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Recent studies suggest that neurons in sensorimotor circuits
involved in perceptual decision-making also play a role in decision
confidence. In these studies, confidence is often considered to be
an optimal readout of the probability that a decision is correct.
However, the information leading to decision accuracy and the
report of confidence often covaried, leaving open the possibility
that there are actually two dissociable signal types in the brain:
signals that correlate with decision accuracy (optimal confidence)
and signals that correlate with subjects’ behavioral reports of con-
fidence (subjective confidence). We recorded neuronal activity
from a sensorimotor decision area, the superior colliculus (SC) of
monkeys, while they performed two different tasks. In our first
task, decision accuracy and confidence covaried, as in previous
studies. In our second task, we implemented a motion discrimina-
tion task with stimuli that were matched for decision accuracy but
produced different levels of confidence, as reflected by behavioral
reports. We used a multivariate decoder to predict monkeys’
choices from neuronal population activity. As in previous studies
on perceptual decision-making mechanisms, we found that neuro-
nal decoding performance increased as decision accuracy increased.
However, when decision accuracy was matched, performance of
the decoder was similar between high and low subjective confi-
dence conditions. These results show that the SC likely signals
optimal decision confidence similar to previously reported corti-
cal mechanisms, but is unlikely to play a critical role in subjec-
tive confidence. The results also motivate future investigations
to determine where in the brain signals related to subjective
confidence reside.
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When we view the world, our experience often includes an
assessment of how confident we are in our perceptual

decisions. For example, when driving on a foggy morning, there
are moments when we can readily identify elements in our sur-
roundings, and other moments when we are less sure about what
lies ahead. Survival in any dynamic environment depends on
being able to accurately assess how reliable our perceptions and
decisions are in a given instance. Here, we ask: How is this
subjective sense of confidence in our perceptual decisions rep-
resented in the brain?
Work in awake macaques reveals neuronal correlates of con-

fidence in sensorimotor circuits involved in decision-making and
action generation, such as the lateral intraparietal area (LIP) (1)
and the supplementary eye fields (SEFs) (2). One pioneering
study of the neurophysiological underpinnings of confidence
employed an “opt-out” perceptual decision-making task (1). In
this task, monkeys made decisions about the primary direction of
motion in random dot displays and reported those decisions by
making a saccade to one of two targets located in the visual field
that corresponded to the dominant dot motion directions (right
or left). On some trials, an opt-out option appeared orthogonal

to the other targets and was associated with a smaller, but
guaranteed, reward; choosing the opt-out option indicates less
confidence in the decision (3–6). In this task, neurons recorded
from area LIP discharged with the highest rates when monkeys
correctly chose targets associated with motion toward the re-
sponse field (RF) and discharged with the lowest rates for cor-
rect, opposite RF choices (1). When monkeys chose to opt out,
LIP neurons discharged at intermediate levels; these results were
interpreted in support of the idea that LIP neurons encode a
signal of decision confidence.
An issue arising from this LIP study and most other previous

studies of confidence is that decision accuracy and confidence
covary. That is, since subjects are usually more confident when
they perform better on a given task, purported neuronal corre-
lates of confidence may signal decision accuracy rather than
subjective confidence per se. To make progress, two contribu-
tions may be needed: (i) a distinction between different notions
of confidence, and (ii) a paradigm that dissociates subjective
confidence and accuracy. Here, we address both needs.
First, according to one influential theoretical framework (7),

confidence can be defined as the probability that a perceptual
decision is correct, and this probability can be formalized by
using signal detection theory (SDT) (8–11). For example, in
thinking about the dot motion task within this framework, one
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can assume there is a binary variable “s” governing the true state
of the world; s = “−1” or “+1” depending on whether the motion
was primarily to the left (“L”) or right (“R”). On each trial, the
subject makes a noisy measurement “m” from the distribution
P(mjs) —i.e., the distribution over the sensory measurement
given the L or R stimulus (reflecting noise in the stimulus itself
as well as in the sensory system). Confidence can then be defined
as the distance between the measurement m and the decision
boundary used to judge whether the dominant dot motion was to
the left or right, which will monotonically reflect the probability
or frequency that the decision made is correct (12). In other
words, in this framework, confidence and accuracy are always
correlated: As the distance from the measurement to the de-
cision boundary increases, so will decision accuracy.
However, as has been noted (7), observers’ confidence judg-

ments do not always correlate with task performance (13–17).
Thus, a distinction must be made between a type of confidence
that correlates with task accuracy, and a type of confidence that
does not. We introduce the terms “optimal confidence” and
“subjective confidence” to refer to these two types of confidence,
respectively. Optimal confidence refers to the above SDT-based
definition, in which an ideal observer’s confidence always
monotonically tracks the accuracy of decisions. It is optimal in
the sense that a subject making opt-out decisions based on op-
timal confidence will be able to maximize reward. Because op-
timal confidence always correlates with task accuracy, a neuronal
correlate of optimal confidence can be found in population-level
activity that effectively distinguishes between conditions yielding
different levels of accuracy in a task.
On the other hand, subjective confidence is an actual (i.e., not

necessarily ideal) observer’s internal belief about a perceptual
decision, which is potentially prone to error. In SDT terms, this
form of confidence depends not strictly on the distance from the
sensory measurement to the decision boundary, but on the dis-
tance from the measurement to specific confidence criteria (see
Fig. S1, which provides a formulation of the two types of confi-
dence in terms of SDT), which may be arbitrarily placed based
on some kind of heuristic. Subjective confidence can be indexed
by behavioral reports which may or may not track decision ac-
curacy perfectly. Because behavioral reports of confidence tend
to track optimal confidence at least to some extent, isolating a
true neuronal signal of subjective confidence can be difficult.
However, this can be facilitated by paradigms that match de-
cision accuracy across conditions, yet yield different behavioral
reports about confidence. In this situation, a neuronal correlate
of subjective confidence can be found in neuronal activity that
tracks the behavioral reports of varying degrees of confidence,
amid constant decision accuracy.
Recent work indicates that it is possible to dissociate the ca-

pacity to perform perceptual tasks from confidence reports by
chemically inactivating the pulvinar (18) or orbitofrontal cortex
(19), or psychophysically in humans (20–22). Therefore, we
reasoned that we could develop visual stimuli that would lead to
similar decision accuracy (and therefore, similar levels of optimal
confidence), but yield different levels of confidence as measured
by behavioral reports on individual trials (i.e., subjective confi-
dence). Creation of these stimuli would allow us to investigate
the neuronal mechanisms of confidence by determining whether
activity in a given area signals optimal confidence, subjective
confidence, or both (Fig. S1).
Therefore, in this study, monkeys performed two sets of ex-

periments. The first was an opt-out task in which decision ac-
curacy covaried with confidence similar to that performed
previously for recordings in LIP (1), allowing us to search for
neural correlates of optimal confidence. In the second experi-
ment, building on innovative psychophysical work done in hu-
mans (20–23), we introduced a version of the dot-motion
direction discrimination task in which we dissociated reports of

confidence from decision accuracy on individual trials. Using this
task, we were able to successfully match decision accuracy [as
defined by the SDT measure d′ (8–10)], but produce different
levels of confidence (defined as the probability of selecting the
opt-out target when it was available), so that we could investigate
the neuronal correlates of subjective confidence.
As monkeys performed these tasks, we recorded from multiple

neurons simultaneously in the superior colliculus (colliculus), a
subcortical structure that receives input from LIP and SEF and is
involved in decision-making (24–30). We combined these be-
havioral paradigms and multineuron recordings with a machine
learning approach (31) to decode population-level activity from
hundreds of neurons recorded from the colliculus. We found that
in the first task, a population decoder distinguished between
high- and low-confidence trials in much the same way as LIP (1),
providing strong evidence that the colliculus contributes to
decision-making and optimal confidence in a manner similar to
LIP. However, in our task in which visual stimuli were matched
for sensitivity (d′) but resulted in different reports of confidence,
population-level activity in the colliculus failed to distinguish
between conditions with different degrees of subjective confi-
dence. Together, these findings support the hypothesis that the
colliculus signals optimal confidence in dot-motion discrimina-
tion tasks, rather than subjective confidence. These results also
reveal important considerations for the interpretation of existing
data on decision-making confidence in other brain regions, too.

Results
We used a multivariate decoding approach to assess population-
level representations of perceptual decisions and confidence in
the superior colliculus using random dot-motion discrimination
tasks. We had two aims. Our first aim was to determine whether
activity measured in the colliculus was similar to that observed
previously in area LIP during performance of a confidence task
(1). Our second aim was to arbitrate between two competing
hypotheses: that neuronal activity in the colliculus primarily
signals optimal confidence, as signals about confidence may
correlate with decision accuracy, or, alternatively, that activity in
the colliculus signals subjective confidence, as neuronal signals
may differentiate between conditions where d′ is matched, but
confidence reports vary. We focus here on results obtained from
a population decoding method.
We recorded neuronal activity in the colliculus using V-probe

laminar electrodes containing 16 recording contacts (Methods).
We measured both single-neuron and multineuron activity while
monkeys performed a dot-motion discrimination task (Fig. 1 A
and B). Each trial began when the animal established fixation on a
central dot. Then, either two or four choice targets appeared for
500 ms. After this delay, the dot motion stimulus appeared at the
center of the screen for 200 ms. When the motion stimulus dis-
appeared, a delay period, selected randomly from between
500 and 600 ms, ensued. The fixation dot then disappeared, and
monkeys indicated their motion direction decision by making a
saccade to one of the choice targets, and they received a reward
(sip of juice) for correct decisions. Importantly, on some trials
there was an opt-out option. Choosing this target bypassed the
motion discrimination question and led to a guaranteed, but
smaller, reward compared with that received for correct decisions.
On trials when the opt-out option was available (Fig. 1B), we

also included a fourth choice option which was opposite in lo-
cation to the opt-out location to control for possible lateral in-
teractions (see Methods for details). The fourth option never led
to reward and was rarely chosen (∼6.3% of all trials in stimulus-
matched sessions). For each session, at least one of the choice
targets appeared in the RF of at least one neuron recorded from
the 16 contacts (black circle, Fig. 1A). The two trial types with
(Fig. 1B) and without (Fig. 1A) the opt-out option available were
randomly interleaved; because the properties of the random

Odegaard et al. PNAS | Published online January 30, 2018 | E1589

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S

D
ow

nl
oa

de
d 

at
 S

C
IE

N
C

E
 L

IB
R

A
R

Y
 S

E
R

IA
LS

 o
n 

O
ct

ob
er

 2
3,

 2
02

0 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711628115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711628115/-/DCSupplemental


dot-motion stimulus were identical between these trial types,
we call these “stimulus-matched” sessions.
We reasoned that choices made with the opt-out unavailable

occurred with a mix of high and low confidence, as monkeys were
forced to choose one of the two targets. In trials with the opt-out
option available, monkeys could report their level of confidence:
Trials in which monkeys chose the opt-out target indicated low
confidence, whereas trials in which monkeys waived the opt-out
option and chose one of the targets corresponding to a direction
of motion instead indicated high confidence (1, 3–5). Fig. 1 C
and D show the behavior measured in trials with and without the
opt-out option available. The probability of selecting the opt-out
option, when available, decreased as a function of motion co-
herence, consistent with higher confidence on higher motion
coherence trials (all t tests between conditions P < 0.05,
Bonferroni corrected; Fig. 1C). Comparing trials in which the
opt-out option was available and unavailable showed that at in-
termediate motion strengths, monkeys had a higher probability
of being correct when the opt-out option was available and
waived compared with when it was unavailable, indicating higher
confidence (Fig. 1D).

To determine if neuronal ensemble activity in the colliculus
correlates with optimal confidence, we used multivariate classi-
fiers to evaluate how population-level activity emerged over time
as monkeys made decisions in the opt-out available and un-
available trials. Previous work showed that LIP discharge rates
differed when a correct choice was reported by making a saccade
toward the target in the RF (target-in, or “Tin”) or away from
the RF (target-out, or “Tout”) (1). Here, we used a similar ap-
proach by evaluating the classifier’s ability to predict correct Tin
and Tout choices with the opt-out choice available (but waived)
and unavailable.
First, we assessed the area under the ROC curve (AUC) for

the classifier (Methods) to evaluate the degree to which
population-level activity in the colliculus may be informative for
trial-by-trial predictions of particular behavioral responses (e.g.,
Tin vs. Tout choices). This provided us with a measure of how
effectively neuronal population activity discriminated between
specific perceptual decisions. We focused on a comparison be-
tween the opt-out waived and the opt-out unavailable conditions,
because, in both conditions, the motoric behavior is similar (i.e.,
the monkeys made saccades to choose one of the options to

Fig. 1. Stimulus-matched assessment of decision confidence in monkeys. (A and B) The behavioral task showing a trial in which the opt-out option was
unavailable (A) and available (B). The trial types shown in A and B were randomly interleaved in each of the 19 stimulus-matched sessions. The red dot shows
the fixation point, the gray dots show the possible choice targets, and the green dot shows the opt-out option. The black circle shows the RF. (C) The
probability of choosing the opt-out option on trials when it was available (shown in B) is plotted as a function of motion coherence. Circles show means across
sessions, and bars show SEM across sessions. Note that monkeys chose the opt-out option more often when motion coherence was low, indicating they were
less confident about the motion direction decision. The number of trials making up this dataset is 14,642, as it includes all trials where the opt-out was
offered. (D) The probability of correct choices is plotted against motion coherence for two monkeys using the same set of data as in C, but now plotting trials
where an explicit decision about the motion direction was made (i.e., including trials with the opt-out unavailable, and excluding aborted trials, trials where
the opt-out was selected, and trials where the lateral inhibition target was selected). The number of trials making up this dataset is 13,346. Circles show means
across sessions, and bars show SEM. Gray filled circles show data when the opt-out option was available but waived (trials shown in B), and open circles show
data when the opt-out option was unavailable (trials shown in A). Decision accuracy is higher for intermediate motion strengths when the opt-out target was
available but waived, presumably reflecting higher confidence (t tests, Bonferroni corrected). *P < 0.01; **P < 0.001.
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reflect a perceptual decision rather than the opt-out option), and
yet optimal confidence is expected to be higher in the opt-out
waived condition; higher confidence and expected accuracy
presumably cause the monkeys to waive the opt-out option when
it is available.
Fig. 2 shows that neuronal activity in the colliculus signals

correct Tin and Tout choices and that decoder performance
(based on average performance on test sets using fivefold cross-
validation) is higher when the opt-out option is available but
waived. Here, we show the combined results across sessions for
two monkeys, but we note that the decoding performance for
both monkeys in this task was quite similar (Figs. S2 and S3). Fig.
2A shows that neuronal activity more accurately discriminates
correct Tin choices vs. correct Tout choices when the opt-out
choice was available but waived, compared with trials where
opt-out was unavailable [t tests for all time windows >230 ms
after motion onset in Fig. 2 A, Center, t(18) > 2.8, P < 0.05].
Following previous research (1), we interpreted this as evidence
that the information contained in the neuronal population ac-
tivity signals optimal confidence, as the population activity cor-
relates with the differences in decision accuracy across these two
conditions. To control for multiple comparisons throughout the
entire motion onset period, we used the false discovery rate

(FDR) method (32) to evaluate significance at each time point.
With a FDR of 0.01, while four time windows between 100 and
230 ms were marginally significant, all time windows >230 ms
after motion onset were highly significant. We also performed
further analyses to verify that decoding performance was not just
driven by a few single neurons containing strong decision-related
activity (as have been identified previously in the colliculus) and
that population-level analyses added information over and above
what single units can indicate (Fig. S4).
We also computed the posterior probabilities for trial-by-trial

predictions made by the classifier. Roughly, following previous
studies, these probabilities are interpreted as reflecting the
strength of the internal decision evidence available to the animal
(29–31). We sorted the classifier’s predictions by trial type over
time (Fig. 2B). Similar to what was shown by using the AUC
metric, differences between the posterior probabilities between
Tin and Tout correct choices were significantly greater for the opt-
out waived trials starting ∼230 ms after motion onset [all time
windows >230 ms after motion onset in Fig. 2 B, Center, t(18) >
2.8, P < 0.05].
While the results from decoding Tin vs. Tout correct trials as a

function of opt-out availability provide evidence to show that
colliculus activity reflects perceptual decisions and their accu-
racy, does it reflect confidence behavior in any way for it to
warrant the label optimal confidence? As shown in Fig. S5, the
absolute magnitude of the strength of this signal decoded from
neuronal populations in the colliculus was indeed correlated with
actual opt-out rates. However, the relatively small magnitude of
this effect suggests that the full story about confidence behavior
may be more complicated.
The results described above provide evidence that the neu-

ronal activity in the colliculus contains information about
decision-making and decision confidence in much the same way
as reported for area LIP (1). However, as noted, the task design
used for both the colliculus and the LIP experiments leaves open
the possible interpretation that the activity signals decision ac-
curacy (and optimal confidence) rather than subjective confi-
dence, since monkeys also performed better on the opt-out
waived trials than on the opt-out unavailable trials. Therefore,
we created a version of the dot-motion discrimination task in
which decision accuracy was matched while confidence varied by
manipulating the ratio of “positive evidence” (the amount of
motion evidence toward the correct choice) to “negative evi-
dence” (the amount of motion evidence toward the incorrect
choice). Previous work showed that, while decision accuracy
depends on the ratio of positive to negative evidence, subjective
confidence depends on the overall magnitude of positive evi-
dence (20–23). Thus, we presented monkeys with trials con-
taining different ratios of positive and negative evidence to
match decision accuracy (defined as perceptual sensitivity, or d′;
Methods) across two conditions (Fig. 3A) while attaining differ-
ent levels of subjective confidence, as measured by their reports
of confidence by choosing to opt out or not.
Fig. 3B shows that this manipulation yielded statistically sim-

ilar levels of decision sensitivity as measured by d′ (sign test, z =
0.83, P = 0.40), but different degrees of confidence, as indicated
by the percentage of trials in which monkeys chose to opt out
(sign test, z = −4.59, P < 10−5). In this new behavioral task, trials
with and without the opt-out option were randomly interleaved,
allowing us to compute d′ from trials without the opt-out
(demonstrating that performance is adequately matched with
these stimuli), while evaluating possible differences in subjective
confidence from the proportion of trials in which the opt-out was
selected when it was available. Data from individual sessions is
shown in Fig. S6.
With this new task, we evaluated whether the same Tin vs. Tout

decision-related activity differed between the two “sensitivity-
matched” condition types (high positive evidence vs. low positive

Fig. 2. Decoding perceptual decisions made with different levels of confi-
dence for the same motion stimuli (stimulus-matched). We trained and
tested a decoding model using a 100-ms sliding window (step size = 10 ms)
beginning 50 ms before the choice targets appeared through 200 ms after
the choice report, to predict whether a given correct trial involved a choice
in the RF (Tin) or outside of the RF (Tout). A total of 354 collicular neurons
were used in this analysis, but the decoder was run independently by using
fivefold cross-validation on data from each session (which included 9–26 si-
multaneously recorded neurons;Methods). Left is aligned to the onset of the
choice targets, indicated by the dashed vertical line and upward arrow.
Center is aligned to the onset of the motion stimulus, and Right is aligned to
the onset of the saccade. Each data point represents classification perfor-
mance of the midpoint of a given 100-ms time window (from 50 ms before
to 50 ms after); smoothed data using a five-point moving average are rep-
resented. (A) Mean (thin solid lines) and SEM (shaded areas) classifier per-
formance across sessions shown as the AUC plotted against time for opt-out
waived and opt-out unavailable conditions. The ability of the classifier to
predict a correct Tin or Tout choice was better on trials in which the opt-out
option was available but waived (blue) and monkeys were more confident,
compared with when the opt-out option was unavailable (green) and
monkeys had a mix of higher and lower confidence in their decisions. (B)
Similar to A, but plotting the average posterior probability over time. The y
axis is the posterior probability of predicting that a given trial contains a
correct Tin choice. This analysis is similar to the “decision variable” used in a
previous study (31) and provides an estimate of the strength of the classi-
fier’s predictions.
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evidence); that is, whether it passes the test to be considered a
neural correlate of subjective confidence. Fig. 4 shows the
decoding results for the sensitivity-matched task. The neurons
recorded in each of the sensitivity-matched sessions used in this
decoding analysis were different from the neurons used in
decoding the stimulus-matched sessions. While trials with and
without the opt-out were randomly interleaved in the sensitivity-
matched sessions, we focused our initial decoding analyses solely
on the opt-out unavailable trials, excluding opt-out waived trials
(Fig. 4). This was to ensure that, should the decoder identify a
difference between the two conditions, this difference would not
be driven by a sheer difference in internal perceptual response,
as the difference in decision criteria for opt-out behavior be-
tween the high and low positive evidence conditions means that
opt-out waived trials will be more frequent in the high positive
evidence condition, and as such, the average internal response
strength will not be matched between the conditions (Fig. S1).
Following motion onset, the decoder performance was statis-

tically indistinguishable for both the high positive evidence
(higher confidence) and low positive evidence (lower confi-
dence) conditions for nearly all time points [59 of 65, t tests,
t(22) < 2.1, P > 0.05]. Importantly, by using a FDR of 0.01 to
correct for multiple comparisons, none of the time windows
reached significance. We observed a similar pattern when com-
paring the posterior probabilities for the high- and low-
confidence trials from the sensitivity-matched task (Fig. 4B).
The temporal evolution of the strength of the predictions pro-
duced by the classifier was statistically indistinguishable for al-
most all time points [59 of 65, t tests, t(22) < 2.1 P > 0.05], and by
using the FDR method to account for false positives, no signif-
icant differences were found for any of the time windows fol-
lowing motion onset.
To further assess whether there were distinct signals for sub-

jective confidence in the activity of colliculus neurons, we per-
formed a cross-generalization analysis. Although the magnitude
of decodability between Tin and Tout choices was similar between
the high and low positive evidence conditions, it was possible that
the difference in confidence was reflected by different neurons

contributing to this same level of decodability. In that case, some
neurons would have still meaningfully reflected the different
levels of subjective confidence. If that were true, the perfor-
mance of a classifier that was trained on trials from the high
positive evidence condition and tested on trials from the low
positive evidence condition (or vice versa) should have been
reduced compared with the performance of classifiers trained
and tested within the same condition. That is, if we observed that
information was substantially lost through the cross-generalization
process, it would have provided evidence for distinct neuronal
signals for high and low confidence. Fig. 5 shows the performance
of a classifier trained on trials from the high positive evidence
condition and tested on trials from the low positive evidence
condition as measured by the AUC and posterior probability. This
classifier showed similar performance to classifiers trained and
tested on trials from a single condition [one-way ANOVA, 64 of
65 time windows following motion onset, F(66) < 1, P > 0.05]; the
ability to decode was roughly equivalent across the two conditions,
and a comparison between training on low positive evidence
and testing on high positive evidence yielded statistically
indistinguishable results.
Taken together, with differences in population neuronal ac-

tivity in the colliculus during a stimulus-matched confidence task
(Fig. 2) but similarity across conditions in a sensitivity-matched
confidence task (Figs. 4 and 5), these results provide evidence
that colliculus activity likely reflects optimal confidence and not
subjective confidence per se.
Although our decoding results suggest that, at the population

level, collicular activity discriminates different perceptual deci-
sions at similar levels for the high- and low-confidence conditions
when sensitivity is matched, there may still be individual neurons
that reflect subjective confidence in other ways. To investigate
this possibility, we computed a normalized “discriminability in-
dex” (Methods) to determine how effectively individual neurons
could discriminate between Tin and Tout choices as a function of
confidence in the sensitivity-matched task, which included condi-
tions that varied in terms of positive evidence level (high vs. low),
as well as conditions that varied in terms of opt-out availability,

Fig. 3. A task for dissociating sensitivity and confidence (sensitivity-matched). (A) By manipulating the ratio of positive evidence (dot motion toward the
correct decision; dark gray rightward arrows) to negative evidence (motion incompatible with the correct decision; light gray leftward arrows), it is possible to
match sensitivity across two conditions, as measured by d′, but achieve different levels of confidence, as indexed by the proportion of trials the monkeys chose
to opt out. Shown here is a representative example of two conditions that could achieve this result; please note that random dot motion is also included in
these conditions, and the exact ratio of positive to negative evidence varied slightly in each session, but the overall number of dots remained constant
(Methods). The sequence of events for this paradigm was identical to the stimulus-matched paradigm described in Fig. 1, but we refer to this task as
sensitivity-matched. (B) d′ and the percentage of opt-out choices (when the opt-out was available and was selected) are plotted for high and low positive
evidence conditions. Across 23 behavioral sessions from two monkeys, the results show statistically indistinguishable sensitivity (light gray bars) between high
and low positive evidence conditions (10,197 trials in the d′ analysis), but different percentages of opt-out choices (16,471 trials in the opt-out response
analysis; dark gray bars). ***P < 10−5; n.s., not significant. Bars show averages across sessions, and error bars are SEM.

E1592 | www.pnas.org/cgi/doi/10.1073/pnas.1711628115 Odegaard et al.

D
ow

nl
oa

de
d 

at
 S

C
IE

N
C

E
 L

IB
R

A
R

Y
 S

E
R

IA
LS

 o
n 

O
ct

ob
er

 2
3,

 2
02

0 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711628115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1711628115


like in the original task (available vs. unavailable). For a neuron to
signal subjective confidence, it should show greater discrimina-
bility of Tin vs. Tout choices, not only on trials in which the opt-out
choice was available but waived (compared with when it was un-
available), but also on trials from the high positive evidence con-
dition; put simply, neurons that care about optimal confidence as
defined by opt-out availability should also care about subjective
confidence based on evidence ratios if activity signals sub-
jective confidence at all. Including both of these condition types in
the sensitivity-matched task allowed us to assess this.
The discriminability index ranges from −1 to +1. In the opt-

out available and unavailable conditions (the stimulus-matched
conditions), neurons that maximally discriminate Tin and Tout
when the opt-out is available but waived have a value of +1;
neurons that maximally discriminate Tin and Tout when the opt-
out is unavailable have a value of −1. In the sensitivity-matched
conditions, neurons that maximally discriminate Tin and Tout in
the high positive evidence condition have a value of +1, whereas
neurons that maximally discriminate Tin and Tout in the low positive
evidence condition have a value of −1. Neurons with values near
1 on both discriminability indices are neurons that signal confidence.
In line with the decoding results obtained for the original

stimulus-matched task, which only included two conditions that
varied in terms of opt-out availability, we found a significant
number of neurons with higher discriminability indices when
monkeys waived the opt-out choice vs. when the opt-out choice
was unavailable (sign rank test, z = 13.87, P < 10−42). For the
sensitivity-matched conditions, however, discriminability indices
regarding capacities as a function of evidence level were dis-
tributed symmetrically around 0 (sign rank test, z = −0.78, P =

0.44), indicating a lack of a significant number of neurons that
discriminated choices more effectively in the high positive evi-
dence trials. Fig. S7A shows histograms of the discriminability
indices for neurons recorded in sensitivity-matched sessions.
Because there were some collicular neurons that gave the ap-

pearance of signaling confidence based on their discriminability
index (Fig. S7A), we also analyzed neurons with discriminability
indices >0 on both measures, to determine if this ability to dis-
criminate Tin and Tout choices was stable across different trials.
We divided each session’s dataset into “odd” and “even” trials and
computed two discriminability indices; one for odd trials and one
for even trials for each neuron. If a neuron signals subjective
confidence, it should do so for all trials and should do so consis-
tently. If, however, the signal is inconsistent across trials, it is
unlikely to provide a signal that is usable by the brain; the odd–
even index assesses this. Fig. S8A shows the possible confidence
neurons—those falling in the upper right quadrant when the dis-
criminability index for the stimulus- and sensitivity-matched con-
ditions were computed from odd trials only. By computing these
same two discriminability indices for the same neurons from even
trials (Fig. S8 B and C), it became clear that while neurons were
stable in their increased capacity to discriminate Tin and Tout as a
function of opt-out availability (sign rank test, z = 9.82, P < 10−23),
they were not stable in their capacity to discriminate these trial
types in sensitivity-matched conditions (sign rank test, z = 0.29,
P = 0.76). Thus, consistent with the population-level analysis,
collicular activity appears better explained by optimal confi-
dence than subjective confidence.
We also assessed whether subjective confidence might be

encoded in the colliculus in other ways, beyond what is reflected
by the ability to distinguish between correct Tin and Tout choices.
To that end, we analyzed whether we could effectively decode the
probability of opting out in the high and low positive evidence
conditions in our sensitivity-matched task. Specifically, in decod-
ing trials when the monkeys chose one of the rewarded targets
(both correct and incorrect trials) compared with trials when the

Fig. 5. Generalization analysis reveals little evidence for subjective confidence
signals in the superior colliculus. (A) The mean classifier performance as AUC
plotted against time in seconds. Data are the same as in Fig. 4, with the addition
of results from a linear classifier trained on trials from the high positive evidence
condition (HPE; high confidence) and tested on trials from the low positive ev-
idence condition (LPE; low confidence), shown in red. Lines show averages, and
shaded areas show SEM. (B) The mean posterior probability for Tin and Tout
choices plotted against time in seconds. Tin indicates correct trials in which the
monkeys made a saccade toward the choice targets in the RF, and Tout indicates
correct trials in which the monkeys made saccades toward choice targets out-
side of the RF.

Fig. 4. Decoding perceptual decisions made with different levels of confi-
dence and the same level of sensitivity. We trained and tested a decoding
model using a 100-ms sliding window (step size = 10 ms) beginning 50 ms
before the choice targets appeared through 200 ms after the choice report, to
predict whether a given correct trial included a saccade toward the choice
target in the RF (Tin) or outside of the RF (Tout). The data are from the sensitivity-
matched task shown in Fig. 3 and contain 6,910 trials from 421 neurons from
two monkeys (23 total sessions). The decoder was run separately on neurons
from each recording session. Each data point represents the classification per-
formance of the midpoint of a given 100-ms time window (from 50 ms before
to 50 ms after); smoothed data using a five-point moving average are repre-
sented. (A) The mean classifier performance as AUC plotted against time in
seconds. (B) The mean posterior probability for Tin and Tout choices plotted
against time in seconds; the y axis reflects the posterior probability that a given
trial contains a correct Tin choice. The blue lines and shaded areas show the
mean and SEM from the high positive evidence (HPE) condition (high confi-
dence), and the green lines and shaded areas show the mean and SEM from the
low positive evidence (LPE) condition (low confidence).
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monkeys made the decision to opt out, we could evaluate whether
this comparison could effectively discriminate between the high
and low positive evidence conditions, which produced different
levels of subjective confidence. Since the purpose here is to ac-
tually predict opt-out rate, in this analysis, we only included trials
where the opt-out option was available. Importantly, to make sure
the neuronal activity reflected the decision to opt out rather than
just the motoric signal for saccade toward the opt-out option, the
neurons included here never had the opt-out option presented in
their RFs. As shown in Fig. S9, this analysis showed that our
decoder performed similarly in both the high and low positive
evidence conditions, as both the AUC [64 of 65 time windows
following motion onset, t(22) < 2.1, P > 0.05] and posterior
probability [all time windows following motion onset, t(22) < 2.1,
P > 0.05] metrics were quite similar across time.
Finally, to further investigate other ways that subjective con-

fidence may be coded in the colliculus, we also trained the de-
coder to directly classify any differences between the high and
low positive evidence conditions (Fig. S10). Despite the various
differences in sheer physical stimulus properties and levels of
reward expectation, we found that colliculus activity did not
strongly distinguish between them.

Discussion
We combined psychophysics with multineuron recordings and
population-decoding methods to determine whether activity in
the superior colliculus of monkeys signals decision confidence.
Using a task similar to that used in conjunction with recordings
in area LIP (1), we identified population-level activity in the
colliculus that distinguished between different choices and dif-
ferent levels of confidence in much the same way as LIP. That is,
when decision accuracy and decision confidence covary, the
colliculus signals confidence in a manner similar to LIP. This is
consistent with an interpretation that the colliculus, like LIP,
signals more than just eye movements and plays an important
role in perceptual decision-making (24, 25, 28, 33–35). However,
when comparing collicular activity using a task that dissociated
optimal from subjective confidence, we found that both pop-
ulation and single neuron activity was indistinguishable between
high- vs. low-confidence conditions. Further analyses also failed
to find strong evidence in favor of the claim that the colliculus
signals subjective confidence per se. Thus, we conclude that the
role of the colliculus in decision confidence likely primarily
concerns optimal confidence.
These findings raise interesting questions regarding previous

interpretations of studies. By using an opt-out task (1), neuronal
correlates of confidence have been found in LIP (1) and in the
pulvinar (18). Even though our study also used the opt-out design,
in a previous investigation (1), monkeys were informed about the
opt-out option only after the motion stimulus appeared and
presumably after they made their decision. In our paradigm, the
choice options appeared before the onset of the motion stimulus
to avoid visual contamination of the neuronal activity during the
stimulus period. Despite this difference, the ability of collicular
neurons to distinguish Tin and Tout choices with different levels
of confidence was surprisingly similar to the activity patterns seen
in LIP. Similar findings were also obtained in the SEF by using a
wagering task in which monkeys reported their confidence by
making “bets” after each perceptual decision (2). To the extent
that the colliculus may signal primarily optimal confidence
rather than subjective confidence, this open question may apply
to those other regions, too. Further research is needed to answer
this question.
Despite similarities to previous studies, the neuronal ensemble

activity in the colliculus did not pass our sensitivity-matched tests
for subjective confidence. However, there could be other neu-
ronal signatures that differ between our two confidence condi-
tions (such as those involving temporal patterns) that our analyses

were unable to identify. However, to the extent that confidence is
reflected by firing rate differences between Tin and Tout, as has
been assessed by previous studies (1), such activity patterns across
the population of neurons assessed seem highly similar between
the high and low positive evidence conditions, as the decoders
generalized remarkably well between them (Fig. 5). To exercise
further caution, we also conducted analysis of individual neurons
(Figs. S7 and S8). We found that to the extent that some neurons
might have shown any difference in discriminability between these
sensitivity-matched conditions, such differences were unlikely to
be stable properties of the neurons.
Based on the human literature (36–38) as well as animal

studies (19, 39), one intriguing possibility is that subjective con-
fidence may reside in prefrontal cortex, even under sensitivity-
matched conditions. Although one previous study (2) recorded
from the lateral prefrontal cortex as well as the frontal eye fields
and did not find neurons reflecting optimal confidence in these
areas as defined above, it remains to be tested whether such
neuronal signatures for subjective confidence may emerge when
confidence is dissociated from sensitivity, or when an opt-out task
rather than a wagering task is adopted. In humans, under sensitivity-
matched conditions, hemodynamic activity differs between con-
ditions involving different levels of reported confidence (36–38).
Applying magnetic stimulation or chemical inactivation to the
prefrontal cortex alters confidence reports while sensitivity re-
mains unchanged (19, 37, 39). In another study in monkeys,
muscimol injection to the pulvinar impaired confidence reports,
as assessed by an opt-out task, while leaving decision accuracy
unchanged (18). Such effects may involve the interactions be-
tween the known projections from the dorsal central pulvinar to
the prefrontal cortex (40–42). The work in prefrontal cortex and
pulvinar, like our work reported here, also argues strongly for a
distinction between optimal confidence based on perceptual
decisions and subjective confidence that is dissociable from
perceptual decisions. We propose that combining our behavioral
task with multineuron recordings in the prefrontal cortex and
pulvinar may uncover representations of subjective confidence
independent of optimal confidence.
Finally, one issue with the stimulus-matched task (and

sensitivity-matched task) is that the condition with mixed high-
and low-confidence trials contains only two visual stimuli,
whereas the condition with the opt-out choice available contains
four stimuli. It is well-documented that neuronal activity in the
colliculus is modulated by choice target uncertainty; specifi-
cally, as the number of possible targets increases, activity in the
colliculus decreases (22). Our results cannot be explained by this
because as Fig. 2 Left shows, in the opt-out unavailable condi-
tion, there were fewer possible stimuli, yet that activity was in-
distinguishable from that seen in the opt-out waived condition in
which there were more stimuli on the screen. This is opposite to
what would be expected for an interpretation based on lateral
inhibition or uncertainty.
In summary, our findings highlight the important roles played

by the superior colliculus in decision-making, beyond its well-
known role in eye movements (43), and, perhaps more impor-
tantly, they raise critical questions about the interpretation of
previous findings and open up exciting possibilities for future
studies of subjective confidence.

Methods
Surgical Procedures. Two male rhesus monkeys (9–13 kg) were prepared for
electrophysiological recordings and measurements of eye movements. Anes-
thesia was induced with an intramuscular injection of ketamine (5.0 mg/kg)
and midazolam (0.2 mg/kg), and atropine (0.04 mg/kg) was provided to limit
salivation. Monkeys were then intubated and maintained at a general an-
esthetic plane with isoflurane. One hour before the procedure, animals re-
ceived buprenorphine (0.01 mg/kg) and the antibiotic Excede (20 mg/kg; 7 d
slow release) and then meloxicam (0.3 mg/kg) at the conclusion of the
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procedure, and meloxicam (0.2 mg/kg) and buprenorphine (0.01 mg/kg) for
3 d postsurgically as analgesia. Monkeys were implanted with MRI-compatible
headposts, and one (monkey H) was implanted with eye loops (44, 45) to
measure eye position. In the other monkey (monkey P), eye position was
measured with an iView camera (Sensomotoric Instruments). Both monkeys
received MRI-compatible recording chambers placed over the superior colli-
culus (anterior–posterior + 3, medial–lateral 0) and angled posteriorly at 38°.
Precise placement of the post and chambers was performed by using MRI-
guided surgical software (BrainSight; Rogue Research). All surgical proce-
dures were performed under general anesthesia by using aseptic procedures.
All experimental protocols were approved by the University of California, Los
Angeles Chancellor’s Animal Research Committee and complied with and
generally exceeded standards set by the Public Health Service policy on the
humane care and use of laboratory animals.

Eye Movement Recording Procedures. We used a QNX-based real-time ex-
perimental data-acquisition system and Windows-based visual stimulus
generation system (“Rex” and “Vex”), developed and distributed by the
Laboratory of Sensorimotor Research, National Eye Institute (Bethesda) (46)
to create the behavioral paradigm, display the visual stimulus, and acquire
two channels of eye position data. Voltage signals proportional to hori-
zontal and vertical components of eye position were filtered (eight pole
Bessel −3 dB, 180 Hz), digitized at 16-bit resolution, and sampled at 1 kHz
(PCI-6036E; National Instruments). The camera-acquired eye position signals
were filtered digitally by using a built-in bilateral filter. We used an auto-
mated procedure to define saccadic eye movements using eye velocity (20°
per s) and acceleration criteria (5,000° per s2), respectively. The adequacy of
the algorithm was verified and adjusted as necessary on a trial-by-trial basis
by the experimenter.

Electrophysiological Procedures. We recorded multineuron activity from the
intermediate layers of the superior colliculus using a platinum/iridium V-Probe
coated with polyimide (Plexon) with an impedance of 275 (±50) kΩ. The
electrode was aimed at the colliculus perpendicular to its surface by using
guide tubes positioned with a grid system (47) and advanced by using an
electronic microdrive system controlled by a graphical user interface (Nan
Instruments). Action potential waveforms were bandpass-filtered (250 Hz–
5 kHz; four pole Butterworth), and amplified, by using the BlackRock NSP
hardware system controlled by the Cerebus software suite (BlackRock
Microsystems). The voltage data were sampled and digitalized at 30 kHz with
16-bit resolution and saved to disk for offline sorting. For isolating neurons
online, we used time and amplitude windowing criteria (Cerebus; Blackrock
Inc.). Waveforms satisfying these criteria generated transistor–transistor logic
pulses indicating the time of occurrence of an action potential and were
sampled and digitized at 1 kHz with 16-bit resolution and saved to disk.

Action potential waveforms were sorted offline by using the Plexon
Offline Sorter (Plexon, Inc.) and classified into single neurons (n = 115) and
multineuron (n = 660) activity. At the start of each recording session, we
aimed to identify a recording site with at least one buildup neuron, in light
of their established role in higher-level phenomena such as attention, se-
lection, and decision-making (reviewed in ref. 48). We classified buildup
neurons as those neurons having a significantly higher discharge rate during
the stimulus period (200–600 ms after motion onset) compared with baseline
(200–0 ms before the stimulus appears). While the recording procedure first
focused on identifying buildup neurons before continuing with the experi-
ment, all neurons that were recorded in a session (both buildup and non-
buildup) were used in the decoding analysis for a given session.

RFs of collicular neurons weremapped online to provide an estimate of the
center of the RF to place at least one choice target. We determined the
general characteristics of the neuronal activity and an estimate of the center
of the preferred RF by requiring monkeys to make saccades to different
locations in the visual field. We made a qualitative assessment online about
the preferred location on the basis of maximal discharge determined audibly.
We confirmed the center of the RF by plotting the discharge as a heat map
across visual space. Only neurons with RF eccentricities between 7° and 20°
were studied to ensure no overlap of the RF with the centrally placed
moving dot stimulus.

The neurons we recorded from were different in each recording session;
the neurons from the 19 stimulus-matched sessions which were used were
different from the neurons from the 23 sensitivity-matched sessions.

Behavioral Task. We used the same behavioral task in both the stimulus- and
sensitivity-matched paradigms. Each trial in both paradigms began when
monkeys acquired a centrally located spot and remained fixated for 500 ms.
Then, the choice targets appeared. One choice target appeared in the center

of the RF of at least one of the recorded neurons (Tin), and the other choice
target appeared in the opposite hemifield (Tout). These positions were ran-
domized on each trial. For both the stimulus- and sensitivity-matched par-
adigms, half of the trials had only two choice targets (i.e., “opt-out
unavailable”) and half had an opt-out choice target available. These trial
types were randomized in each session. All targets, including the opt-out,
were isoluminant. The location of the opt-out choice was orthogonal to the
two motion choice targets (90°), and on these trials, we also presented a
fourth dot, irrelevant to the task, 180° opposite to the opt-out target lo-
cation. This was included to control for possible lateral interactions (24, 49).
That is, to ensure that any differences between the opt-out waived and the
opt-out unavailable trials were not driven by introducing an additional re-
sponse target in an orthogonal location, we introduced a fourth dot to
make the stimulus symmetrical, so that each possible target in the opt-out
available condition was surrounded by a isoluminant targets at the same
distance and relative locations.

After the choice targets appeared and monkeys maintained fixation on
the central spot for ∼500 ms, the dot motion stimulus appeared centrally for
200 ms. Monkeys maintained fixation for another 500- to 600-ms interval
(the exact time was randomly selected between those two times from a
uniform distribution) and then were cued to report their decision by re-
moval of the fixation point. If the correct choice occurred, monkeys received
a juice reward (0.2 mL). If the incorrect choice occurred, monkeys received no
reward and a timeout of 2,000 ms. On trials in which monkeys selected the
opt-out choice, they received a smaller but guaranteed reward (80% of the
correct choice reward amount).

Stimuli. For both tasks, the motion stimulus appeared on a CRT display op-
erating at 60 Hz. The motion speed was 5° per s, and the same dots were
maintained on the screen for the duration of the stimulus (200 ms). Some
dots moved coherently in a single direction (coherence percentages de-
scribed below), while the other dots moved with randomly selected trajec-
tories. The radius of the motion stimulus was 3°, and the size of dots in the
display were 0.05°. The dot density in both tasks was 50 dots per degree
squared. Each dot moved in the same direction for the duration of a given
trial. For all motion stimuli, the total number of dots appearing on the
display was kept constant to maintain isoluminance.

For the stimulus-matched paradigm, four motion coherence levels were
tested for each monkey. For monkey P, we tested performance with 20%,
10%, 6%, and 0% coherence. For monkey H, we tested performance with
50%, 10%, 6%, and 0% coherence. Different coherence levels were used to
yield approximately equivalent performance levels across the two monkeys.
Dots moving in random directions were also included, and the total number
of dots in all displays was the same.

For the sensitivity-matched paradigm, the dot coherence ratios charac-
terized by positive evidence (PE; motion favoring the correct choice) and
negative evidence (NE; motion favoring the incorrect choice) were custom-
ized for each monkey in each session to yield similar d′ values across two
conditions on trials where the opt-out was unavailable, but different
amounts of selecting the opt-out across those two conditions on trials when
it was available. For the eight d′-matched sessions for monkey P, one
d′-matched session included a 50%PE/30%NE coherence ratio for high pos-
itive evidence and 20%PE/17%NE coherence ratio for low positive evidence;
two d′-matched sessions included 50%PE/30%NE coherence ratio for high
positive evidence and 35%PE/21%NE coherence ratio for low positive evi-
dence; four d′-matched sessions included a 50%PE/30%NE coherence ratio
for high positive evidence and 20%PE/12%NE coherence ratio for low pos-
itive evidence; and one d′-matched session included a 50%PE/34%NE co-
herence ratio for high positive evidence and 20%PE/9%NE coherence ratio
for low positive evidence.

For the 15 d′-matched sessions for monkey H, one d′-matched session
included a 50%PE/30%NE coherence ratio for high positive evidence and
35%PE/21%NE coherence ratio for low positive evidence; two d′-matched
sessions included 50%PE/33%NE coherence ratio for high positive evidence
and 20%PE/5%NE coherence ratio for low positive evidence; one d′-matched
session included a 50%PE/37%NE coherence ratio for high positive evidence
and 20%PE/7%NE coherence ratio for low positive evidence; one d′-matched
session included a 50%PE/37%NE coherence ratio for high positive evidence
and 23%PE/7%NE coherence ratio for low positive evidence; nine d′-matched
sessions included a 50%PE/37%NE coherence ratio for high positive evi-
dence and 25%PE/7%NE coherence ratio for low positive evidence; and one
d′-matched session included 35% PE/30% NE coherence ratio for high positive
evidence and 20%PE/12%NE coherence ratio for low positive evidence.
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Behavioral Data Analysis. We used SDT to quantify the decision sensitivity of
the monkeys in our behavioral task. In this task, monkeys were presented
with a dot motion stimulus and had to make a discrimination judgment as to
whether the primary motion direction was to the right or left. d′ is a measure
of an observer’s capacity to perform a sensory task: A d′ score of 0 indicates a
complete inability to discriminate left and right motion directions in this
task, while d′ scores >0 quantify an observer’s sensitivity to make this type of
discrimination. As noted by Wickens (9), d′ in discrimination tasks can be
computed by adding the Z-transformed correct-response probabilities for
both stimulus types (p. 116). Thus, d′ was calculated as:

d′= ZðpAÞ+ ZðpBÞ, [1]

where in this task, pA refers to the probability of a correct judgment for trials
where the primary motion direction was toward the left, and pB refers to the
probability of a correct judgment where the primary motion direction was
to the right. This equation yields the exact same d′ values as the standard d′
equation for detection tasks [Z(Hit Rate) − Z(False Alarm Rate)] but provides
a more accurate characterization for discrimination judgments, as “false
alarms” are not possible in this type of task, since a primary motion direction
is present on every trial.

The sensitivity-matched sessions included two different trial types: On
some trials, the opt-out was unavailable, and monkeys’ only choice was
between the two response options. These trials allowed us to determine that
our two evidence conditions were matched. On other trials, the opt-out was
available but could be waived, and these trials allowed us to infer different
levels of confidence across these two conditions. We only computed d′ from
trials where the opt-out choice was unavailable and focused the decoding
analyses on these trials alone. This was done to ensure that, should our
subsequent decoding analyses identify a difference across conditions, this
difference would not be driven solely by differences in the perceptual cri-
terion used for each condition. The two trial types were randomly in-
terleaved in sensitivity-matched sessions, and data from these different trial
types is shown in Fig. 3 and Fig. S7. We also note that in our sensitivity-
matched sessions, we only analyzed days in which the d′ scores between our
high and low positive evidence trials were within 0.7 of one another (see Fig.
S6 for individual session results).

Decoding Analysis. To investigate how population activity in the superior
colliculus may be related to optimal and subjective confidence, we applied a
decodingmodel to analyze time-varying neuronal activity and performed our
decoding analyses separately on the data from each recording session. In each
session, between 9 and 26 neurons were recorded from our V-Probe re-
cording device, and all units used in decoding for a given session were
recorded simultaneously.

We first quantified neuronal discharge rates across all electrodes with a
sliding window analysis, computing the sum of action potentials occurring
within 100-ms time windows (step size = 10 ms). Next, we applied a logistic
regression model using the fitclinear function in MATLAB (Mathworks,
2016). The general idea behind this linear classification function is that on
any given trial, the overall classification score f(x) can be predicted from the
neuronal activity at a given time point using the following equation:

fðxÞ= βx +b. [2]

In this equation, x is the vector of the summed spike counts for each neuron
in a given time window, β is a vector representing the linear coefficient
estimates for each neuron, and b is the scalar bias, reflecting the intercept
estimate. However, since our decoding analyses focused on categorical
outcomes instead of continuous measures, we applied the “logistic” learner
from fitclinear, which implements the “logit“ score transformation function
to the raw classification scores to yield the probability of a given class (e.g., X),
via the following equation:

pðXÞ= 1
ð1+ e−βx+bÞ, [3]

with the following loss function for classification, where y ∈ {±1}:

Lðy, fðxÞÞ= logð1+expð−yfðxÞÞÞ. [4]

This implementation uses the following ridge regularization penalty to avoid
overfitting in our procedure, with a lambda value of (1/number of neurons) in
a given session:

λ

2

Xp

j=1

β2j . [5]

We also implemented a uniform prior in the fitclinear function over the two
classes, which specified that the two classes being predicted were equally
likely on each trial. Finally, we estimated the posterior probabilities for class
predictions on each trial using the predict function from the Statistics and
Machine Learning Toolbox in MATLAB.

As has been noted previously, logistic regression classifiers find the best
hyperplane that separates the population response patterns associated with
the two classes that are being predicted (29). Therefore, the essential idea
behind the aforementioned analysis is that, for every trial, the decoder will
produce not only a final prediction of, for example, whether the monkey
chose the target located in the RF or the target out of the RF, but also a
measure of the strength of the prediction (via the posterior probability
metric), which corresponds to the prediction’s distance from the hyperplane.
We further explain the utility of these metrics in Results.

The model was implemented by using fivefold cross-validation at each
time point, with 80% of the data as the “training set” for fitting the β co-
efficients and 20% of the data as the “test set.” In all figures and results, we
report the average performance across all five test sets. Two metrics enabled
us to assess performance of the model: First, we used AUC as our method to
assess decoder accuracy. Second, we sorted each model’s predictions by trial
type and evaluated the posterior probability of particular class predictions
over time. This allowed us to assess the strength of the classifiers’ prediction
for each trial type across time, within a range of 0–1. Thus, the results we
report are based on average AUC and posterior probabilities across the five
test sets at each time point.

Three time periods were of particular interest for our decoding procedure.
First, the time period around the onset of the targets, to determine whether
the prestimulus activity held any predictive power for the monkeys’ up-
coming decisions. Second, the time period following onset of the motion
stimulus, since this is the time when monkeys are forming their decisions,
and, as such, the activity could signal both decision sensitivity and/or sub-
jective confidence. Finally, the time period around the saccade is also in-
formative, as this time window reflects the ceiling for classification
performance based on the recorded neuronal activity.

We note that recent work has demonstrated the utility of decoding ap-
proaches compared with single-neuron analyses (31, 50), and, indeed, our
own analysis revealed a stronger capacity to classify correct perceptual de-
cisions by using population-level analyses compared with single neurons
(Fig. S4). While we do think that single-neuron analysis of our data can also
be informative, we think a machine-learning approach is particularly ad-
vantageous, as decision confidence may be encoded by complex patterns of
neuronal activity distributed across many neurons within a brain region, as
has been shown in other recent work (38).

Discriminability Index. To assess each neuron’s discriminative capacity for Tin
and Tout choices, we computed a “discriminability index.” This metric pro-
duces a normalized value between −1 and 1 specifying both the strength
and direction of a neuron’s predictive power for a given two-class discrimi-
nation problem. For example, in our initial analysis (Fig. 2), we classified
whether a given correct choice would be toward the RF (Tin) or away from
the RF (Tout). We hypothesized that the ability to discriminate would change
as a function of opt-out availability. Thus, we computed the discriminability
index for each neuron for the Tin vs. Tout classification procedures in the
following manner:

Stimulus-Matched  Discriminability  Index=   =
jTin − Toutj

Opt-Out Waived

− jTin − Toutj
Opt-Out Unavailable

jTin − Toutj
Opt-Out Waived

+ jTin − Toutj
Opt-Out Unavailable

.

[6]

Negative values mean that the neuronal activity is more discriminable for Tin
compared with Tout when the opt-out is unavailable compared with when it
is waived; positive values indicate that the neuronal activity is more dis-
criminable between Tin compared with Tout when the opt-out is waived
compared with when it is unavailable. With the sensitivity-matched data, we
computed the same discriminability index for trials from the high positive
evidence condition and from the low positive evidence condition using the
following equation:
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Sensitivity-Matched Discriminability  Index

=
jTin − Toutj

High  Positive  Evidence

− jTin − Toutj
Low  Positive  Evidence

jTin − Toutj
High  Positive  Evidence

+ jTin − Toutj
Low  Positive  Evidence

.
[7]

Positive values indicate the neuronal activity is more discriminable for Tin
compared with Tout for trials in the high positive evidence condition com-
pared with trials from the low positive evidence condition, and negative
values indicate that the neuronal activity is more discriminable for Tin
compared with Tout for trials in the low positive evidence condition com-
pared with trials from the high positive evidence condition. We declared

neurons to exhibit confidence signals if they fell >0 on both of these dis-
criminability index metrics (see Results and Figs. S7 and S8 for details).

In each experimental session, we computed the discriminability index in
each time window from 190 to 650 ms after motion onset and averaged over
the discriminability index values to yield a single number for each neuron.
This method allowed us to quantify each neuron’s ability to discriminate
between the two classes during the main period of evidence accumulation
during the trial.
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