

GFA ETC Online Pipeline

David Kirkby, UC Irvine

DESI OSU Workshop 10 Dec 2019

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

ETC Pipeline Overview

Delivers seeing, transparency and sky level to online ETC & observers.

Provides online image quality diagnostics.

Does not require any catalog or WCS.

Fast with minimal dependencies.

Documentation:

- <u>DESI-5315</u>
- notebooks in https://github.com/desihub/desicmx/tree/master/analysis/gfa

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

ETC Pipeline Inputs: GFA Data

e2v CCD230-42: 2K x 1K sensor with 15um pixels (0.214" / 0.197")

Bias ~ 1150-1700 ADU: subtracted using overscan Bias spatial variation ~ 15 ADU: calibrated Readout noise ~ 5 ADU: calibrated Gain ~ 3.7 elec/ADU: calibrated

Dark current ~ 30-55 elec/pix/s at 11C +23%/C: calibrated & subtracted Dark current spatial variation ~30 elec/pix: calibrated (GFA temperature measured to ~0.025C)

Dark sky level ~ 10 elec/pix/s

Bleed trails > 100K elec (full well ~190K elec, 32-bit max ~ 1.2M elec)

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Master bias images

Residuals after overscan subtraction are +0-40 ADU.

Dark Energy Spectroscopic Instrument

U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Master dark images

Dark currents are (30 - 55) elec/s at 11C. Prominent geometric waffle structure due to laser annealing of sensor.

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Temperature calibration

Dark Energy Spectroscopic Instrument

U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Read noise comparisons

Aaron used a different method on the same data, obtaining consistent results (but with a shift of ~0.08 ADU).

Neither analysis of 20191027 data is consistent with lab data.

Dark Energy Spectroscopic Instrument

U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Gain comparisons

Results agree with lab data at better than 1% level.

Aaron's gains are slightly lower on average (-0.02 e/ADU) likely due to extra variance in the "flat" images.

Dark Energy Spectroscopic Instrument

U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Pipeline Steps: Raw Data

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Pipeline: Calibrated Data

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Pipeline: Dark Current Subtraction

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory David Kirkby

Slide 11

Pipeline: Detected Stars

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory David Kirkby

Slide 12

Pipeline: Stacked PSF

Ignore saturated stars and sensor edges.

Reject outliers (galaxies, blending, etc)

Center each PSF & calculate ivar-weighted stack.

Result is a high-SNR PSF with propagated ivars:

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Pipeline: Detected donuts

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Online image quality diagnostics

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Open Issues: Overview

Sensor & readout:

- High-noise state (fixed by "denoising" process)
- Bad pixels
- Pattern noise
- Saturation horizontal streaks
- Gain variations
- Dark current versus exposure time

Telescope & optics:

- No shutter
- Dust pinhole images
- Vignetting at large radius
- Asymmetric plate scales and optical PSF

High-noise state

09-00025679-GUIDE2

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory David Kirkby

Slide 17

Bad pixels

ADC bit flips: https://desi.lbl.gov/trac/ticket/465

Bias sawtooth: https://desi.lbl.gov/trac/ticket/466

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Bad pixels

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Pattern noise

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Pattern noise

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Horizontal streaks

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory David Kirkby

Slide 22

Horizontal streaks

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Gain variations

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Dust pinhole images

Out of focus dust in front of GFA acts a negative pinhole camera. Introduces few % level variations in throughput:

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

Next steps

Provide operator script to generate image quality diagnostic plot:

Run on all "GFA science" exposures to compile seeing statistics.

Add transparency and sky background estimates.

Adapt to guider cubes to track fiberloss fraction.

Plug into ICS ETC wrapper.

