iy

© 00 N o O B~ W N

N NN NN NN B B B B R R R R R
O A W N B O © 0N O A~ W N = O

DIRAC-TYPE PROBLEM OF RAINBOW MATCHINGS AND HAMILTON
CYCLES IN RANDOM GRAPHS

ASAF FERBER, JIE HAN, AND DINGJIA MAO

ABSTRACT. Given a family of graphs G1,...,G, on the same vertex set [n], a rainbow Hamilton
cycle is a Hamilton cycle on [n] such that each G; contributes exactly one edge. We prove that
if G1,...,Gy are independent samples of G(n,p) on the same vertex set [n], then for each € > 0,
whp, every collection of spanning subgraphs H; C G;, with 6(H;) > (% + &)np, admits a rainbow
Hamilton cycle. A similar result is proved for rainbow perfect matchings in a family of n/2 graphs
on the same vertex set [n].

Our method is likely to be applicable to further problems in the rainbow setting, in particular, we
illustrate how it works for finding a rainbow perfect matching in the k-partite k-uniform hypergraph
setting.

1. INTRODUCTION

1.1. Dirac-type problems. Arguably the two most studied objects in graph theory are perfect
matchings and Hamilton cycles. A perfect matching in a graph G = (V, E) is a collection of vertex-
disjoint edges which covers V', and a Hamilton cycle is a cycle passing through all the vertices of
G. As opposed to the problem of finding a perfect matching (if one exists) in a graph G which has
efficient (polynomial-time) resolutions, the analogous problem for Hamilton cycles is listed as one
of the NP-hard problems by Karp [I4]. Therefore, as one cannot hope to find a Hamilton cycle
efficiently, it is natural to study sufficient conditions which guarantee its existence.

One of the first results of this type is the celebrated theorem by Dirac [I1], which states that every
graph on n > 3 vertices with minimum degree 5 is Hamiltonian, that is, contains a Hamilton cycle
(and in particular, if n is even, then it also contains a perfect matching). While Dirac’s theorem is
sharp in general, one would like to find sufficient conditions for sparser graphs. A natural candidate
to begin with is a typical graph sampled from the binomial random graph model G(n,p). That
is, a graph G on vertex set [n]|, where each (unordered) pair is being sampled as an edge with
probability p, independently. In 1960, Erdés and Rényi raised a question of what the threshold
probability of Hamiltonicity in random graphs is. This question attracted a lot of attention in
the past few decades. After a series of efforts by various researchers, including Korshunov [16]
and Pésa [26], the problem was finally solved by Komlés and Szemerédi [15] and independently by
Bollobés [4], who proved that if p > (log n + loglog n + w(1))/n, where w(1) tends to infinity with
n arbitrarily slowly, then the probability of the random graph G(n,p) being Hamiltonian tends
to 1 (we say such an event happens with high probability, or whp for brevity) . This result is best
possible since for p < (logn + loglogn — w(1))/n whp there are vertices of degree at most one in
G(n,p) (see, e.g. [5]). An even stronger result was given by Bollobas [4]. He showed that for the
random graph process, the hitting time for Hamiltonicity is exactly the same as the hitting time
for having minimum degree 2, that is, whp the very edge which increases the minimum degree to
2 also makes the graph Hamiltonian.
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In this paper, we take advantage of the study of the local resilience in random graphs and random
digraphs, which was first introduced by Sudakov and Vu [27]. Roughly speaking, the local resilience
is the largest proportion of edges that one can delete from every vertex in a given graph G satisfying
a property P, such that the resulting (sub)graph still satisfies P. We shall use resilience results
on perfect matchings in random bipartite graphs due to Sudakov and Vu [27] and Hamiltonicity in
random digraphs by Montgomery [22], see Lemma and Lemma respectively.

1.2. A rainbow setting. In recent years, rainbow structures in graph systems have received a lot
of attention [Il, 2, [6l [7, 8, @, 10 13, 17, I8, 19, 20l 23]. Formally, given a family of (hyper)graphs
G ={Gy,...,Gy,} defined on the same vertex set, a copy of an m-edge (hyper)graph H is called
rainbow if E(H) C U;epy, E(Gi) and |E(H) N E(G;)| =1 for every i € [m].

A rainbow version of the Dirac-type problems in systems of graphs was conjectured by Aharoni
et al.[I]: let Gy,...,G, be a system of graphs on the same vertex set V' = [n] with minimum
degree 6(G;) > n/2 for each i € [n], there exists a rainbow Hamilton cycle. Cheng, Wang and Zhao
[10] verified the conjecture asymptotically and Joos and Kim [13] proved the full conjecture. Very
recently, Bradshaw, Halasz, and Stacho [7] strengthened the result by showing that the system of
graphs actually admit exponentially many rainbow Hamilton cycles under the same assumptions.
Bradshaw [6] generalized the Dirac-type result for Hamiltonicity of bipartite graphs by Moon and
Moser [24] to the rainbow setting.

Another interesting structure to consider is the perfect matching. In the rainbow setting we are
given n/2 graphs G1, ..., G,/ on the same vertex set [n], and we are seeking for a rainbow perfect
matching, namely, a perfect matching that consists of exactly one edge from each Gj;.

In this note, we give Dirac-type results for rainbow perfect matchings and rainbow Hamilton
cycles in random graphs. Our main results read as follows.

Theorem 1.1. Lete >0 andp =w (%) where n is even. Suppose G, ..., G, 5 are independent

samples of G(n,p) on the same vertex set V. = [n|. Then, whp we have that for every spanning
subgraphs H; C G;, 1 < i < n/2, with 6(H;) > (% + e)np, the family {Ha, ..., Hy 2} admits a
rainbow perfect matching.

Theorem 1.2. Let ¢ > 0 and p = w (loi"). Suppose G1,...,G, are independent samples of

G(n,p) on the same vertex set V. = [n]. Then, whp we have that for every spanning subgraphs
H; C Gi, 1 <i<n, with 6(H;) > (% + e)np, the family {Hy, ..., H,} admits a rainbow Hamilton
cycle.

1.3. Notation. Given a graph G and X C V(G), let N(X) = J,cx N(z). For two subsets
X,Y CV(G) we define Eg(X,Y) to be the set of all edges xy € E(G) with x € X and y € Y, and
set eq(X,Y) := |E(X,Y)| (the subscript G will be omitted whenever there is no risk of confusion).
Moreover, G[X,Y] is defined by a graph with vertex set X UY and edge set Eg(X,Y). When
z € V(G), dg(x) is the degree of x in G. For a graph H, X C V(H), and a vertex v € V(H), we
define dy (v, X) = [{uv € E(H) : u € X}|. In particular, if X = {u} for some vertex u, then we
write d(v,u) := d(v,{u}).

For a graph G, we denote by §(G) as its minimum degree. For a digraph D, we denote
51(D),d~ (D) as its minimum out-degree and minimum in-degree, respectively. Moreover, let

§%(D) = min{6T(D),5(D)}.

If f(n)/g(n) — 0 as n — oo, then we say g(n) = w(f(n)) and f(n) = o(g(n)). If there exists a
constant C' for which f(n) < Cg(n) for all n, then we say f(n) = O(g(n)) and g(n) = Q(f(n)). If
f=0(g(n)) and f(n) = Q(g(n)), then we say that f(n) = O(g(n)). The random graph G(n,p)

has vertex set [n] = {1,...,n} and edges chosen independently at random with probability p.
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The random digraph D(n,p) has vertex set [n] = {1,...,n} and directed edges (u,v), which is an
ordered pair of vertices, chosen independently at random with probability p.

2. PRELIMINARY RESULTS

In this section we first present some useful tools for the proofs, and then introduce our key
auxiliary graphs and how to use them.

2.1. Chernoft’s inequalities. We will use the following well-known bound on the upper and lower
tails of the binomial distribution, which is given by Chernoff (see Appendix A in [3]).

Lemma 2.1 (Chernoff’s inequality). Let X ~ Bin(n,p) and let E[X| = p. Then
e PriX < (1—a)u| < e=@*1/2 for every a > 0;
o Pr[X > (1+a)u] < e H/3 for every 0 < a < 3/2.

Remark 2.2. Chernoff’s inequalities also hold when X is hypergeometrically distributed with mean
[
The following simple bound is also useful in our proof.

Lemma 2.3. Let X ~ Bin(m,q). Then, for all k we have

Pr[X > k] < (%)k.

Pr[X > k] < <7Z>qk < <€qu>k

as desired. (]

Proof. Indeed, note that

2.2. Talagrand-type inequality. Our main probabilistic tool is the following concentration in-
equality of McDiarmid [21].

Theorem 2.4. Given a set S of size m, we let Sym(S) denote the set of all m! permutations of S.
Let {By, ..., By} be a family of finite non-empty sets, and let Q@ = II;Sym(B;). Let m = {my,..., 7}
be a family of independent permutations, such that for i, m; € Sym(B;) is chosen uniformly at
random.

Let ¢ and r be constants, and suppose that a nonnegative real-valued function h on ) satisfies
the following conditions for each m € ).

(1) Swapping any two elements in any m; can change the value of h by at most 2c.
(2) If h(m) = s, there exists a set Tproor C ™ of size at most rs, such that h(n') > s for any
' € Q where ™ D Tproof-

Then for each t > 0 we have
2
< —t < —_ .
Pr[h < M(h(m)) —t] < 2exp ( 16rc2M>

2.3. Typical properties of graphs. In this section, we collect some useful properties of a typical
sequence of independent samples of G(n,p), which are regarded as “colors”, on the same vertex set
V = [n]. First, we show that the degrees are concentrated.

Lemma 2.5. Let ¢ >0 and let N < n?. Let G1,...,Gx be independent samples of G(n,p) on the
same vertex set V = [n]. Then, whp we have

(1—e)np <0(Ge) < A(Ge) < (1+¢€)np
holds for all ¢ € [N] provided that p = w(loi").
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Proof. Fix some vertex u € [n] and some color ¢ € [N]. Observe that dg, (u) ~ Bin(n — 1,p), and
therefore p := E[dg, (u)] = (n — 1)p. Hence, since p = w(*%8™), by Lemma [2.1| we obtain that

Pr{dg, (u) ¢ (1% e)u] < 2exp (—Zf‘) _ ( ! ) .

n3
Taking a union bound over all vertices u € [n] and all colors ¢ € [N], we conclude that
Pr[3u € [n],3c € [N] s.t. dg. (u) ¢ (1 £e)u] = o(1).
This completes the proof. ]

Next, we show that given n/2 graphs Hi,..., H,,, if we take a random equipartition of [n],
then whp the corresponding bipartite subgraphs of H; have the “correct” degrees.

Lemma 2.6. For every e > 0 there exists C := C(g) for which the following holds. Let m = n/2.
Let Hy,...,H,, be graphs on the same vertex set V. = [n], where n is a sufficiently large even
integer. Suppose that 6(H.) > Clogn for all ¢ € [m]. Then, a (1 — o(1))-fraction of the partitions
V = V1 UV, into sets of size m satisfy the following property: For every vertex uw € V and ¢ € [m)],
and fori=1,2 we have
dp, (u)

5
Proof. Consider a random partition V = V7 U Vs into sets both of size m. For some fixed vertex

u € [n] and some fixed ¢ € [m], note that dg_(u) is hypergeometrically distributed with expected

value dH#(u). Therefore, by Lemma we obtain that

di,(u,V;) € (1xe)-

2 dHC (u)

d
Pr|du, (u,V;) ¢ (1+¢)- H;“W <2e €75 /3 < e 3lorn — 9573

where the last inequality holds for a large enough C.
By applying a union bound over all possible u’s and i’s, we obtain that the probability of having
such a vertex u and an index i is at most (n?/2) - 2n~3 = n~!. This completes the proof. O

2.4. Auxiliary graphs and proof ideas. In this section we define some auxiliary graphs/digraphs
that are going to play key roles in the proofs of our main theorems.

2.4.1. Perfect matchings. Our proof uses an auxiliary bipartite graph as follows.

Definition 2.7. Let n be an even integer. Let H, ... 7H7/z/2 be bipartite graphs on the same vertex
set V. = [n], each of which has the same bipartition V. = Vi U Vo with |V1| = |Va| = n/2. By
relabeling the vertices (if necessary), we may assume Vi = [n/2]. Given a permutation w: Vi — Vi,
the auxiliary bipartite graph By := Br(Hj, ... ,HT’L/Q) 1s constructed as follows: the parts of B, are
Vi and Va; the edge set consists of all pairs (i,5) € Vi X Vo such that ij € E(H;(i)).

Remark 2.8. Observe that a perfect matching in By corresponds to a rainbow perfect matching in
the family Hy, ..., H;Z/Q. Indeed, every edge {i,j} in By with i € Vi and j € Vo corresponds to an
edge {i,j} in H;r(i), and since 7 is a permutation of Vi, a perfect matching of B, uses exactly one
edge from each H.

We also need the following result of Sudakov and Vu [27] on local resilience of perfect matchings
in random bipartite graphs, whose proof can be found in the proof of [27, Theorem 3.1]. Let V3
and Vs be disjoint vertex sets each of size n/2, where n € 2N. A random bipartite graph B(n,p)
defined on the partition V; UV5 is a bipartite graph such that given (i, 5) € Vi x Va, ij € E(B(n,p))
with probability p and all pairs ij are chosen independent of each other.

4
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Lemma 2.9 (Sudakov and Vu [27]). Let e > 0 and p = w (10g”> where n is even. Let Vi and Vs

be disjoint vertex sets each of size n/2. Then, whp a spanning subgraph H C B(n,p) defined on
Vi UV such that 5(H) > (5 + €)™ contains a perfect matching.

We first demonstrate how to use the auxiliary bipartite graph to prove the following bipartition
version of Theorem [}

n
dependent samples of B(n,p) defined on Vi U Va, each of size n/2. Then, whp we have that for
every spanning (bipartite) subgraphs H; C G;, 1 < i < n/2, with §(H;) > (3 + )", the family
{H1,...,Hy} admits a rainbow perfect matching.

Theorem 2.10. Let ¢ > 0 and p = w (k’gn) where n is even. Suppose Gi,...,G, /o are in-

Here is an outline of our proof. Given a set V of n € 2N vertices and a balanced bipartition
V = V1 U Vs, fix a permutation 7 : V3 — Vj. If we expose n/2 independent samples of B(n,p) on
Vi U Vs, denoted by G1,...,G,, 2, then we have that the bipartite graph G = Bz(G1,...,Gp)2)
defined in Definition is also a random bipartite graph.

Then, given (i,7) € V1 x V3, ij € G if and only if ij € E(Gp(;)), which happens with probability
precisely p and is independent with all other pairs in V; x V. In particular, whp G is resilient
for perfect matching — by Lemma [2.9, That is, whp every spanning subgraph H of G, with
0(H) > (% +5)% contains a perfect matching. However, once the independent samples are exposed,
there might be some “bad” permutations 7 such that there exists i € V1 satisying ij ¢ E(Gr;)) for
most j € Vs, Fortunately, we can prove that almost every 7 is not bad by Markov’s inequality. On
the other hand, we shall show that (Lemma if 7w is a uniformly random permutation of V; and
Hy, ..., H,, are graphs such that H; C G; and 0(H;) > (% + €)%, then whp the bipartite graph
Br = Br(Hj,. .., H, ) satisfies that B; C G and 0(By) > (3 +£)Z2. Therefore, by the resilience
property of G, we conclude that H; has a perfect matching, which gives rise to a rainbow perfect
matching of the family Hy,..., H, . This will prove Theorem @

To derive Theorem (1.1} it suffices to show that there is a balanced bipartition of the vertex set
such that the bipartite subgraphs of our graphs inherits the degree condition, which is proved in
Lemma,

2.4.2. Directed Hamilton cycles. For Hamiltonicity we will need to construct an auxiliary digraph
as follows.

Definition 2.11. Let Hj,..., H] be graphs on the same vertex set V = [n], Given a permutation
7w :V =V, the auziliary digraph Dy := Dr(Hj,...,H}) is constructed as follows:

V is the vertex set of D and for any vertex i,j € V, (i,j) € E(Dy) if and only if ij € E(H;r(i)).

Remark 2.12. Observe that a directed Hamilton cycle in the auziliary digraph D, corresponds to
a rainbow Hamilton cycle in the family Hi,..., H),. Indeed, a directed Hamilton cycle in Dy is a

directed Hamilton cycle in K, whose edges (i,j) belongs to distinct HT’F(Z.) since m is a permutation.

We also need the following result on local resilience of Hamiltonicity in random digraphs due to

Montgomery [22] (in fact, Montgomery proved a way stronger result but the following is enough
for our needs).

Lemma 2.13. Let € > 0. Then whp a spanning subdigraph D ~ D(n,p) defined on V = [n] such
logn)
)

that 8°(D) > (5 + €)np contains a Hamilton cycle, provided that p = w(

Similar to what we did in the previous subsection, we explain how this auxiliary digraph works.
Given a set V of n vertices, fix a permutation 7 : V' — V. If we expose n independent samples
of G(n,p) on V, denoted by G1i,..., Gy, then the digraph G, = D(G1,...,G,) defined in Defini-
tionis arandom digraph. Indeed, given (i,5) € V2, then ij € G if and only if (i, j) € E(Gr)),

5
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which happens with probability precisely p and is independent with all other pairs in V2. In par-
ticular, G, is resilient for Hamiltonicity — by Lemma [2 whp any spanning subdigraph H of
Gr with 6°(H) > (3 + £)np contains a directed Hamllton cycle. On the other hand, we shall
show that (Lemma [2.17)) if m is a uniformly random permutation of V and H,..., H, are graphs
such that H; C G; and 0(H;) > (% + ¢)np, then whp the digraph D, = D, (Hy,..., H,) satisfies
that D C G, and §(D;) > (% + 5)np. Therefore, by the resilience property of G, we conclude
that D, has a directed Hamilton cycle, which gives rise to a rainbow Hamilton cycle of the family
Hy,...,H,. This will prove Theorem

2.5. Most B;’s have large minimum degree. In this section we prove that given a balanced
partition [n] = V4 UV, and bipartite graphs H7, ..., H), with a common bipartition V3 U Va (with
m = n/2) and large minimum degrees, the resulting auxiliary graph B, also has large minimum
degree whp where 7 is a uniformly random permutation. The proof is a special case of Lemma 13
n [12], but we include it for completeness.

Lemma 2.14. Let 0 < a < % and let n € 2N be sufficiently large. Let m = n/2. Let Hy,..., H),
be bipartite graphs on the same vertex set V. = [n] with the same parts V.= Vi UV, of the same
size m, where Vi = [m]. Suppose that §*(H.) > 22 for all c € [m]. Let 7 be a uniformly random
permutation on Vi and p; = Eldp,_(i)]. Then, for every j € Va, we have

M; == M(dp,(j)) € (1 £ a)p;.

Remark 2.15. The above lemma allows us to use u; instead of M; in Theorem when it is
applied to dp_(j).

Proof. Consider B, where 7 is a uniformly random permutation on V;. Let j be some vertex in
V. Let uj = Eldp, (j)] and 0® = Var(dg, (j)). Moreover, for each i € V;, we define an indicator
random variable 1;, where 1; = 1 if {7, j} € E(H;(i)). Observe that dp, (j) = > ey, Li-

Applying Chebyshev’s inequality, we have

Prlldp, (5) = psl = apj] < ——

2

If we can show that o2 < 100 then the result follows. Indeed, with probability at least 99/100
we have that dp. (j) € (1 & o)p; and thus we conclude that the median M; also lies in this
interval. Now the remaining part is to prove the desired inequality by computing wi = Eldg, (j)]
and o2 = Var(dg, (j)).

Note that the event (1; = 1) only depends on the value of 7(i). There are m possible values in
total for (i), and exactly the colors in which ij is an edge contribute to 1. Let dp:(i,j) = 1 if
ij € E(H;), and dg(i,j) = 0 otherwise. So

S duy(ig)

m

By linearity of expectations, we have

szf; chldH/Z] ZZ,MH%] idHﬁ,;j‘

c=1

6



To compute the variance, note that for each ¢ # k in Vi, we have

NE

E[1;1;] = Pr[1; = 1y = 1|m(i) = ¢| Pr [ (i) = ]
c=1
= Zm: idH/ (4,7)Pr[lg = 1|m (i) = ]
c=1 m o
_in: 1d ( ,)Zc’fcdHé,(khj)
—C:1mHé7’7.] m— 1 .
Thus,
Var (dp, (j)) = Var (Zn) = Var(1;) + Y Cov (1;, 1)
i=1 itk
<+ Y (E[11] — E[1L]E 1))
itk
Derte A, (K, ) S dm (i, j) > =1 dur (K, j)
_MJ"‘Z(Z (4, ) m— 1 7mc mc
1#£k
1
—My+Z<<m —1) m2>ZdH’kJ ZdH’ iJ) m(m—1) ZdH'kj)dH'(Z J))
i#k d=1
SMj+W Z (ZdH/ k,j) ZdH’ Z])
i,k=1
1 2
=g M
a2 2
189 To complete the proof, first observe that we have ﬁui < 20% since m is sufﬁ(nently large. Also,
0?2
10 we have p; < —55- since p; > 20%0 by assumption. Now we obtain ¢? < 10%3 and the lemma
101 follows. U

12 Lemma 2.16. For every ¢ > 0 there exists C := C(g) for which the following holds for sufficiently
103 large m € N and p = C’hy%. Let H{,...,H], be bipartite graphs on the same vertex set V = [n]
104 with the same parts V.= Vi U Va of the same size m, where Vi = [m]. Suppose that 6*(H]) >
195 (1 +e)mp for every ¢ € [m]. Then for a uniformly random permutation m : [m] — [m], whp we
196 have §(Br) > (5 + 5)mp.

197 Proof. Consider B, where 7 is a uniformly random permutation. As 6*(H.) > (% + &)mp for
108 every ¢ € [m], it is guaranteed that for all i € V; we have that dp, (i) > (5 + c)mp. Now
199 consider some j € V5 and observe from the proof of Lemma under the same notation, that
200 =Eldg, (i)] > (3 +&)mp.

201 In order to complete the proof, we want to show that the dp_(j)’s are “highly concentrated”
202 using Theorem [2.4] To this end, let h(r) := dp, (j) and note that swapping any two elements of 7
203 can change the value of h by at most 2. Moreover, note that if h(7) = dp, (j) = s, then it is enough
204 to choose Tproof as the s indices reflected in Np_ (j). Therefore, h(m) satisfies the conditions of
205 Theorem 2.4 with c=1 and r = 1.

7
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Now, let o = 155, and observe that by Lemma we have that the median M of dp_(j) lies in
the interval (1 £ a)u;. Therefore, we have

Pr [h <G+ ;)mp} < Pr |h < (1 3)Elds, ()]

and the latter can be upper bounded by
Prih< (- %)(1 +a)M| <Pr[n<(-2)M|.
Now, by Theorem [2.4] we obtain that

1 € (eM/4)?
<(=4°% < St/
Pr [h_(2+2)mp] _2exp{ 163
Next, using (again) the fact that M € (1 &+ o)p; and that p; = ©(mp) > C'log m, we can upper
bound the above right hand side by 2 exp (—O(mp)) < n~2. Finally, in order to complete the proof,

we take a union bound over all j € V5 and obtain that whp §(Bx) > (5 + 5)mp. O

2.6. Most D,’s have large minimum degree. The following lemma says that given digraphs
Hi,...,H] with large minimum semidegrees (minimum of out-degrees and in-degrees), the re-
sulting auxiliary digraph D, also has large minimum degree whp where 7 is a uniformly random
permutation.

Lemma 2.17. For every € > 0 there exists C := C(e) for which the following holds for sufficiently
large n € N and p = Cloin. Let Hy,...,H] be graphs on the same vertex set V. = [n]. Suppose

that 6(H.) > (% + e)np for every ¢ € [n]. Then for a uniformly random permutation w:V — V,
whp we have §°(Dz) > (3 + £)np.

The proof of Lemma is very similar to that of Lemma so we leave it to the appendix.

3. PROOF OF MAIN RESULTS
We first give a proof of Theorem and use it to derive Theorem
Proof of Theorem[2.10, Let € > 0 and p > CB™  for a sufficiently large C. Let m = 2. Let

G1,...,Gpy be independent samples of B(n, p) on nVlU‘/Q. Let H. C G be any (bipartite) subrgraphs
with 6(H.) > (1/2+ ¢)mp. We wish to demonstrate that whp the family of graphs H, ..., H,, has
a rainbow perfect matching.

Now, let m be a permutation on Vj chosen uniformly at random. Therefore, Lemma (with
input graphs Hy,..., Hy,) guarantees that for almost all permutation m, H; = Br(Hy,...,Hy,) (as

defined in satisfies
(1) 6(Hz) > (5 + 5)mp.
We focus on all 7 satisfying above and condition on
Note that the bipartite graph G = Br(G1,...,G,,) is a random bipartite graph, where all pairs
in V7 x V4 are present with probability p, and independent with other pairs of vertices. Moreover,
by definition, H, is a subgraph of G;. Thus, by we have that H is a subgraph of G, with
0(Hz) > (% + §)mp. Therefore, by Lemma whp H, contains a perfect matching, which by

Remark [2.8] implies that the family Hj,..., H, whp admits a rainbow perfect matching. O
Proof of Theorem|[1.1. Let € > 0 and p > Cloin, for a sufficiently large C. Let m = 5. Let

G1,...,Gy, be independent samples of G(n,p) (on the same vertex set V' = [n]). Let H. C G,
be any subgraphs with 0(H.) > (1/2 + ¢)np. We wish to show that whp the family of graphs
Hy, ..., Hy has a rainbow perfect matching.
Observe that by Lemma [2.5] whp the family of graphs G, ..., G, satisfies
8
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(1) 1 —e)np <6(G.) < A(Ge) < (1+¢€)np for all ¢ € [m)].
For the rest of the proof, we condition on
Now, let & > 0 such that (1 — @)(1/2+¢) > 1/2 +¢/2. By Lemma [2.6] with « in place of ¢,
we obtain that most balanced bipartitions of [n] = V; U V5 satisfy the following: for every u € V;,
i =1,2, and for every ¢ € [m], we have

o, Vai) > (1 —a) - HH S (g gy (; —i—e) % > (; + ;) %.

2

Now for i € [m] and any given partition [n] = V1 UV,, we let G} := G;[V1,Va] and H := H;[Vi, V5]
be the spanning subgraphs of G; and H;, respectively, induced by the bipartition Vi U V5. Observe
that, for a given partition, all G} are independent samples of B(n,p) on V; UV,. Moreover, for most
balanced bipartitions the graphs H] C G satisfy §(H]) > (% + 5) “E. Therefore, by Theoremm
we obtain that by taking a random partition [n] = Vi U Vo, whp the family {Hy,..., H), /2} admits

a rainbow perfect matching. This completes the proof.
Now we give a proof of Theorem

Proof of Theorem[I.2 Let ¢ > 0 and p > Cloin, for a sufficiently large C. Let Gi,...,Gy, be
independent samples of G(n,p) (on the same vertex set V = [n]). Let H. C G, be any subgraphs
with §(H.) > (1/2 + €)np. We wish to show that whp the family of graphs Hi,...,H, has a
rainbow Hamilton cycle.

Similar to above, whp the family of graphs Gy, ..., G, satisfies for m = n. For the rest of
the proof, we condition on

Now, let ™ be a permutation on V' chosen uniformly at random. Therefore, Lemma (with
input graphs Hy, ..., H,) guarantees that whp D, = D, (Hy,..., H,) (as defined in tisﬁes

(¥) 8(Dy) = (3 + 5)mp.
We condition on (x).

Note that the digraph D, = D(Gq,...,G,) is a random digraph, where all pairs are present
with probability p, and independent with other pairs of vertices. Moreover, by definition, D, is a
subdigraph of D,. Therefore, by Lemma whp D! contains a Hamilton cycle, which by Remark
implies that the family Hy,..., H, whp admits a rainbow Hamilton cycle. This completes the
proof. O

4. CONCLUDING REMARKS

In this note we address the Dirac-type problems for rainbow perfect matching and Hamilton
cycle in a family of random graphs. Our method reduces the rainbow embedding problem to that
in closely related contexts with a single host graph. That is, we use appropriate auxiliary graphs
that “assemble” the family of graphs to one graph, so that the rainbow subgraph problem is reduced
to finding a single copy of the desired subgraph in this auxiliary graph. For perfect matching and
F—factorsEL the natural candidate for the auxiliary graph is the multi-partite graphs. For connected
objects such as Hamilton cycles, we show that directed graphs are helpful auxiliary graphs.

Our method is also applicable to the dense setting and to random hypergraphs. We end by the
following result for perfect matching in k-partite k-graphs. For k£ > d > 0 and a k-partite k-graph
H, let 6;(H) be the maximum integer m such that every crossinﬂ d-set in V(H) has degree at
least m. For k > d > 0, let ;4 be the smallest real number § > 0 such that for every ¢ > 0
there exists ng > 0 such that every k-partite k-graph H with n vertices in each part satisfying
§5(H) > (6 + &)n*~¢ contains a perfect matching.

LGiven graphs F' and H, an F'-factor in H is a spanning subgraph of H consisting of vertex-disjoint copies of F.
2A set is called crossing if it contains at most one vertex from each part of the partition.
9
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286
287
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324

Theorem 4.1. Given integers k > d > 0 and € > 0, there exists ng such that the following holds
for integer n > ng. Let Hy,..., H, be a family of k-partite k-graphs on the same k-partition with
n vertices in each part. Suppose 8%(H;) > (Ok.qa+ e)nt~? for every i € [n]. Then the family admits
a rainbow perfect matching.

Proof Sketch. Let V. = Vi U Vo U---U Vi be a k-partition with n vertices in each part. Given a
permutation 7 of V; = [n], define the auxiliary k-partite k-graph H, on V3 UVaU---UVj such that
a crossing k-tuple S = {a1,...,ar} with a; € V; belongs to E(Hy) if and only if S € E(Hy(q,))-
Then for a random permutation 7 of Vi, one can show that whp 6% (H,) > (85,4 + £/2)nf~9. Take
such a permutation 7 and since n is sufficiently large, 6%(H,) > (0k.q + €/2)nF~? implies that H,
contains a perfect matching M. Since M contains precisely one edge from each H;, it is a rainbow
perfect matching of the family. O

It follows from a result of Pikhurko [25] that ;4 = 1/2 for d > k/2.
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5. APPENDIX: PROOF OF LEMMA
In this section, we finish the proof of Lemma which we omitted in Section 3.

Lemma 5.1. Let 0 < a < % and let n € N be sufficiently large. Let H],..., H] be graphs on the
same verter set V = [n]. Suppose that ¢ (H.) > %.?—20 for all ¢ € [n], Let m be a uniform random
permutation on'V and p; = E [dl_)w (z)] Then, for every i € V, we have

M; == M(dp, (i) € (1+ @) pi.

Remark 5.2. The above lemma allows us to use u; instead of M; in Theorem@ when it is applied
to dp, ().
Proof. Consider D, where 7 is a uniformly random permutation on V. Let i be some vertex in V.
Let p; = E [dar (i)] and o2 = Var(dp, (i)). Moreover, for each j € V, we define a random variable
1;, where 1; = 1if {3, j} € E(H;r(i)). Observe that dp, (i) = >_,cy 1
Applying Chebyshev’s inequality, we have
o2

Pr[|dl_)7,(i) — pi| = api] < O[TH?

< Tt
have that dp, (i) € (1 + a)u; and thus we conclude that the medlan M; also lies in this interval.

Now the remaining part is to prove the desired inequality by computing x; = E[d}, ()] and o’ =
Var(dp, (i)).

Note that the event (1; = 1) only depends on the value of 7(i). There are n possible values in
total for 7 (i), and exactly all of the colors in which 7j is an edge contributes to 1. Let dy:(i,7) = 1
if ij € E(H/), and dp:(i,7) = 0 otherwise. So

ZZ:I dHé (i’ j)

n

Pr[]lj = 1] =

By linearity of expectations, we have

_SE[ ch_ 1dm (4, 7) ZZJ 1dH’ZJ :nng
—1

n
c=1 c=1

To compute the variance, note that for each j # k in V', we have

E[1;1;] = ZPr]—ﬂk—lh() o Prir(i) = ]

= Z 5dHé(i,j) Pr[l; = 1|7 (i) = ]

c=1
Z /;écdH/ (k Z)

_Z 4 n—1
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Thus,

Var(dp, (i) = Var(d_1;) = Var(1;) + Y _ Cov(l;, 1)
Jj=1 j=1 Jj#k
< pi+ Y (B[] — E[1;]E[1,])
J#k

c;éc’ dH’ (k Z) Zn dy: (7/ ]) ZZ’—I dH;/ (k7 Il))

_MZ+Z<Z dH,ZJ n—1 B CZlnc ’ - n

j#k =1
1
_NZ+Z<nn_1 ZdH/k] ZdH/ Z] ( ZdH’kZ)dH'(ZJ))
J#k
SMJFW Z (ZdH’ (k.1 ZdH' g J)
jk=1 c=1 d=1
1
= Wi + mﬂ?
2,2
To complete the proof, first observe that we have —1 p2 < 20’;}' since n is sufficiently large. Also,
2,2 2,2
we have p; < Wlf)i since p; > % by assumption. Now we obtain o2 < aw’éi and the lemma
follows. O

Proof of Lemma[2.17. Consider D, where 7 is a uniformly random permutation on V = [n].
As §(H]) > (5+¢)np for every ¢ € [n] by assumption, it is guaranteed that for all i € V
we have that 07 (Dz) > (3 +¢)np. So it suffices to prove that 6~ (Dy) > (3 +¢)np. Now
consider some ¢ € V and observe from the proof of Lemma under the same notation, that
wi:=E [di (i)] = (l + &) np

In order to complete the proof we want to show that the dp, ( )’s are "highly concentrated’ using
Theorem [2.4} To this end, let h(7) := d, (i) and note that swapping any two elements of 7 can
change the Value of h by at most 2. Moreover, note that if h(m) = d, (i) = s, then it is enough to
choose Tpro0f as the s indices reflected in N ( ) . Therefore, h(m) satisfies the conditions outlined
by Talagrand’s type inequality with ¢ =1 and r=1.

Now, let o = and observe that by Lemma . we have that the median M of dj, (i) lies in

1007
the interval (1 + a)p;. Therefore, we have
1 € €
< (=42 < < (1 =\Eld (i
r [h <(5+ 2)”20] <Pr [h < (1-3)E[dp, (Z)]}
and the latter can be upper bounded by
€ €
<(1-< < <(1—)M|.
Pr [h <(1-3)0 +a)M} < Pr [h <1 4)M}

Now, by Theorem [2.4] we obtain that

1
r [h < (5 + ;)np} < 2eXp{—

Next, using (again) the fact that M € (1 £ a)u; and that u; = O(np) > Clogn, we can upper

bound the above right hand side by 2exp (—©(np)) < n~2. Finally, in order to complete the proof,

we take a union bound over all i € V and obtain that whp 6~ (Dx) > (3 + 5)np. O
12
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