perfect Numbers

The ancient Greeks observed that the number 6 has the very nice property that if you add up all its proper
divisors then you obtain 6 (indeed, we have that 1 + 2 + 3 = 6). The Greeks called such numbers perfect
numbers. For example, we also have that 28 = 1 + 2 + 4 + 7 + 14 is a perfect number. The Greeks knew a
method to find some perfect numbers and interestingly their method is related to Mersenne primes.

Theorem 16.1 (Euclid’s Perfect Number Formula). If 2p − 1 is prime, then 2p−1(2p − 1) is perfect,

Proof. Let q = 2p − 1, and we need to check that 2p−1q is perfect. Note that its proper divisors are

1, 2, 22, . . . , 2p−1, q, 2q, 22q, . . . , 2p−2q.

Now, lets sum them up and obtain:

(1 + 2 + . . .+ 2p−1) + q + (1 + 2 + . . .+ 2p−2) =
2p − 1

2− 1
+ q +

(2p−1 − 1

2− 1
= 2p−1q.

(the last inequality follows from the fact that 2p − 1 = q). This completes the proof.

The next question to ask is whether Euclid’s formula gives all the perfect numbers. Around 2000 years
after Euclid, Euler showed that Euclid’s formula gives all the even perfect numbers:

Theorem 16.2 (Euler’s Perfect Number Theorem). If n is an even perfect number, then it must look like

n = 2p−1(2p − 1)

where 2p − 1 is a Mersenne prime.

Before proving this theorem we need to introduce a convenient function. Let σ(n) be the sum of all
the divisors of n. For example σ(2) = 1 + 2 = 3, σ(4) = 1 + 2 + 4 = 7, etc. An important example is when
n = pk with p being a prime. In this case we have

σ(pk) = 1 + p+ p2 + . . .+ pk =
pk+1 − 1

p− 1
.

We will now show that σ is a multiplicative function:

Theorem 16.3. For every m,n ∈ N with gcd(m,n) = 1 we have σ(mn) = σ(m)σ(n).

Proof. Let m,n be coprimes. Then, we know that each divisor d of mn can be written uniquely as d = d1d2,
where d1 | m and d2 | n. Therefore, we have that

σ(mn) =
∑
d1|m
d2|n

d1d2

= (
∑
d1|m

d1)(
∑
d2|n

d2) = σ(m) · σ(n).

This completes the proof.
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How is the σ function related to perfect numbers? observe that a number n is perfect if and only if
σ(n) = 2n. Now we are ready to prove Euler’s perfect number theorem:

Proof. Suppose that n is an even perfect number. In particular, it means that we can write n = 2km, with
k ≥ 1 and m being odd. Next, we write

σ(n) = σ(2k)σ(m) = (2k+1 − 1)σ(m).

Since n is perfect we obtain
2n = 2k+1m = (2k+1 − 1)σ(m).

The number 2k+1 − 1 is odd, so we have that σ(m) = c · 2k+1 for some c ∈ N. Therefore, by dividing the
above expression by 2k+1 we obtain

m = (2k+1 − 1)c, and σ(m) = 2k+1c.

Next, since m is divisible by 1, c,m (do you see why c 6= m? to see it we use the fact that our original
number n is even!), we have, as long as c 6= 1, that

σ(m) ≥ 1 + c+m.

On the other hand, we have that

σ(m) = 2k+1c = (2k+1 − 1)c+ c = m+ c < 1 + c+m,

and this gives a contradiction. Therefore, we must have c = 1, so m = 2k+1− 1 and σ(m) = 2k+1 = m+ 1.
It is now easy to show that the only numbers m for which σ(m) = m + 1 are prime numbers, and since
m = 2k+1 − 1 it follows that it must be a Mersenne prime. This completes the proof.

Note that Euler’s theorem doesn’t give any clue on odd perfect numbers, and therefore one can ask if
such numbers exist? Unfortunately, no one knows the answer!
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17 Primality testing and Carmichael numbers

Recall that in order to generate a public key for RSA we need to be able to generate large primes. From the
prime number theorem we know that around the number n, when n is large, approximately 1

lnn
proportion

of numbers are prime.
To generate a large prime, we can then generate a random number with the appropriate number of

digits or bits, and check if it is prime. If it is, we are done, else we increment it (and can skip numbers that
are obviously not primes, like even ones), and try again until we find a prime number. From the prime
number theorem, we know that approximately, we will need to perform a number of trials proportional to
the number of digits (or bits) of n (which is proportional to log n).

We therefore need to be able to efficiently check if a number is prime. This is known as primality
testing. We could try whether it is divisible by any of the small primes, say all primes up to 30. This
would detect a good fraction of the composite numbers, but clearly not all of them. Checking all possible
factors up to the square root of the number n is extremely slow if n is large (as this would be exponential
in the number of digits of n), and we are interested in numbers with hundreds of digits.

One approach is based on Fermat’s little theorem, and is called the Fermat primality test.

17.1 Fermat primality test

Suppose we are given a large number n, and we want to determine if it’s prime.
Let a be any positive number less than n; then by Fermat’s Little Theorem, if n is indeed prime, then

since gcd(a, n) = 1 we have that
an−1 ≡ 1 (mod n).

If n is not prime, on the other hand, this doesn’t have to be true (though it might happen, depending
on the specific a and n we choose). So here is a test: choose a large number of randomly chosen values
a1, a2, . . . , aN , all positive and less than n, and calculate an−1i (mod n) for each. This we can do very
quickly by repeated squaring, as we saw in the discussion. If we obtain a value other than 1 for some a,
then n is not prime; that a acts as a certificate (“proof”) that n is not prime. We call such an a a Fermat
witness for n being composite. On the other hand, if an−1 ≡ 1 (mod n) (and n is composite) then we
instead call a a “Fermat liar” for n.

Let’s define precisely our primality test as follows:

Fermat primality test for an integer n

1. Pick a ∈ {1, 2, 3, . . . , n− 1} uniformly at random.

2. Calculate (efficiently via repeated squaring) the value an−1 mod n. If this is not 1, output “not
prime”; otherwise output “maybe prime”.

We can repeat this test many times; if it outputs “not prime” at least once, we can be sure that it
is indeed not prime; if it returns “maybe prime” each time, then perhaps we can conclude that n is very
likely to be prime?

This turns out to be almost, but not quite, true. There are certain special composite numbers, called
Carmichael numbers, that do a very good job of fooling this test.

Definition 17.1. A positive integer n is a Carmichael number if it is composite and an−1 ≡ 1 (mod n)
for all a relatively prime to n.
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If we apply Fermat’s test to a Carmichael number, then the only way it can spot that it’s not prime is
if the a chosen happens to share a common factor with n. If the factors of n are all large, then there are
few such numbers (compared to n) and we’re very unlikely to pick one of them.

It’s not obvious that these numbers exist, but they do, and there are infinitely many of them; the
smallest is 561 = 3 · 11 · 17. Since 3− 1 = 2, 11− 1 = 10 and 17− 1 = 16 all divide 560 (this explains why
561 is a Carmichael number), we have that a560 = 1 modulo 3, 11 and 17 whenever a is not divisible by 3,
11 or 17. Thus, by applying the Chinese remainder theorem we get a560 = 1 (mod 3 · 11 · 17). Carmichael
numbers are very rare however (only 22 values less than 10,000, and they are much rarer than primes),
and if you pick a large random n, you’d have to be very unlucky to pick a Carmichael number.

In order to understand why Carmichael numbers are rare, it is recommended to prove the following
theorem as an exercise (or just look at [1], Page 135, Theorem 19.1):

Theorem 17.2 (Korselt’s Criterion for Carmichael Numbers). Let n be a composite number. Then, n
is a Carmichael number if and only if it is odd and every prime p dividing n satisfies the following two
conditions:

1. p2 does not divide n, and

2. p− 1 divides n− 1.

What we will prove now is that the Fermat test does work on all numbers except for Carmichael
numbers.

Theorem 17.3. If n > 2 is composite and not a Carmichael number, then the probability that the Fermat
test works is at least 1/2.

Proof. Let
L = {b ∈ Z∗n : bn−1 ≡ 1 mod n},

i.e., the set of Fermat liars for n. Let W = Z∗n \ L, the set of Fermat witnesses that are relatively prime
to n. Since n is not a Carmichael number, W is nonempty. (Note that all elements of Zn \ Z∗n are also
Fermat witnesses.)

We will show that |L| ≤ |W |, from which the theorem follows. Since then the probability we pick a ∈ L
is not more than 1/2; and so the probability of choosing a Fermat witness is at least 1/2.

The plan is to find a one-to-one map f from L to W , which immediately gives us that |L| ≤ |W |. The
map is very simple: pick an arbitrary a ∈ W (recall it’s nonempty), and define

f(b) = ab mod n ∀b ∈ L.

First, let’s see that it is a map from L to W , and not merely a map from L to Zn. For any b ∈ L,

f(b)n−1 = an−1bn−1 ≡ an−1 6≡ 1 (mod n).

So indeed f(b) ∈ W . It’s also clearly one-to-one: if f(b) = f(b′), then multiplying by a−1 gives b = b′.
This concludes the proof.

We can conclude that the probability that if we run the Fermat test K times on a number n that is
composite and not a Carmichael number, the probability that the Fermat test outputs “maybe prime” on
all tries is at most 2−K ; by choosing K large enough, we can make the error probability tiny.

In order to overcome the problem of dealing with Carmichael numbers, we will learn another primality
testing.
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17.2 The Miller-Rabin test

Consider the equation
x2 ≡ 1 (mod n),

where n > 2 and odd. There are two very obvious solutions to this: x ≡ 1 and x ≡ −1. Are there other
solutions? Recall that if n is prime then these are the only solutions; this fact we won’t prove. It’s also
true (and we had something like that in our midterm) that if n is not a prime or power of a prime (but
still odd), then there are at least 4 solutions - 2 extra solutions besides 1 and −1 (prove it!).

This gives us an extra tool for primality testing: if we find a solution to x2 = 1 (mod n) that is not 1
or −1, then we know that n is not prime. By the way, one might wonder what happens when you have
a prime power as the theorem cannot distinguish between a prime and a prime power. However, a prime
power is not a Carmichael number, and the more basic Fermat test works already for prime powers.

Here is the Miller-Rabin test (we will assume that n is odd, otherwise it is trivially not prime):
Pick a uniformly at random from {1, 2, . . . , n− 1} Write n− 1 = t2s, where t is odd; s will be positive,

since n− 1 is even Calculate at mod n (we’ve seen how to do this fast) Repeatedly square to obtain the
sequence

at, a2t, a2
2t, . . . , a2

st = an−1 all modulo n.

If the last term in this sequence, an−1 mod n, is not equal to 1, then return that n is composite If for some
i < s, a2

i
t 6= 1,−1 (mod n) but a2

i+1t = 1 (mod n), then return that n is composite Otherwise return
that n is “probably prime”.

Note that if n is indeed prime, our test will always return “probably prime”. If n is composite, it may
or may not detect this. But:

Theorem 17.4. For any odd composite number n, the probability that the Miller-Rabin test returns “prob-
ably prime” when n is composite is at most 1/4.

This means that by repeating the test N times, each time with a new random choice of a, we can
reduce the probability of making a mistake to less than 1/2N . For N large, this is really negligible.

For a proof of the above theorem and some interesting discussion about the Miller-Rabin test, you can
look at the following paper and the references therein.

There is also a (much more complicated) deterministic primality test, due to Agrawal, Kayal and
Saxena.
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18 Squares modulo p

We’ve already learnt how to solve linear congruences. It is natural to study congruences of higher degree as
well. Here we will study a special case of this problem, by considering congruences of the form x2 ≡ a mod p.
The theory we develop here illustrates many of the ideas we learnt earlier, and also has some interesting
applications.

For convenience, let us define (Z∗n)2 to be the set of all quadratic residues modulo n. That is, (Z∗n)2 =
{x2 | x ∈ Z∗n}. Clearly, this set is not empty as we always have 1 ∈ (Z∗n)2. The numbers in Z∗n \ (Z∗n)2 are
called quadratic non-residues modulo n.

Let us start with the following simple theorem:

Theorem 18.1. Let n be any positive integer, and let a, b ∈ Z∗n. Then,

1. If a ∈ (Z∗n)2 then a−1 ∈ (Zn)2.

2. If a, b ∈ (Z∗n)2 then ab ∈ (Z∗n)2.

3. If a ∈ (Z∗n)2 and b /∈ (Z∗n)2 then ab /∈ (Z∗n)2.

Proof. Observe that if a = x2 for some x ∈ Z∗n, then clearly a−1 = (x−1)2. This proves 1.
For 2. observe that if a = x2 and b = y2, then ab = (xy)2.
Finally, to prove 3. let a ∈ (Z∗n)2 and b /∈ (Z∗n)2, and assume that ab ∈ (Z∗n)2. Then, by 1. we have that

a−1 ∈ (Z∗n)2, and by 2. we have that a−1 · (ab) = b ∈ (Z∗n)2, which is a contradiction. This completes the
proof.

Next we discuss the case where n = p is some odd prime. As we’ve already seen (or at least stated...),
the polynomial x2−a has at most 2 roots modulo p (do you see how to prove this specific case?). Moreover,
it follows that x2 ≡ y2 mod p if and only if x = ±y. Observe that −y = p−y, and since p is odd we obtain
that y 6= −y for all y ∈ Z∗p . Apparently, this observation is enough to prove the following simple theorem:

Theorem 18.2. Let p be an odd prime. Then there are exactly (p− 1)/2 quadratic residues modulo p and
exactly (p− 1)/2 quadratic non-residues modulo p.

Proof. By the above observations we have that

(Z∗n)2 = {12, 22, . . . ,

(
p− 1

2

)2

}.

(do you see why?). Therefore, in order to complete the proof, it is enough to show that all these elements

are distinct. To this end, let 1 ≤ a ≤ b ≤
(
p−1
2

)2
be two residues for which a2 = b2 mod p. We wish to

show that a = b. Indeed, we have that b2 − a2 = (b− a)(b+ a) = 0 mod p, and therefore

p | b+ a or p | b− a.

Since 0 < b + a ≤ p − 1, the former cannot hold. Therefore, we must have p | b − a. But, since
|b− a| < (p− 1)/2, we must have that |b− a| = 0, and therefore a = b. This completes the proof.

Our next theorem gives us an extremely important characterization of quadratic residues mod p.
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Theorem 18.3 (Euler’s criterion). Let p be an odd prime and let a ∈ Z∗p.

1. a(p−1)/2 = ±1 mod p.

2. If a ∈ (Z∗p)2, then a(p−1)/2 = 1.

3. If a ∈ Z∗p \ (Z∗p)2, then a(p−1)/2 = −1 mod p.

Proof. For 1., let b = a(p−1)/2, and observe, by Euler’s theorem, that b2 = ap−1 = 1 mod p. Therefore, since
p is prime we have that b = ±1.

For 2., let a = b2 for some b ∈ Z∗p. Then, a(p−1)/2 = bp−1, which again, by Euler’s theorem, is equivalent
to 1 modulo p.

For 3. we need to work a little bit harder. Let a ∈ Z∗p \ (Z∗p)2, and consider the product∏
x∈Z∗

p

x = (p− 1)!.

By Wilson’s theorem (that we’ve seen) we know that (p−1)! ≡ −1 mod n. On the other hand, we want
to show that this product also equals a(p−1)/2 mod p. This will clearly complete the proof. To this end,
let us pair up elements of Z∗p together into pairs of the form (x, y) for which xy = a mod p. Observe that
indeed, for every element x ∈ Z∗p there exists some y ∈ Z∗p for which xy = a mod p (simply take y = x−1a),
and that all these pairs are disjoint. Moreover, it cannot be that for some pair (x, y) we have that x = y
as otherwise we would have a = x2 ∈ (Z∗p)2, which is false. All in all, we have managed to find p−1

2
such

pairs, and they cover the entire set Z∗p. This means that (p − 1)! = a(p−1)/2 mod p. This completes the
proof.

As a simple corollary we also obtain the following:

Corollary 18.4. Let a, b ∈ Z∗p be two quadratic non-residues. Then ab is a quadratic residue.

Proof. By Euler’s criterion we have that a(p−1)/2 = b(p−1)/2 = −1 mod p. Therefore, we have that
(ab)(p−1)/2 = 1 mod p, which again, by Euler’s criterion means that ab is a quadratic residue. This
completes the proof.

As an another immediate corollary we obtain:

Corollary 18.5 (Quadratic Reciprocity (part 1)). Let p be an odd prime.

• If p ≡ 1 mod 4, then (−1) is a quadratic residue.

• If p ≡ 3 mod 4, then (−1) is a quadratic non-residue.

Proof. Do it!

To summarize our findings, let QR stand for quadratic residue, and NR for quadratic non-residue, then
we have:

QR×QR = QR, QR×NR = NR, NR×NR = QR.

41



Note that QR behaves like +1 and NR behaves like a (−1) in the above expression. This leads us to
define, for all a ∈ Z∗p, the following useful notation which is known as Legendre’s symbol:(

a

p

)
=

{
1 if a is a quadratic residue

−1 if a is a quadratic non-residue

With this notation in hands, we can restate the above multiplication rule as follows:

Theorem 18.6 (Quadratic Residue Multiplication Rule). Let p be an odd prime. Then(
a

p

)(
b

p

)
=

(
ab

p

)
.

Example 18.7. Suppose we want to check whether 75 is a square modulo 97. We can write:(
75

97

)
=

(
3 · 5 · 5

97

)
=

(
3

97

)(
5

97

)(
5

97

)
=

(
3

97

)
.

Now, we can observe that 102 = 100 = 3 mod 97, and therefore 3 is a QR. All in all we obtain that(
75
97

)
= 1.

Next, as a simple application of the Quadratic Reciprocity (part 1) we can easily prove the following
theorem:

Theorem 18.8. There are infinitely many primes of the form p ≡ 1 mod 4.

Proof. Suppose that we are given a list of primes p1, . . . , pr, all are congruent to 1 modulo 4. We are going
to find another such prime which is not in our list. Consider the number

N = (2p1 · · · pr)2 + 1.

Clearly, we have that N ≡ 1 mod 4. Moreover, N can be factored as product of some primes (non of them
is from our list!)

N = q1 · · · qt.

We will show that all of the qis are of the form 1 mod 4, and this will complete the proof. Observe that
N is odd, so all the qi are odd. Moreover, since each qi divides N we have that

(2p1 · · · pr)2 + 1 = 0 mod qi for all i.

That is, taking x = (2p1 · · · pr)2 we have that

x2 ≡ −1 mod qi for all i,

so in particular we have that −1 is a quadratic residue for all the qi. This means that qi ≡ 1 mod 4 for all
i. This completes the proof.
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Our next challenge is to understand the behavior of
(

2
p

)
. Let p be any odd prime, and define P = p−1

2
.

We start with the even numbers 2, 4, 6, . . . , p − 1: multiplying them together and factoring 2 from each,
we obtain

2 · 4 · 6 · · · (p− 1) = 2P · P !.

Next, take each of these numbers and write it as its negative expression if needed, to get only values in
[−P, P ]. Comparing the two products we obtain that

2P · P ! = (−1)number of minus signs · P ! mod p.

Therefore, by cancelling the factor P ! in both sides, we obtain the fundamental formula:

2(p−1)/2 = (−1)number of minus signs.

Using this formula we can easily prove the following:

Theorem 18.9 (Quadratic reciprocity (part 2)). Let p be an odd prime. Then(
2

p

)
=

{
1 if p ≡ 1 or 7 mod 8

−1 if p ≡ 3 or 5 mod 8

Proof. There are four cases to study, we will only deal with one of them (the others are quite similar and
are being left as an exercise).

The only case that we consider is p ≡ 1 mod 8. That is, p = 8k + 1 for some k ∈ Z. Consider the
fundamental formula and lets try to understand how many minus signs we have. Observe that P = p−1

2
=

4k. Now, considering all the even numbers 2, 4, 6, . . . , p − 1, it is clear that the first 2k numbers are at
most P and the other 2k numbers are larger than P . Therefore, we have exactly 2k minus signs and we
have

2(p−1)/2 = 1.

Therefore, by Euler’s criterion we obtain that 2 is a quadratic residue.

In general, the Law of quadratic reciprocity is the following statement, that we will probably won’t
have time to prove in class (we proved the first two statements which are the easiest ones):

Theorem 18.10 (Law of quadratic reciprocity). Let p and q be odd primes. Then(
−1

p

)
=

{
1 if p ≡ 1 mod 4

−1 if p ≡ 3 mod 4
.

(
2

p

)
=

{
1 if p ≡ 1 or 7 mod 8

−1 if p ≡ 3 or 5 mod 8
.

(
q

p

)
=


(
p
q

)
if p ≡ 1 mod 4 or q ≡ 1 mod 4

−
(
p
q

)
if p ≡ 3 mod 4 and q ≡ 3 mod 4.
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The Law of quadratic reciprocity is not just a beautiful theorem, but it also serves as a practical tool
for determining whether a number is a quadratic residue in a relatively simple way. The power of this law

is that it enables us to flip the Legendre’s symbol
(
q
p

)
and replace it by ±

(
p
q

)
. Then we can reduce p

modulo q and repeat the process with smaller entries, until we eventually arrive at Legendre symbols that
we can compute.

Example 18.11. Suppose we wish to compute
(

14
137

)
. We can do the following:

(
14

137

)
=

(
2

137

)(
7

137

)
multiplicative rule

=

(
7

137

)
since 137 ≡ 1 mod 8

=

(
137

7

)
quadratic reciprocity and 137 ≡ 1 mod 4

=

(
4

7

)
= 1 since 4 = 22 is a square.

It is also useful to observe that the third part of the Law of Quadratic Reciprocity can equivalently
stated as follows: (

p

q

)
·
(
q

p

)
= (−1)

p−1
2
· q−1

2 .

In particular it says that the Legendre symbols
(
p
q

)
and

(
q
p

)
have the same values if and only if either

p ≡ 1 mod 4 or q ≡ mod4.

Example 18.12. Let us characterize those primes p modulo which 5 is a quadratic residue. Since 5 ≡
1 mod 4, the law of quadratic reciprocity tells us that(

5

p

)
=
(p

5

)
.

Now, among the numbers ±1,±2, the quadratic residues modulo 5 are ±1. It follows that 5 is a quadratic
residue modulo p if and only if p ≡ ±1 mod 5. This example obviously generalizes, replacing 5 by any
prime q ≡ 1 mod 4, and replacing the above congruences modulo 5 by appropriate congruences modulo q.

Observe that the hard part in computing the Legendre symbols is not the use of quadratic reciprocity
but is the part of factorizing the numbers that appear in the symbol. Apparently, there is a way to do
it without factorizing any number. For this, we need to extend the Legendre symbol to arbitrary odd
numbers, that is to define

(
a
b

)
for all odd a, b. This symbol is called the Jacobi symbol and is defined as

follows: (a
b

)
=

(
a

p1

)(
a

p2

)
· · ·
(
a

pr

)
,

where b = p1p2 · · · pr is its prime factorization. With this notation in hands, we can state (and prove) the
following theorem:
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Theorem 18.13 (Generalized Law of Quadratic Reciprocity). Let a, b be positive odd number. Then

(
−1

b

)
=

{
1 if b ≡ 1 mod 4

−1 if b ≡ 3 mod 4.(
2

b

)
=

{
1 if b ≡ 1 or 7 mod 8

−1 if b ≡ 3 or 5 mod 8.(a
b

)
=

{(
b
a

)
if a ≡ 1 mod 4 or b ≡ 1 mod 4

−
(
b
a

)
if a ≡ b ≡ 3 mod 4.

Note that if you use the above theorem then you are only allowed to flip
(
a
b

)
whenever both a, b are

positive odd numbers. If at least one of them is even, then we need to first factor off a power of
(
2
b

)
out

of it, and if at least one of them is negative, then we need to first factor off the
(−1
b

)
terms.

Example 18.14. Calculate(
37603

48611

)
= −

(
48611

37603

)
= −

(
11008

37603

)
= −

(
28 · 43

37603

)
= −

(
43

37603

)
=

(
37603

43

)
=

(
21

43

)
=

(
43

21

)
=

(
1

21

)
= 1.

Unfortunately, even though we’ve just proved that x2 ≡ 37604 mod 48611 has a solution, we have no
clue how to find it except of going through brute force. However, there are more advanced methods that
actually solve this congruence. For certain special cases of primes, it is possible to write explicit solutions
as is shown in the next exercises:

Exercise 18.15. Suppose that p ≡ 3 mod 4 is a prime, and suppose that a is a quadratic residue mod p.
Show that x = a(p+1)/4 is a solution to the congruence x2 ≡ a mod p.

Exercise 18.16. Suppose that p ≡ 5 mod 8 is a prime, and suppose that a is a quadratic residue mod p.
Show that one of the values

x = a(p+3)/8 or x = 2a · (4a)(p−5)/8

is a solution to the congruence x2 ≡ a mod p.

Let us now prove one part of Theorem 18.13. The other parts are left as an exercise:

Proof. We are given an odd integer b and we wish to compute
(−1
b

)
. Let us factorize b as

b = p1 · · · prq1 · · · qs,

where the pis are primes congruent to 1 mod 4 and the qis are 3 mod 4. Observe that

b =

{
1 mod 4 if s is even

3 mod 4 if s is odd.
.

From this, and from the definition of the Jacobi symbol we can deduce the desired.
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18.1 Vinogradov’s trick

In this section we will discuss a nice trick by Vinogradov’s to upper bound the size of the least quadratic
non-residue modulo some prime n ≡ 1 mod 4. In what follows we will restrict our attention to the case
where n = 1 mod 4 is a prime (and hence

(−1
n

)
= 1). The problem that we are interested at is: How large

is the least quadratic non-residue? Let m(n) be the smallest 0 ≤ a ≤ n− 1 for which
(
a
n

)
= −1, and our

goal will be the bound m(n) from above.
The following Lemma shows that if one can get some “discrepancy” bound for short intervals, then

m(n) is bounded polynomially by the length of the interval:

Lemma 18.17. Let χ(n) =
(
n
p

)
be the Legendre’s symbol modulo p and let ε > 0. Suppose that∑

n≤x χ(n) = o(x) for some x. Then, the list quadratic non-residue is at most y := x1/
√
e+ε.

Proof. Recall that χ(n) is multiplicative and therefore, if χ(n) = −1, then there exists some prime q
dividing n and with χ(p) = −1. If we assume that the smallest quadratic non-residue is at least y, then in
particular it means that χ(q) = 1 for all primes 1 ≤ q < y. Therefore, we can write

o(x) =
∑

1≤n≤x

χ(n) =
∑

1≤n≤x

1− 2
∑

1≤n≤x
χ(n)=−1

1

≥ bxc − 2
∑
y≤q≤x
χ(q)=−1

x

q

≥ x− 1− 2x
∑
y≤q≤x

1

q

and the last expressions equals, by Merten’s theorem, to

x− 1− 2x (log log x− log log y + δ) .

Now, observe that by our choice of y, we have that

log log x− log log y + δ = − log
(
e−1/2 + ε

)
+ δ <

1

2
,

and this implies that there exists some constant C > 0 for which the RHS of the above display is at least
Cx. This contradicts the assumption that the sum is o(x).
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19 Review problems

1. Solve the following:

(a) Show that if gcd(a, b) = 1 then aφ(b) + bφ(a) ≡ 1 mod ab.

(b) Prove that if p is a prime congruent 1 mod 4 then∑
r =

p(p− 1)

4
,

where the summation is over all quadratic residues r with 1 6 r 6 p − 1.(Hint: Start from
pairing r with p− r.)

2. Alice submits an encrypted bid to an auction so that other bidders cannot see her bid. Suppose that
the auction service provides a public key (n, z) for an RSA. Assume that bids are encoded simply as
integers between 0 and n prior to encryption and that Alice’s bid is a multiple of 10. Now, suppose
that you have an access to Alice’s encrypted massage (that is, you know az mod n), and explain how
can you submit an encryption of a bid that exceeds Alice’s bid by 10%, without knowing her actual
bid.

3. Show that for all n ∈ N there exists some x ∈ N such that each of the numbers x, x+ 1, . . . , x+n− 1
is divisible by some square of a prime.

4. Solve the following:

(a) Let p be any prime other than 2 or 5. Show that p divides infinitely many of the numbers 9,
99, 999, etc.

(b) Use the Prime Number Theorem to show that there exists some constant C > 0 such that for
all n ∈ N, the nth prime p is at most Cn log n.

5. This problem shows that there are infinitely many primes congruent to 1 modulo 3. We want to
prove by contradiction and first assume that p1, p2, · · · , pr are all such primes.

(a) Let A = (2p1p2 · · · pr)2 + 3, show that there is a prime q such that 3 - q, q|A, and
q ≡ 3 (mod 4).

(b) For the same q as in (a), show that −3q = 1.

(c) Use Quadratic Reciprocity to show that q3 = 1.

(d) Find a contradiction to our assumption at the beginning.

6. Let p be any prime and a ∈ Z∗p. Let r be the minimal integer for which ar ≡ 1 mod p (explain why
such an r exists!), and let Ar := {a, a2, . . . , ar}.

(a) Show that all the elements in Ar are distinct.

(b) Show that for every integer k, each number in Ar appears exactly k times in the sequence at,
1 ≤ t ≤ kr.

(c) Show that for each prime which is not 2 or 5, there exist infinitely many numbers of the form
3, 33, 333, 3333, etc. which are divisible by p
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7. Show that for all odd integers n we have that n divides 1n + 2n + . . .+ (n− 1)n.

8. Complete the steps of the Rabin-Miller primality test for the number n = 115921. You may use a
calculator.

(a) Write n− 1 in the form 2kq where q is odd. Then write q as a sum of powers of 2.

(b) Use successive squaring to find 2q mod n.

(c) Compute the list (2q, 22q, · · · , 22k−1q) mod n. What is the conclusion?

9. Show that for even integers n, n does not divide 1n + 2n + . . .+ (n− 1)n.

Solution: Since n is even we can write n = 2sm, where m is odd. Now, observe that for all
1 ≤ k ≤ n − 1, if k is even then 2s | kn, and that if k is odd, then by Euler’s we have that
k2

s−1 ≡ 1 mod 2s. This gives us that 1n + 2n + . . . + (n − 1)n ≡ n
2

mod 2s. In particular, if we
assume that n divides 1n + 2n + . . .+ (n− 1)n, then we obtain that n/2 ≡ 0 mod 2s which is clearly
a contradiction.

10. Let p, q be distinct primes and let n = pq. Suppose that you know n and φ(n) (but you don’t know
the values of p, q), show how can you easily factorize n.

11. Show that for all n ∈ N there exists some x ∈ N such that each of the numbers x, x+ 1, . . . , x+n− 1
is divisible by a product of at least 10 distinct primes.

12. Show that for every integer n we have that n2 | (n+ 1)n − 1.

13. Let n be an odd square free positive integer. Show that there is an integer a such that gcd(a, n) = 1
and

(
a
n

)
= −1

14. Determine whether each of the following numbers is a Carmichael number. You may use a calculator.

(a) 29341

(b) 89243

(c) 105545

15. Determine, by congruence conditions, the set of primes p such that(
10

p

)
= 1.

16. Let the residue classes 1, 2, ..., p − 1 modulo an odd prime p be divided into two nonempty sets S1

and S2 such that the product of two elements of the same set is in S1, whereas the product of an
element of S1 and an element of S2 is in S2. Prove that S1 consists of the quadratic residues and S2

consists of the quadratic non-residues modulo p.

17. Solve the following:

(a) Show that if p is a prime congruent to 3 mod 4 and if q = 2p+ 1 is a prime then 2p ≡ 1 mod q.
Deduce that 2251 − 1 is not a Mersenne prime.
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(b) Use the Prime Number Theorem to show that for all ε > 0 and a sufficiently large n ∈ N, there
is at least one prime in the interval [n, n+ εn].

18. Determine whether each of the following congruences has a solution.

(a) x2 ≡ 115 (mod 277).

(b) x2 ≡ 65 (mod 664). (Hint: Use Chinese Remainder Theorem.)

19. Let P6k+5 = {p | p is prime and p ≡ 5 (mod 6)}. Show that |P6k+5| = ∞ without using Dirichlet’s
Theorem.
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