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Abstract. Given a family of graphs G1, . . . , Gn on the same vertex set [n], a rainbow Hamilton
cycle is a Hamilton cycle on [n] such that each Gi contributes exactly one edge. We prove that
if G1, . . . , Gn are independent samples of G(n, p) on the same vertex set [n], then for each ε > 0,
whp, every collection of spanning subgraphs Hi ⊆ Gi, with δ(Hi) ≥ ( 1

2
+ ε)np, admits a rainbow

Hamilton cycle. A similar result is proved for rainbow perfect matchings in a family of n/2 graphs
on the same vertex set [n].

Our method is likely to be applicable to further problems in the rainbow setting, in particular, we
illustrate how it works for finding a rainbow perfect matching in the k-partite k-uniform hypergraph
setting.

1. Introduction1

1.1. Dirac-type problems. Arguably the two most studied objects in graph theory are perfect2

matchings and Hamilton cycles. A perfect matching in a graph G = (V,E) is a collection of vertex-3

disjoint edges which covers V , and a Hamilton cycle is a cycle passing through all the vertices of4

G. As opposed to the problem of finding a perfect matching (if one exists) in a graph G which has5

efficient (polynomial-time) resolutions, the analogous problem for Hamilton cycles is listed as one6

of the NP-hard problems by Karp [14]. Therefore, as one cannot hope to find a Hamilton cycle7

efficiently, it is natural to study sufficient conditions which guarantee its existence.8

One of the first results of this type is the celebrated theorem by Dirac [11], which states that every9

graph on n ≥ 3 vertices with minimum degree n
2 is Hamiltonian, that is, contains a Hamilton cycle10

(and in particular, if n is even, then it also contains a perfect matching). While Dirac’s theorem is11

sharp in general, one would like to find sufficient conditions for sparser graphs. A natural candidate12

to begin with is a typical graph sampled from the binomial random graph model G(n, p). That13

is, a graph G on vertex set [n], where each (unordered) pair is being sampled as an edge with14

probability p, independently. In 1960, Erdős and Rényi raised a question of what the threshold15

probability of Hamiltonicity in random graphs is. This question attracted a lot of attention in16

the past few decades. After a series of efforts by various researchers, including Korshunov [16]17

and Pósa [26], the problem was finally solved by Komlós and Szemerédi [15] and independently by18

Bollobás [4], who proved that if p ≥ (log n+ log log n+ ω(1))/n, where ω(1) tends to infinity with19

n arbitrarily slowly, then the probability of the random graph G(n, p) being Hamiltonian tends20

to 1 (we say such an event happens with high probability, or whp for brevity) . This result is best21

possible since for p ≤ (log n + log log n − ω(1))/n whp there are vertices of degree at most one in22

G(n, p) (see, e.g. [5]). An even stronger result was given by Bollobás [4]. He showed that for the23

random graph process, the hitting time for Hamiltonicity is exactly the same as the hitting time24

for having minimum degree 2, that is, whp the very edge which increases the minimum degree to25

2 also makes the graph Hamiltonian.26
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In this paper, we take advantage of the study of the local resilience in random graphs and random27

digraphs, which was first introduced by Sudakov and Vu [27]. Roughly speaking, the local resilience28

is the largest proportion of edges that one can delete from every vertex in a given graph G satisfying29

a property P, such that the resulting (sub)graph still satisfies P. We shall use resilience results30

on perfect matchings in random bipartite graphs due to Sudakov and Vu [27] and Hamiltonicity in31

random digraphs by Montgomery [22], see Lemma 2.9 and Lemma 2.13, respectively.32

1.2. A rainbow setting. In recent years, rainbow structures in graph systems have received a lot33

of attention [1, 2, 6, 7, 8, 9, 10, 13, 17, 18, 19, 20, 23]. Formally, given a family of (hyper)graphs34

G = {G1, . . . , Gm} defined on the same vertex set, a copy of an m-edge (hyper)graph H is called35

rainbow if E(H) ⊆
⋃

i∈[m]E(Gi) and |E(H) ∩ E(Gi)| = 1 for every i ∈ [m].36

A rainbow version of the Dirac-type problems in systems of graphs was conjectured by Aharoni37

et al.[1]: let G1, . . . , Gn be a system of graphs on the same vertex set V = [n] with minimum38

degree δ(Gi) ≥ n/2 for each i ∈ [n], there exists a rainbow Hamilton cycle. Cheng, Wang and Zhao39

[10] verified the conjecture asymptotically and Joos and Kim [13] proved the full conjecture. Very40

recently, Bradshaw, Halasz, and Stacho [7] strengthened the result by showing that the system of41

graphs actually admit exponentially many rainbow Hamilton cycles under the same assumptions.42

Bradshaw [6] generalized the Dirac-type result for Hamiltonicity of bipartite graphs by Moon and43

Moser [24] to the rainbow setting.44

Another interesting structure to consider is the perfect matching. In the rainbow setting we are45

given n/2 graphs G1, . . . , Gn/2 on the same vertex set [n], and we are seeking for a rainbow perfect46

matching, namely, a perfect matching that consists of exactly one edge from each Gi.47

In this note, we give Dirac-type results for rainbow perfect matchings and rainbow Hamilton48

cycles in random graphs. Our main results read as follows.49

Theorem 1.1. Let ε > 0 and p = ω
(
logn
n

)
where n is even. Suppose G1, . . . , Gn/2 are independent50

samples of G(n, p) on the same vertex set V = [n]. Then, whp we have that for every spanning51

subgraphs Hi ⊆ Gi, 1 ≤ i ≤ n/2, with δ(Hi) ≥ (12 + ε)np, the family {H1, . . . ,Hn/2} admits a52

rainbow perfect matching.53

Theorem 1.2. Let ε > 0 and p = ω
(
logn
n

)
. Suppose G1, . . . , Gn are independent samples of54

G(n, p) on the same vertex set V = [n]. Then, whp we have that for every spanning subgraphs55

Hi ⊆ Gi, 1 ≤ i ≤ n, with δ(Hi) ≥ (12 + ε)np, the family {H1, . . . ,Hn} admits a rainbow Hamilton56

cycle.57

1.3. Notation. Given a graph G and X ⊆ V (G), let N(X) =
⋃

x∈X N(x). For two subsets58

X,Y ⊆ V (G) we define EG(X,Y ) to be the set of all edges xy ∈ E(G) with x ∈ X and y ∈ Y , and59

set eG(X,Y ) := |E(X,Y )| (the subscript G will be omitted whenever there is no risk of confusion).60

Moreover, G[X,Y ] is defined by a graph with vertex set X ∪ Y and edge set EG(X,Y ). When61

x ∈ V (G), dG(x) is the degree of x in G. For a graph H, X ⊂ V (H), and a vertex v ∈ V (H), we62

define dH(v,X) = |{uv ∈ E(H) : u ∈ X}|. In particular, if X = {u} for some vertex u, then we63

write d(v, u) := d(v, {u}).64

For a graph G, we denote by δ(G) as its minimum degree. For a digraph D, we denote65

δ+(D), δ−(D) as its minimum out-degree and minimum in-degree, respectively. Moreover, let66

δ0(D) = min{δ+(D), δ−(D)}.

If f(n)/g(n) → 0 as n → ∞, then we say g(n) = ω(f(n)) and f(n) = o(g(n)). If there exists a67

constant C for which f(n) ≤ Cg(n) for all n, then we say f(n) = O(g(n)) and g(n) = Ω(f(n)). If68

f = O(g(n)) and f(n) = Ω(g(n)), then we say that f(n) = Θ(g(n)). The random graph G(n, p)69

has vertex set [n] = {1, . . . , n} and edges chosen independently at random with probability p.70
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The random digraph D(n, p) has vertex set [n] = {1, . . . , n} and directed edges (u, v), which is an71

ordered pair of vertices, chosen independently at random with probability p.72

2. Preliminary Results73

In this section we first present some useful tools for the proofs, and then introduce our key74

auxiliary graphs and how to use them.75

2.1. Chernoff’s inequalities. We will use the following well-known bound on the upper and lower76

tails of the binomial distribution, which is given by Chernoff (see Appendix A in [3]).77

Lemma 2.1 (Chernoff’s inequality). Let X ∼ Bin(n, p) and let E[X] = µ. Then78

• Pr[X < (1− a)µ] < e−a2µ/2 for every a > 0;79

• Pr[X > (1 + a)µ] < e−a2µ/3 for every 0 < a < 3/2.80

Remark 2.2. Chernoff’s inequalities also hold when X is hypergeometrically distributed with mean81

µ.82

The following simple bound is also useful in our proof.83

Lemma 2.3. Let X ∼ Bin(m, q). Then, for all k we have

Pr[X ≥ k] ≤
(emq

k

)k
.

Proof. Indeed, note that

Pr[X ≥ k] ≤
(
m

k

)
qk ≤

(emq

k

)k
as desired. □84

2.2. Talagrand-type inequality. Our main probabilistic tool is the following concentration in-85

equality of McDiarmid [21].86

Theorem 2.4. Given a set S of size m, we let Sym(S) denote the set of all m! permutations of S.87

Let {B1, . . . , Bk} be a family of finite non-empty sets, and let Ω = ΠiSym(Bi). Let π = {π1, . . . , πk}88

be a family of independent permutations, such that for i, πi ∈ Sym(Bi) is chosen uniformly at89

random.90

Let c and r be constants, and suppose that a nonnegative real-valued function h on Ω satisfies91

the following conditions for each π ∈ Ω.92

(1) Swapping any two elements in any πi can change the value of h by at most 2c.93

(2) If h(π) = s, there exists a set πproof ⊆ π of size at most rs, such that h(π′) ≥ s for any94

π′ ∈ Ω where π′ ⊇ πproof .95

Then for each t ≥ 0 we have

Pr[h ≤ M(h(π))− t] ≤ 2 exp

(
− t2

16rc2M

)
.

2.3. Typical properties of graphs. In this section, we collect some useful properties of a typical96

sequence of independent samples of G(n, p), which are regarded as “colors”, on the same vertex set97

V = [n]. First, we show that the degrees are concentrated.98

Lemma 2.5. Let ε > 0 and let N ≤ n2. Let G1, . . . , GN be independent samples of G(n, p) on the
same vertex set V = [n]. Then, whp we have

(1− ε)np ≤ δ(Gc) ≤ ∆(Gc) ≤ (1 + ε)np

holds for all c ∈ [N ] provided that p = ω( log n
n ).99
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Proof. Fix some vertex u ∈ [n] and some color c ∈ [N ]. Observe that dGc(u) ∼ Bin(n− 1, p), and

therefore µ := E[dGc(u)] = (n− 1)p. Hence, since p = ω( lognn ), by Lemma 2.1 we obtain that

Pr[dGc(u) /∈ (1± ε)µ] ≤ 2 exp

(
−ε2µ

3

)
= o

(
1

n3

)
.

Taking a union bound over all vertices u ∈ [n] and all colors c ∈ [N ], we conclude that

Pr[∃u ∈ [n], ∃c ∈ [N ] s.t. dGc(u) /∈ (1± ε)µ] = o(1).

This completes the proof. □100

Next, we show that given n/2 graphs H1, . . . ,Hn/2, if we take a random equipartition of [n],101

then whp the corresponding bipartite subgraphs of Hi have the “correct” degrees.102

Lemma 2.6. For every ε > 0 there exists C := C(ε) for which the following holds. Let m = n/2.
Let H1, . . . ,Hm be graphs on the same vertex set V = [n], where n is a sufficiently large even
integer. Suppose that δ(Hc) ≥ C log n for all c ∈ [m]. Then, a (1− o(1))-fraction of the partitions
V = V1 ∪ V2 into sets of size m satisfy the following property: For every vertex u ∈ V and c ∈ [m],
and for i = 1, 2 we have

dHc(u, Vi) ∈ (1± ε) · dHc(u)

2
.

Proof. Consider a random partition V = V1 ∪ V2 into sets both of size m. For some fixed vertex
u ∈ [n] and some fixed c ∈ [m], note that dHc(u) is hypergeometrically distributed with expected

value
dHc (u)

2 . Therefore, by Lemma 2.1 we obtain that

Pr

[
dHc(u, Vi) /∈ (1± ε) · dHc(u)

2

]
≤ 2e−ε2

dHc
(u)

2
/3 ≤ 2e−3 log n = 2n−3,

where the last inequality holds for a large enough C.103

By applying a union bound over all possible u’s and i’s, we obtain that the probability of having104

such a vertex u and an index i is at most (n2/2) · 2n−3 = n−1. This completes the proof. □105

2.4. Auxiliary graphs and proof ideas. In this section we define some auxiliary graphs/digraphs106

that are going to play key roles in the proofs of our main theorems.107

2.4.1. Perfect matchings. Our proof uses an auxiliary bipartite graph as follows.108

Definition 2.7. Let n be an even integer. Let H ′
1, . . . ,H

′
n/2 be bipartite graphs on the same vertex109

set V = [n], each of which has the same bipartition V = V1 ∪ V2 with |V1| = |V2| = n/2. By110

relabeling the vertices (if necessary), we may assume V1 = [n/2]. Given a permutation π : V1 → V1,111

the auxiliary bipartite graph Bπ := Bπ(H
′
1, . . . ,H

′
n/2) is constructed as follows: the parts of Bπ are112

V1 and V2; the edge set consists of all pairs (i, j) ∈ V1 × V2 such that ij ∈ E(H ′
π(i)).113

Remark 2.8. Observe that a perfect matching in Bπ corresponds to a rainbow perfect matching in114

the family H ′
1, . . . ,H

′
n/2. Indeed, every edge {i, j} in Bπ with i ∈ V1 and j ∈ V2 corresponds to an115

edge {i, j} in H ′
π(i), and since π is a permutation of V1, a perfect matching of Bπ uses exactly one116

edge from each H ′
i.117

We also need the following result of Sudakov and Vu [27] on local resilience of perfect matchings118

in random bipartite graphs, whose proof can be found in the proof of [27, Theorem 3.1]. Let V1119

and V2 be disjoint vertex sets each of size n/2, where n ∈ 2N. A random bipartite graph B(n, p)120

defined on the partition V1∪V2 is a bipartite graph such that given (i, j) ∈ V1×V2, ij ∈ E(B(n, p))121

with probability p and all pairs ij are chosen independent of each other.122
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Lemma 2.9 (Sudakov and Vu [27]). Let ε > 0 and p = ω
(
logn
n

)
where n is even. Let V1 and V2123

be disjoint vertex sets each of size n/2. Then, whp a spanning subgraph H ⊆ B(n, p) defined on124

V1 ∪ V2 such that δ(H) ≥ (12 + ε)np2 contains a perfect matching.125

We first demonstrate how to use the auxiliary bipartite graph to prove the following bipartition126

version of Theorem 1.1.127

Theorem 2.10. Let ε > 0 and p = ω
(
logn
n

)
where n is even. Suppose G1, . . . , Gn/2 are in-128

dependent samples of B(n, p) defined on V1 ∪ V2, each of size n/2. Then, whp we have that for129

every spanning (bipartite) subgraphs Hi ⊆ Gi, 1 ≤ i ≤ n/2, with δ(Hi) ≥ (12 + ε)np2 , the family130

{H1, . . . ,Hn/2} admits a rainbow perfect matching.131

Here is an outline of our proof. Given a set V of n ∈ 2N vertices and a balanced bipartition132

V = V1 ∪ V2, fix a permutation π : V1 → V1. If we expose n/2 independent samples of B(n, p) on133

V1 ∪ V2, denoted by G1, . . . , Gn/2, then we have that the bipartite graph Gπ = Bπ(G1, . . . , Gn/2)134

defined in Definition 2.7 is also a random bipartite graph.135

Then, given (i, j) ∈ V1×V2, ij ∈ Gπ if and only if ij ∈ E(Gπ(i)), which happens with probability136

precisely p and is independent with all other pairs in V1 × V2. In particular, whp Gπ is resilient137

for perfect matching – by Lemma 2.9. That is, whp every spanning subgraph H of Gπ with138

δ(H) ≥ (12+
ε
2)

np
2 contains a perfect matching. However, once the independent samples are exposed,139

there might be some ”bad” permutations π such that there exists i ∈ V1 satisying ij /∈ E(Gπ(i)) for140

most j ∈ V2. Fortunately, we can prove that almost every π is not bad by Markov’s inequality. On141

the other hand, we shall show that (Lemma 2.16) if π is a uniformly random permutation of V1 and142

H1, . . . ,Hn/2 are graphs such that Hi ⊆ Gi and δ(Hi) ≥ (12 + ε)np2 , then whp the bipartite graph143

Bπ = Bπ(H1, . . . ,Hn/2) satisfies that Bπ ⊆ Gπ and δ(Bπ) ≥ (12 +
ε
2)

np
2 . Therefore, by the resilience144

property of Gπ we conclude that Hπ has a perfect matching, which gives rise to a rainbow perfect145

matching of the family H1, . . . ,Hn/2. This will prove Theorem 2.10.146

To derive Theorem 1.1, it suffices to show that there is a balanced bipartition of the vertex set147

such that the bipartite subgraphs of our graphs inherits the degree condition, which is proved in148

Lemma 2.6.149

2.4.2. Directed Hamilton cycles. For Hamiltonicity we will need to construct an auxiliary digraph150

as follows.151

Definition 2.11. Let H ′
1, . . . ,H

′
n be graphs on the same vertex set V = [n], Given a permutation152

π : V → V , the auxiliary digraph Dπ := Dπ(H
′
1, . . . ,H

′
n) is constructed as follows:153

V is the vertex set of Dπ and for any vertex i, j ∈ V , (i, j) ∈ E(Dπ) if and only if ij ∈ E(H ′
π(i)).154

Remark 2.12. Observe that a directed Hamilton cycle in the auxiliary digraph Dπ corresponds to155

a rainbow Hamilton cycle in the family H ′
1, . . . ,H

′
n. Indeed, a directed Hamilton cycle in Dπ is a156

directed Hamilton cycle in Kn whose edges (i, j) belongs to distinct H ′
π(i) since π is a permutation.157

We also need the following result on local resilience of Hamiltonicity in random digraphs due to158

Montgomery [22] (in fact, Montgomery proved a way stronger result but the following is enough159

for our needs).160

Lemma 2.13. Let ε > 0. Then whp a spanning subdigraph D ∼ D(n, p) defined on V = [n] such161

that δ0(D) ≥ (12 + ε)np contains a Hamilton cycle, provided that p = ω( log n
n ).162

Similar to what we did in the previous subsection, we explain how this auxiliary digraph works.163

Given a set V of n vertices, fix a permutation π : V → V . If we expose n independent samples164

of G(n, p) on V , denoted by G1, . . . , Gn, then the digraph Gπ = Dπ(G1, . . . , Gn) defined in Defini-165

tion 2.11 is a random digraph. Indeed, given (i, j) ∈ V 2, then ij ∈ Gπ if and only if (i, j) ∈ E(Gπ(i)),166
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which happens with probability precisely p and is independent with all other pairs in V 2. In par-167

ticular, Gπ is resilient for Hamiltonicity – by Lemma 2.13, whp any spanning subdigraph H of168

Gπ with δ0(H) ≥ (12 + ε
2)np contains a directed Hamilton cycle. On the other hand, we shall169

show that (Lemma 2.17) if π is a uniformly random permutation of V and H1, . . . ,Hn are graphs170

such that Hi ⊆ Gi and δ(Hi) ≥ (12 + ε)np, then whp the digraph Dπ = Dπ(H1, . . . ,Hn) satisfies171

that Dπ ⊆ Gπ and δ(Dπ) ≥ (12 + ε
2)np. Therefore, by the resilience property of Gπ, we conclude172

that Dπ has a directed Hamilton cycle, which gives rise to a rainbow Hamilton cycle of the family173

H1, . . . ,Hn. This will prove Theorem 1.2.174

2.5. Most Bπ’s have large minimum degree. In this section we prove that given a balanced175

partition [n] = V1 ∪ V2 and bipartite graphs H ′
1, . . . ,H

′
m with a common bipartition V1 ∪ V2 (with176

m = n/2) and large minimum degrees, the resulting auxiliary graph Bπ also has large minimum177

degree whp where π is a uniformly random permutation. The proof is a special case of Lemma 13178

in [12], but we include it for completeness.179

Lemma 2.14. Let 0 < α < 1
2 and let n ∈ 2N be sufficiently large. Let m = n/2. Let H ′

1, . . . ,H
′
m

be bipartite graphs on the same vertex set V = [n] with the same parts V = V1 ∪ V2 of the same
size m, where V1 = [m]. Suppose that δ∗(H ′

c) ≥ 200
α2 for all c ∈ [m]. Let π be a uniformly random

permutation on V1 and µi = E[dBπ(i)]. Then, for every j ∈ V2, we have

Mj := M(dBπ(j)) ∈ (1± α)µj .

Remark 2.15. The above lemma allows us to use µj instead of Mj in Theorem 2.4 when it is180

applied to dBπ(j).181

Proof. Consider Bπ, where π is a uniformly random permutation on V1. Let j be some vertex in182

V2. Let µj = E[dBπ(j)] and σ2 = Var(dBπ(j)). Moreover, for each i ∈ V1, we define an indicator183

random variable 1i, where 1i = 1 if {i, j} ∈ E(H ′
π(i)). Observe that dBπ(j) =

∑
i∈V1

1i.184

Applying Chebyshev’s inequality, we have

Pr[|dBπ(j)− µj | ≥ αµj ] ≤
σ2

α2µ2
j

.

If we can show that σ2 ≤ α2µ2
j

100 , then the result follows. Indeed, with probability at least 99/100185

we have that dBπ(j) ∈ (1 ± α)µj and thus we conclude that the median Mj also lies in this186

interval. Now the remaining part is to prove the desired inequality by computing µj = E[dBπ(j)]187

and σ2 = Var(dBπ(j)).188

Note that the event (1i = 1) only depends on the value of π(i). There are m possible values in
total for π(i), and exactly the colors in which ij is an edge contribute to 1. Let dH′

c
(i, j) = 1 if

ij ∈ E(H ′
c), and dH′

c
(i, j) = 0 otherwise. So

Pr[1i = 1] =

∑m
c=1 dH′

c
(i, j)

m
.

By linearity of expectations, we have

µj =

m∑
i=1

E[1i] =

m∑
i=1

∑m
c=1 dH′

c
(i, j)

m
=

m∑
c=1

∑m
i=1 dH′

c
(i, j)

m
=

m∑
c=1

dH′
c
(j)

m
.
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To compute the variance, note that for each i ̸= k in V1, we have

E [1i1k] =

m∑
c=1

Pr [1i = 1k = 1|π(i) = c] Pr [π(i) = c]

=
m∑
c=1

1

m
dH′

c
(i, j) Pr [1k = 1|π(i) = c]

=

m∑
c=1

1

m
dH′

c
(i, j)

∑
c′ ̸=c dH′

c′
(k, j)

m− 1
.

Thus,

Var (dBπ (j)) = Var

(
m∑
i=1

1i

)
=

m∑
i=1

Var (1i) +
∑
i ̸=k

Cov (1i,1k)

≤ µj +
∑
i ̸=k

(E [1i1k]− E [1i]E [1k])

= µj +
∑
i ̸=k

(
m∑
c=1

1

m
dH′

c
(i, j)

∑
c ̸=c′ dH′

c′
(k, j)

m− 1
−
∑m

c=1 dH′
c
(i, j)

m

∑m
c′=1 dH′

c′
(k, j)

m

)

= µj +
∑
i ̸=k

((
1

m(m− 1)
− 1

m2

) m∑
c=1

dH′
c
(k, j)

m∑
c′=1

dH′
c′
(i, j)− 1

m(m− 1)

m∑
c=1

dH′
c
(k, j)dH′

c
(i, j)

)

≤ µj +
1

m2(m− 1)

m∑
i,k=1

(
m∑
c=1

dH′
c
(k, j)

m∑
c′=1

dH′
c′
(i, j)

)

= µj +
1

m− 1
µ2
j .

To complete the proof, first observe that we have 1
m−1µ

2
j ≤

α2µ2
j

200 since m is sufficiently large. Also,189

we have µj ≤ α2µ2
j

200 since µj ≥ 200
α2 by assumption. Now we obtain σ2 ≤ α2µ2

j

100 and the lemma190

follows. □191

Lemma 2.16. For every ε > 0 there exists C := C(ε) for which the following holds for sufficiently192

large m ∈ N and p = C logm
m . Let H ′

1, . . . ,H
′
m be bipartite graphs on the same vertex set V = [n]193

with the same parts V = V1 ∪ V2 of the same size m, where V1 = [m]. Suppose that δ∗(H ′
c) ≥194

(12 + ε)mp for every c ∈ [m]. Then for a uniformly random permutation π : [m] → [m], whp we195

have δ(Bπ) ≥ (12 + ε
2)mp.196

Proof. Consider Bπ, where π is a uniformly random permutation. As δ∗(H ′
c) ≥ (12 + ε)mp for197

every c ∈ [m], it is guaranteed that for all i ∈ V1 we have that dBπ(i) ≥ (12 + ε)mp. Now198

consider some j ∈ V2 and observe from the proof of Lemma 2.14, under the same notation, that199

µj := E[dBπ(i)] ≥ (12 + ε)mp.200

In order to complete the proof, we want to show that the dBπ(j)’s are “highly concentrated”201

using Theorem 2.4. To this end, let h(π) := dBπ(j) and note that swapping any two elements of π202

can change the value of h by at most 2. Moreover, note that if h(π) = dBπ(j) = s, then it is enough203

to choose πproof as the s indices reflected in NBπ(j). Therefore, h(π) satisfies the conditions of204

Theorem 2.4 with c = 1 and r = 1.205
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Now, let α = ε
100 , and observe that by Lemma 2.14 we have that the median M of dBπ(j) lies in

the interval (1± α)µj . Therefore, we have

Pr

[
h ≤ (

1

2
+

ε

2
)mp

]
≤ Pr

[
h ≤ (1− ε

2
)E[dBπ(j)]

]
and the latter can be upper bounded by

Pr
[
h ≤ (1− ε

2
)(1 + α)M

]
≤ Pr

[
h ≤ (1− ε

4
)M
]
.

Now, by Theorem 2.4 we obtain that

Pr

[
h ≤ (

1

2
+

ε

2
)mp

]
≤ 2 exp

{
−(εM/4)2

16M

}
.

Next, using (again) the fact that M ∈ (1 ± α)µj and that µj = Θ(mp) ≥ C logm, we can upper206

bound the above right hand side by 2 exp (−Θ(mp)) ≤ n−2. Finally, in order to complete the proof,207

we take a union bound over all j ∈ V2 and obtain that whp δ(Bπ) ≥ (12 + ε
2)mp. □208

2.6. Most Dπ’s have large minimum degree. The following lemma says that given digraphs209

H ′
1, . . . ,H

′
m with large minimum semidegrees (minimum of out-degrees and in-degrees), the re-210

sulting auxiliary digraph Dπ also has large minimum degree whp where π is a uniformly random211

permutation.212

Lemma 2.17. For every ε > 0 there exists C := C(ε) for which the following holds for sufficiently213

large n ∈ N and p = C log n
n . Let H ′

1, . . . ,H
′
n be graphs on the same vertex set V = [n]. Suppose214

that δ(H ′
c) ≥ (12 + ε)np for every c ∈ [n]. Then for a uniformly random permutation π : V → V ,215

whp we have δ0(Dπ) ≥ (12 + ε
2)np.216

The proof of Lemma 2.17 is very similar to that of Lemma 2.16 so we leave it to the appendix.217

3. Proof of main results218

We first give a proof of Theorem 2.10 and use it to derive Theorem 1.1.219

Proof of Theorem 2.10. Let ε > 0 and p ≥ C log n
n , for a sufficiently large C. Let m = n

2 . Let220

G1, . . . , Gm be independent samples ofB(n, p) on V1∪V2. LetHc ⊆ Gc be any (bipartite) subrgraphs221

with δ(Hc) ≥ (1/2+ ε)mp. We wish to demonstrate that whp the family of graphs H1, . . . ,Hm has222

a rainbow perfect matching.223

Now, let π be a permutation on V1 chosen uniformly at random. Therefore, Lemma 2.16 (with224

input graphs H1, . . . ,Hm) guarantees that for almost all permutation π, Hπ = Bπ(H1, . . . ,Hm) (as225

defined in 2.7) satisfies226

(†) δ(Hπ) ≥ (12 + ε
2)mp.227

We focus on all π satisfying above and condition on (†).228

Note that the bipartite graph Gπ = Bπ(G1, . . . , Gm) is a random bipartite graph, where all pairs229

in V1 × V2 are present with probability p, and independent with other pairs of vertices. Moreover,230

by definition, Hπ is a subgraph of Gπ. Thus, by (†), we have that Hπ is a subgraph of Gπ with231

δ(Hπ) ≥ (12 + ε
2)mp. Therefore, by Lemma 2.9, whp Hπ contains a perfect matching, which by232

Remark 2.8 implies that the family H1, . . . ,Hm whp admits a rainbow perfect matching. □233

Proof of Theorem 1.1. Let ε > 0 and p ≥ C log n
n , for a sufficiently large C. Let m = n

2 . Let234

G1, . . . , Gm be independent samples of G(n, p) (on the same vertex set V = [n]). Let Hc ⊆ Gc235

be any subgraphs with δ(Hc) ≥ (1/2 + ε)np. We wish to show that whp the family of graphs236

H1, . . . ,Hm has a rainbow perfect matching.237

Observe that by Lemma 2.5, whp the family of graphs G1, . . . , Gm satisfies238
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(‡) (1− ε)np ≤ δ(Gc) ≤ ∆(Gc) ≤ (1 + ε)np for all c ∈ [m].239

For the rest of the proof, we condition on (‡).240

Now, let α > 0 such that (1 − α)(1/2 + ε) ≥ 1/2 + ε/2. By Lemma 2.6 with α in place of ε,
we obtain that most balanced bipartitions of [n] = V1 ∪ V2 satisfy the following: for every u ∈ Vi,
i = 1, 2, and for every c ∈ [m], we have

dHc(u, V3−i) ≥ (1− α) · dHc(u)

2
≥ (1− α) ·

(
1

2
+ ε

)
np

2
≥
(
1

2
+

ε

2

)
np

2
.

Now for i ∈ [m] and any given partition [n] = V1∪V2, we let G
′
i := Gi[V1, V2] and H ′

i := Hi[V1, V2]241

be the spanning subgraphs of Gi and Hi, respectively, induced by the bipartition V1 ∪ V2. Observe242

that, for a given partition, all G′
i are independent samples of B(n, p) on V1∪V2. Moreover, for most243

balanced bipartitions the graphs H ′
i ⊆ G′

i satisfy δ(H ′
i) ≥

(
1
2 + ε

2

) np
2 . Therefore, by Theorem 2.10,244

we obtain that by taking a random partition [n] = V1 ∪ V2, whp the family {H ′
1, . . . ,H

′
n/2} admits245

a rainbow perfect matching. This completes the proof. □246

Now we give a proof of Theorem 1.2.247

Proof of Theorem 1.2. Let ε > 0 and p ≥ C log n
n , for a sufficiently large C. Let G1, . . . , Gn be248

independent samples of G(n, p) (on the same vertex set V = [n]). Let Hc ⊆ Gc be any subgraphs249

with δ(Hc) ≥ (1/2 + ε)np. We wish to show that whp the family of graphs H1, . . . ,Hn has a250

rainbow Hamilton cycle.251

Similar to above, whp the family of graphs G1, . . . , Gn satisfies (‡) for m = n. For the rest of252

the proof, we condition on (‡).253

Now, let π be a permutation on V chosen uniformly at random. Therefore, Lemma 2.17 (with254

input graphs H1, . . . ,Hn) guarantees that whp D′
π = Dπ(H1, . . . ,Hn) (as defined in 2.11) satisfies255

(∗) δ(D′
π) ≥ (12 + ε

2)np.256

We condition on (∗).257

Note that the digraph Dπ = Dπ(G1, . . . , Gn) is a random digraph, where all pairs are present258

with probability p, and independent with other pairs of vertices. Moreover, by definition, D′
π is a259

subdigraph of Dπ. Therefore, by Lemma 2.13, whp D′
π contains a Hamilton cycle, which by Remark260

2.12 implies that the family H1, . . . ,Hn whp admits a rainbow Hamilton cycle. This completes the261

proof. □262

4. Concluding Remarks263

In this note we address the Dirac-type problems for rainbow perfect matching and Hamilton264

cycle in a family of random graphs. Our method reduces the rainbow embedding problem to that265

in closely related contexts with a single host graph. That is, we use appropriate auxiliary graphs266

that “assemble” the family of graphs to one graph, so that the rainbow subgraph problem is reduced267

to finding a single copy of the desired subgraph in this auxiliary graph. For perfect matching and268

F -factors1, the natural candidate for the auxiliary graph is the multi-partite graphs. For connected269

objects such as Hamilton cycles, we show that directed graphs are helpful auxiliary graphs.270

Our method is also applicable to the dense setting and to random hypergraphs. We end by the271

following result for perfect matching in k-partite k-graphs. For k > d > 0 and a k-partite k-graph272

H, let δ∗d(H) be the maximum integer m such that every crossing2 d-set in V (H) has degree at273

least m. For k > d > 0, let δk,d be the smallest real number δ > 0 such that for every ε > 0274

there exists n0 > 0 such that every k-partite k-graph H with n vertices in each part satisfying275

δ∗d(H) ≥ (δ + ε)nk−d contains a perfect matching.276

1Given graphs F and H, an F -factor in H is a spanning subgraph of H consisting of vertex-disjoint copies of F .
2A set is called crossing if it contains at most one vertex from each part of the partition.
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Theorem 4.1. Given integers k > d > 0 and ε > 0, there exists n0 such that the following holds277

for integer n ≥ n0. Let H1, . . . ,Hn be a family of k-partite k-graphs on the same k-partition with278

n vertices in each part. Suppose δ∗d(Hi) ≥ (δk,d + ε)nk−d for every i ∈ [n]. Then the family admits279

a rainbow perfect matching.280

Proof Sketch. Let V = V1 ∪ V2 ∪ · · · ∪ Vk be a k-partition with n vertices in each part. Given a281

permutation π of V1 = [n], define the auxiliary k-partite k-graph Hπ on V1 ∪V2 ∪ · · · ∪Vk such that282

a crossing k-tuple S = {a1, . . . , ak} with ai ∈ Vi belongs to E(Hπ) if and only if S ∈ E(Hπ(a1)).283

Then for a random permutation π of V1, one can show that whp δ∗d(Hπ) ≥ (δk,d + ε/2)nk−d. Take284

such a permutation π and since n is sufficiently large, δ∗d(Hπ) ≥ (δk,d + ε/2)nk−d implies that Hπ285

contains a perfect matching M . Since M contains precisely one edge from each Hi, it is a rainbow286

perfect matching of the family. □287

It follows from a result of Pikhurko [25] that δk,d = 1/2 for d ≥ k/2.288
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5. Appendix: Proof of Lemma 2.17337

In this section, we finish the proof of Lemma 2.17 which we omitted in Section 3.338

Lemma 5.1. Let 0 < α < 1
2 and let n ∈ N be sufficiently large. Let H ′

1, . . . ,H
′
n be graphs on the

same vertex set V = [n]. Suppose that δ (H ′
c) ≥ 200

α2 for all c ∈ [n], Let π be a uniform random

permutation on V and µi = E
[
d−Dπ

(i)
]
. Then, for every i ∈ V , we have

Mi := M(d−Dπ
(i)) ∈ (1± α)µi.

Remark 5.2. The above lemma allows us to use µi instead of Mj in Theorem 2.4 when it is applied339

to d−Dπ
(i).340

Proof. Consider Dπ, where π is a uniformly random permutation on V . Let i be some vertex in V .341

Let µi = E
[
d−Dπ

(i)
]
and σ2 = Var(d−Dπ

(i)). Moreover, for each j ∈ V , we define a random variable342

1j , where 1j = 1 if {i, j} ∈ E(H ′
π(i)). Observe that d−Dπ

(i) =
∑

j∈V 1j .343

Applying Chebyshev’s inequality, we have

Pr[|d−Dπ
(i)− µi| ≥ αµi] ≤

σ2

α2µ2
i

.

If we can show that σ2 ≤ α2µ2
i

100 , then the result follows. Indeed, with probability at least 99/100 we344

have that d−Dπ
(i) ∈ (1 ± α)µi and thus we conclude that the median Mi also lies in this interval.345

Now the remaining part is to prove the desired inequality by computing µi = E[d−Dπ
(i)] and σ2 =346

Var(d−Dπ
(i)).347

Note that the event (1i = 1) only depends on the value of π(i). There are n possible values in
total for π(i), and exactly all of the colors in which ij is an edge contributes to 1. Let dH′

c
(i, j) = 1

if ij ∈ E(H ′
c), and dH′

c
(i, j) = 0 otherwise. So

Pr[1j = 1] =

∑n
c=1 dH′

c
(i, j)

n
.

By linearity of expectations, we have

µi =
n−1∑
j=1

E[1j ] =
n−1∑
j=1

∑n
c=1 dH′

c
(i, j)

n
=

n∑
c=1

∑n−1
j=1 dH′

c
(i, j)

n
=

n∑
c=1

dH′
c
(i)

n
.

To compute the variance, note that for each j ̸= k in V , we have

E[1j1k] =

n∑
c=1

Pr[1j = 1k = 1|π(i) = c]Pr[π(i) = c]

=

n∑
c=1

1

n
dH′

c
(i, j) Pr[1k = 1|π(i) = c]

=
n∑

c=1

1

n
dH′

c
(i, j)

∑
c′ ̸=c dH′

c′
(k, i)

n− 1
.
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Thus,

Var(d−Dπ
(i)) = Var(

n∑
j=1

1j) =
n∑

j=1

Var(1j) +
∑
j ̸=k

Cov(1j ,1k)

≤ µi +
∑
j ̸=k

(E[1j1k]− E[1j ]E[1k])

= µi +
∑
j ̸=k

( n∑
c=1

1

n
dH′

c
(i, j)

∑
c ̸=c′ dH′

c′
(k, i)

n− 1
−
∑n

c=1 dH′
c
(i, j)

n

∑n
c′=1 dH′

c′
(k, i)

n

)
= µi +

∑
j ̸=k

(
(

1

n(n− 1)
− 1

n2
)

n∑
c=1

dH′
c
(k, j)

n∑
c′=1

dH′
c′
(i, j)− 1

n(n− 1)

n∑
c=1

dH′
c
(k, i)dH′

c
(i, j)

)
≤ µi +

1

n2(n− 1)

n∑
j,k=1

( n∑
c=1

dH′
c
(k, i)

n∑
c′=1

dH′
c′
(i, j)

)
= µi +

1

n− 1
µ2
i .

To complete the proof, first observe that we have 1
n−1µ

2
i ≤ α2µ2

i
200 since n is sufficiently large. Also,348

we have µi ≤ α2µ2
i

200 since µi ≥ 200
α2 by assumption. Now we obtain σ2 ≤ α2µ2

i
100 and the lemma349

follows. □350

Proof of Lemma 2.17. Consider Dπ, where π is a uniformly random permutation on V = [n].351

As δ (H ′
c) ≥

(
1
2 + ε

)
np for every c ∈ [n] by assumption, it is guaranteed that for all i ∈ V352

we have that δ+ (Dπ) ≥
(
1
2 + ε

)
np. So it suffices to prove that δ− (Dπ) ≥

(
1
2 + ε

)
np. Now353

consider some i ∈ V and observe from the proof of Lemma 5.1, under the same notation, that354

µi := E
[
d−Dπ

(i)
]
≥
(
1
2 + ε

)
np.355

In order to complete the proof, we want to show that the d−Dπ
(i)’s are ’highly concentrated’ using356

Theorem 2.4. To this end, let h(π) := d−Dπ
(i) and note that swapping any two elements of π can357

change the value of h by at most 2. Moreover, note that if h(π) = d−Dπ
(i) = s, then it is enough to358

choose πproof as the s indices reflected in N−
Dπ

(i) . Therefore, h(π) satisfies the conditions outlined359

by Talagrand’s type inequality with c = 1 and r = 1.360

Now, let α = ε
100 , and observe that by Lemma 5.1 we have that the median M of d−Dπ

(i) lies in
the interval (1± α)µi. Therefore, we have

Pr

[
h ≤ (

1

2
+

ε

2
)np

]
≤ Pr

[
h ≤ (1− ε

2
)E[d−Dπ

(i)]
]

and the latter can be upper bounded by

Pr
[
h ≤ (1− ε

2
)(1 + α)M

]
≤ Pr

[
h ≤ (1− ε

4
)M
]
.

Now, by Theorem 2.4 we obtain that

Pr

[
h ≤ (

1

2
+

ε

2
)np

]
≤ 2 exp

{
−(εM/4)2

16M

}
.

Next, using (again) the fact that M ∈ (1 ± α)µi and that µi = Θ(np) ≥ C log n, we can upper361

bound the above right hand side by 2 exp (−Θ(np)) ≤ n−2. Finally, in order to complete the proof,362

we take a union bound over all i ∈ V and obtain that whp δ−(Dπ) ≥ (12 + ε
2)np. □363
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