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Abstract
From the mechanical teaching machines of the early twentieth century to the

wave of massive open online courses in recent years, many have been motivated
by the dream of delivering a personalized adaptive curriculum to each learner. To
achieve this dream, many researchers have focused on rule-based systems that rely
on extensive domain expertise and psychological theories. While this approach has
led to the development of successful intelligent tutoring systems with high quality
content, (1) developing such systems can be very costly and (2) these systems typ-
ically employ a very limited form of adaptive instructional sequencing. In contrast,
some researchers are now starting to apply black box machine learning algorithms
to do adaptive instructional sequencing. However, these approaches have had rel-
atively limited impact to date. Instead, I propose several techniques for impactful,
cost-effective semi-automated curriculum design that combine machine learning, hu-
man computation, and principles from the learning sciences. My thesis will focus on
two pieces of the curriculum design process: (1) content creation and curation and
(2) instructional sequencing. First, I study the prospects of using learner-generated
work for low-cost content creation. I explore this in the context of crowdsourcing
tasks, where new kinds of work may require on-demand training. For two different
kinds of crowdsourcing tasks, I show that learner-generated content can potentially
be a useful way of teaching future learners, provided that the best content is au-
tomatically curated. Second, I show that due to model misspecification, relying
on simple models of student learning can lead to making misinformed judgments
about how to sequence content for students, including inequitable outcomes for low-
performing students. To mitigate this problem, I suggest two ways in which we
can effectively use models to perform instructional sequencing: (1) using multiple
models of learning to develop instructional policies that are robust to how students
actually learn, and (2) combining models of learning based on psychological theory
with data-driven approaches. The broader theme of my thesis is that by integrat-
ing human and machine intelligence, we can improve upon efforts to better teach
students in semi-automated ways.
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Chapter 1

Introduction

Over the past several years it has become increasingly clear to me,
as to any thinking person today, that both psychology and the �eld
of curriculum design itself su� er jointly from the lack of a theory of
instruction... Let us, then, see whether we can set forth some
possible theorems that might go into a theory of instruction.

JeromeBruner, 1963

For decades, researchers, technologists, teachers, and students have been motivated by the dream
of personalized, adaptive instruction for all students. In the 1920s-50s, attempts to realize this
dream took the form of mechanical teaching machines that could give students step-by-step prac-
tice and feedback at an individualized pace [Ferster, 2014]. With the advent of computers and
their emergence in research laboratories in the 1960s, researchers began creating computerized
teaching machines that could sequence activities for students, at times using data-driven models
of how students learn [Atkinson, 1972a,b, Smallwood, 1962]. With the formation of the �eld of
arti�cial intelligence (AI), researchers in the 1970-80s began formulating theories about how ex-
perts learn to solve problems, which led to the development of intelligent tutoring systems (ITSs)
that could guide students through problems in a step-by-step fashion, which persist to the present
day [Anderson et al., 1985, Koedinger and Aleven, 2016]. Finally, with the rising popularity of
machine learning, researchers have recently been turning to black box machine learning algo-
rithms to automatically sequence curricula for students [Beck et al., 2000, Piech et al., 2015b,
Reddy et al., 2017].

AI-based approaches to automating curriculum design can largely be classi�ed into two types.
Early approaches taken by cognitive scientists involved constructing rule-based systems that
would encode domain experts' knowledge in the form of production rules that needed to be
taught to the student. This approach has led to the development of many successful ITSs with
high quality content. However, such systems can be very costly to build, with traditional esti-
mates suggesting that building the content for each instructional hour on an ITS requires 200-300
hours of e� ort [Aleven et al., 2009, 2016a]. Although tools such as Cognitive Tutor Authoring
Tools (CTAT) have been built to reduce the amount of time it takes to build such systems, they

1



still require around 25 or more hours of a domain expert's time per instructional hour [Aleven
et al., 2009]. Moreover, many ITSs have very limited forms of adaptive instructional sequenc-
ing, such as simply determining when a student is ready to move on to new skills [Corbett and
Anderson, 1995]. In contrast, data-driven approaches using machine learning, which increas-
ingly include black box algorithms like deep neural networks, can automatically infer how to
sequence content for students from data. However, machine learning algorithms have a num-
ber of limitations—as I describe later in this thesis—that have seemingly limited their ability to
adaptively sequence instruction for students. Machine learning methods have also been used for
content creation, such as automatically creating quiz questions from natural language text [Heil-
man, 2011, Huang et al., 2014, Le et al., 2014] or automatically generating procedural problems
for subjects such as algebra [Singh et al., 2012] and mathematical logic [Ahmed et al., 2013].
However, such techniques do not readily extend to complex, ill-de�ned tasks—especially tasks
that computers cannot solve themselves.

In my thesis, I take the view that combining insights from both approaches rooted in human in-
telligence and approaches rooted in machine intelligence can help in automating various aspects
of curriculum design, includingcontent creation, content curation, andinstructional sequencing.
I demonstrate several techniques for impactful, cost-e� ective semi-automated curriculum design
that combine machine learning, human computation, and principles from the learning sciences.
First, I study the prospects of using learner-generated work for low-cost content generation. I
explore this in the context of crowdsourcing tasks, where new kinds of work may require on-
demand training. For two di� erent kinds of crowdsourcing tasks, I show that learner-generated
content can potentially be a useful way of teaching future learners, provided that the best content
is automatically curated. Second, I show that due to model misspeci�cation, relying on simple
models of student learning can lead to making misinformed judgments about how to sequence
content for students, including inequitable outcomes for low-performing students. To mitigate
this problem, I suggest two ways in which we can e� ectively use models to perform instructional
sequencing: (1) using multiple models of learning to develop instructional policies that are ro-
bust to how students actually learn, and (2) combining models of learning based on psychological
theory with data-driven approaches.

My dissertation will be divided into two parts. The �rst part is focused on using learner-generated
artifacts for low-cost content creation and using machine learned models to perform content cura-
tion over the learner-generated content. The second part is focused on combining theory-driven
and data-driven approaches to instructional sequencing. Both approaches motivate the idea of
integrating various forms of human intelligence (whether in the form of learner contributions
or psychological theories) with machine intelligence to better automate curriculum design us-
ing educational technology. As such, I refer to the various processes I describe in this thesis
assemi-automated curriculum design, to acknowledge the role that people play—in addition to
machines—in the process of automating various pieces of curriculum design.

To be sure, prior work has also proposed several techniques that combine human and machine in-
telligence to improve curriculum design in educational technology [Koedinger et al., 2013]. For
example, researchers have investigated how data-driven methods could automate the re�nement
of expert-de�ned cognitive models, which could in turn in�uence content design and instruc-
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tional sequencing [Cen et al., 2006, Koedinger et al., 2012b]. Data-driven methods have also
been used to automatically generate hints from prior student work [Barnes and Stamper, 2008].
Finally, interactive machine learning techniques (such as programming by demonstration) have
been used to speed up the creation of intelligent tutoring systems, rather than relying on a hu-
man to explicitly author all of the production rules in an ITS [Blessing, 1997, Jarvis et al., 2004,
Matsuda et al., 2015]. My thesis proposes several methods that �t into this space of integrating
human and machine intelligence for semi-automated curriculum design.

However, in recent years, machine learning—especially deep learning—has made major ad-
vances in a variety of application areas, seemingly replacing the need for expert human intelli-
gence (e.g., in the form of knowledge engineering or feature engineering). Therefore, as deep
learning becomes increasingly popular, the need for human intelligence in automating curricu-
lum design may also come into question. My thesis demonstrates, in two ways, why I believe
there is a continued need for human intelligence in semi-automated curriculum design. First,
on-demand content creation for ill-structured domains may become increasingly relevant as the
future of work evolves due to advances in AI, but machines alone will likely not be able to create
high quality content for such domains. Second, as I demonstrate below, machine learning algo-
rithms used for instructional sequencing have a number of limitations that might be remedied by
involving theories of learning and humans-in-the-loop to help decide how to sequence instruction
for students.

Designing a curriculum, especially in the context of traditional education, is much broader than
the aspects of curriculum that I tackle in my dissertation. First of all, the approaches to cur-
riculum design that I consider here are only concerned with sequencing small scale pedagogical
activities or generating worked examples for short tasks. By no means do I consider the au-
tomation of larger scale activities and content such as course projects or textbooks or aspects
of curriculum that span across courses. Moreover, I do not consider automation with respect to
other factors that signi�cantly impact the curriculum, such as learning objectives, assessment,
relationship to state standards, and the broader ecosystem in which the curriculum is positioned.
Integrating these various aspects of curriculum design together simply speak to more places that
currently require human intelligence in the process of semi-automated curriculum design and fur-
ther motivate the broader approach that I advocate here of considering how people and machines
can each contribute to di� erent pieces of the curriculum design process.

The rest of the thesis is divided up as follows. Part I focuses on using learner-generated artifacts
to create new low-cost educational content. This is particularly useful in contexts where expert
examples are not readily available, such as on-demand training of crowdworkers to perform vari-
ous kinds of complex tasks, which is the context of both sets of experiments that I run. Chapter 2
provides background on learnersourcing and related work that situates the contributions of the
following two chapters. Chapter 3 describes experiments in the context of a complex web search
task, where I test the e� cacy of having crowd workers validate the work of their peers. In this
case, my work suggests validating peer work can be as e� ective as, and possibly even more
e� ective than, reading expert examples, provided that the peer solutions are su� ciently long.
Chapter 4 describes experiments in the context of a more subjective task, where crowdworkers
are asked to write reviews that compare pairs of similar products. Here, I test the e� cacy of
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directly presenting peer-generated work as worked examples (rather than work to be validated).
The experiments suggest that while randomly selected peer-generated examples do not seem to
lead to learning gains on average, seeing high quality work can lead to improved performance on
future tasks. Overall, these experiments show that peer-generated artifacts can be useful forms
of training, but possibly only if the peer-generated work shown to students is algorithmically
curated. My work preliminarily suggests that simple rules for choosing which peer-generated
artifacts to present may be enough to �nd ones that are pedagogically e� ective, but future work
should look into more sophisticated data-driven ways of curating the best peer content.

Part II considers an entirely di� erent aspect of technology-driven curriculum design: how to
e� ectively sequence content to improve student learning. Chapter 5 gives background on two
common approaches to automated instructional sequencing that I focus on: cognitive mastery
learning and reinforcement learning. In Chapter 6, I examine some limitations of the Bayesian
knowledge tracing (BKT) model, a commonly used model to implement cognitive mastery learn-
ing in ITSs. In particular, using simulation studies, I show potential consequences of the model's
bias in terms of outcomes for student learning. In Chapter 7, I further investigate how the bias
of BKT could lead to inequitable outcomes for low-performing students. In Chapter 8, I turn to
broader approaches to instructional sequencing using reinforcement learning and motivate miti-
gating the bias of relying on a single model of student learning by forming instructional policies
that are robust tomultiplemodels of student learning. Finally, in Chapter 9, to better understand
how we can use data-driven approaches for instructional sequencing, I comprehensively review
the empirical literature in this area. One of the conclusions of this review is that prior data-driven
attempts at instructional sequencing have been most e� ective when they relied on psychological
theories of learning. Much of the work described in Part II was motivated by a re�ection on
our own failed attempts to substantially improve student learning using data-driven instructional
policies, which I claim was due to not �nding a good way to approach the bias-variance tradeo�
in instructional sequencing. These chapters provide pointers for ways to avoid the challenges we
faced.

Chapter 10 concludes the paper by providing a summary of the key contributions of my thesis
and presenting my thoughts on various ways in which we can integrate human intelligence—
whether in the form of learning theories, learner contributions, or a teacher's guidance—with
machine intelligence to more e� ectively automate curriculum design. As data-driven approaches
become more and more popular in the automation of curricula and in the design of educational
technology more broadly, I believe we need to take a step back and critically examine the variety
of attempts that have been made to automate curriculum design to better understand what works
and what does not. Data-driven methods certainly have a place in educational technology, but
the question is how we can make the best use of them. I contend that data-driven methods will be
most useful if we can discover how to best integrate them with people's ideas, contributions, and
theories. Ultimately, only time will tell how educational technology can have the greatest impact.
However, it is our responsibility to take a thoughtful approach, and my hope is that this thesis
adds to the conversation of how we might take such an approach towards the goal of providing
an adaptive personalized education for all.
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Part I

Content Creation and Curation
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Chapter 2

Background: Learnersourcing

Through dialogue, the teacher-of-the-students and the
students-of-the-teacher cease to exist and a new term emerges:
teacher-student with students-teachers. The teacher is no longer
merely the-one-who-teaches, but one who is himself taught in
dialogue with the students, who in turn while being taught also
teach. They become jointly responsible for a process in which all
grow.

Paulo Freire, 1968

In new online learning environments that attract large numbers of people, many learners either
individually or collectively make artifacts in the course of their interactions with the learning
environment. These learner-generated artifacts can potentially be used to impact the learning
opportunities of future learners, vialearnersourcing[Kim et al., 2015]. For example, in massive
open online courses, students create open-ended artifacts such as essays, computer programs,
designs, and mathematical proofs. These learner-generated artifacts are often presented to other
learners in peer-evaluation exercises, and while the primary purpose of this is to scale grading
[Piech et al., 2013], some instructors have treated evaluating peer work as an explicit learning op-
portunity [Devlin, 2013]. In Scratch, the popular online programming community and learning
enviornment for kids, learners are encouraged to share their programs and remix other learners'
programs [Resnick et al., 2009], which has been shown to serve as a pathway for learning [Das-
gupta et al., 2016]. Finally, in crowdsourcing platforms, many crowdworkers do large numbers
of tasks for requesters. While a lot of crowdsourcing tasks on websites like Amazon Mechanical
Turk are microtasks, which are relatively easy, do not require creativity, and require little train-
ing, recent research has investigated crowdsourcing more complex work [Doroudi et al., 2016,
Kittur et al., 2013b, Steuer et al., 2017]. For such tasks, workers might generate complex artifacts
(e.g., product reviews or website designs). As such, these artifacts could be presented to other
workers as an inspiration or means of better understanding how to perform the task.

Thus, one way in whichnaturally generated learnersourced artifacts can be used is to bootstrap
the creation of low-cost curricula where we might not have the tools or time to create a high
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quality curriculum from scratch. Crowdsourcing is a particularly interesting domain to explore
the e� ects of peer-generated artifacts for learning, because crowdsourcing tasks often come from
ill-structured domains, where we do not have existing curricula to help teach workers. Moreover,
the types of complex crowdsourcing tasks could be evolving over time as the future of work
evolves and requesters have new needs. As such, I believe �nding ways to automatically train
crowd workers has implications for the future of work, where workers �ock towards complex
on-demand tasks and are in need of real-time, quick training.

In this part of my thesis, I examine how to perform this low-cost content generation for complex
crowdsourcing tasks. I investigate two broad questions: (1) can peer-generated artifacts serve
as a means to bootstrap the creation of viable content, and (2) how can we curate the best peer-
generated content? Chapter 3 and Chapter 4 explore these two questions for two di� erent kinds of
tasks and two di� erent ways of utilizing learnersourced work. Chapter 3 focuses on the e� cacy
of having workers validate peer-generated work in the context of a complex problem solving
task, namely web search. I compare validating peer work with other modes of training, such
as solving more tasks and reading an expert example. Chapter 4 examines the e� cacy of using
learner-generated work as examples to be read by crowdworkers, rather than validated in the
context of a more subjective complex crowdsourcing task, namely peer reviews. In this context,
I was interested in asking what kinds of peer-generated artifacts (i.e., single worked example, pair
of worked examples, or learner-generated task guidelines) are e� ective when simply presented
to crowd workers as resources.

In both cases, I �nd that peer-generated content can be an e� ective way of training crowdwork-
ers, but possibly only if we present good content. Moreover, in both cases, I show that a simple
rule for determining which content is most pedagogically useful (e.g., presenting peer work that
is su� ciently long or of su� ciently high quality) can be an e� ective way of curating content.
Even though these rules are simple, machine learning techniques can help in automatically dis-
covering them. For example, in the web search domain (Chapter 3), I used a regression model
to automatically discover what features of peer solutions make them pedagogically valuable,
which found that solution length (and only solution length) was a good predictor of the future
performance of workers who validate the given solution. For the work described in Chapter 4, I
am currently investigating the use of machine learning models to predict the pedagogical value
of peer-generated examples. I posit that more data-driven algorithms can help in re�ning the
content curation process.

Using peer-generated content to help future learners, and especially crowdworkers, is an interdis-
ciplinary endeavor, and our work draws on literature from various works in the learning sciences
and crowdsourcing literatures, and especially in the intersection of these �elds. In the remainder
of this chapter, I will discuss the variety of related work that the work in this part of my thesis
draws upon and contributes to.
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2.1 Learnersourcing

The concept oflearnersourcingrefers to using work done by crowds of learners to help improve
the educational experience of future learners [Kim et al., 2015]. Of most relevance to the present
work are studies that have speci�cally looked at how to use learnersourcing to create new educa-
tional content that can help future learners [Farasat et al., 2017, Glassman et al., 2016, He� ernan
et al., 2016, Mitros, 2015, Whitehill and Seltzer, 2017, Williams et al., 2016].

For example, Williams et al. developed a system called AXIS that had learners generate explana-
tions to math word problems that could later be used to help other learners [Williams et al., 2016].
They used multi-armed bandits to automatically discover the explanations that learners found to
be most useful. In a randomized experiment, they showed that learner-generated explanations
that AXIS chose to present to students led to higher learning gains than explanations that did not
meet a set of pre-speci�ed quality checks. Their result is similar to ours in that it shows that not
all learnersourced explanations are useful, but identifying good peer-generated explanations can
be e� ective. However, they only compared their AXIS-chosen explanations to ones that were
speci�cally thought to be bad, so it is not clear how e� ective random (or even above-median)
explanations would have been. In my studies, I show that random peer-generated content is not
necessarily e� ective, but either long peer work (Chapter 3) or high quality examples (Chapter 4)
can be e� ective in improving workers' performance.

Similarly, Aleahmad et al. [2009] looked into crowdsourcing content creation to teachers and
amateurs on the web who could create solutions to a Pythagorean theorem problem. They found
that they could generate hundreds of high quality solutions (as measured via expert ratings) at
a low cost and could automatically detect many of the poor solutions before having experts
rate the solutions. However, the authors did not measure how much students actually learned
from these solutions or how they compared to expert examples. More recently, Whitehill and
Seltzer [2017] showed that crowdworkers could generate videos to teach logarithms at a cost
of $5 per video, which had positive learning gains that were comparable to watching a Khan
Academy video on logarithms. However, that both of these studies are not technically regarded
as learnersourcing since they rely on non-learners external to the learning environment to create
content for learners.

Moreover, all of these studies and others [Farasat et al., 2017, Glassman et al., 2016, Mitros,
2015] actively ask the crowd to create new content, which could be used to help future learners.
This is referred to asactive learnersourcing[Kim et al., 2015]. In this thesis, I primarily study
usingpassive learnersourcing[Kim et al., 2015] in order to leverage artifacts that would natu-
rally be generated by learners regardless of their role in helping other learners.1 In a sense, I am
interested in how to make more e� cient use of work being done in learning and work environ-
ments that would traditionally not be seen as pedagogically valuable. Passive learnersourcing
has the advantage of not requiring additional work or cost to create curricula, which could be
particularly useful in crowdsourcing settings where requesters have a limited budget.

1One exception to this is that in Chapter 4, I study using peer-generated guidelines, which has to be actively
elicited, however, our results do not indicate that they are necessarily more e� ective than just using examples, so I
do not pursue this idea further.
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More broadly, in recent years, researchers have written vision papers on how human computation
can impact the future of education. Weld et al. [2012] described how human computation or
crowdsourcing can address new challenges in personalizing online education in the wake of
Massive Open Online Courses (MOOCs). One of the challenges the researchers discussed was
content creation and curation in online courses, and how crowds of students could be used for that
purpose. Their paper could be seen as a call to action for human computation researchers; this
part of my dissertation can be seen as an answer to that call. Moreover, in He� ernan et al. [2016]
predicted that “in many ways, the next 25 years of adaptive learning technologies will be driven
by the crowd” and described their e� orts to begin to use crowdsourcing for content creation in
ASSISTments (a system that teachers use to teach mathematics in the classroom).

2.2 Peer Review

Reading and validating peer work is related to the literature on peer review in classroom settings
and peer grading in MOOCs. Much of the research in this area has focused on either how to ef-
fectively use peer grading to scale assessment in large-scale online classes [Kulkarni et al., 2015,
Piech et al., 2013] or on how peer review and feedback can bene�t the receiver of the feedback
[Dow et al., 2012, Falchikov, 1995, Gielen et al., 2010]. However, there is a growing body of
research on the e� ects of peer review on the reviewer (or the giver of feedback). Sadler and
Good [2006] studied how grading either one's own tests or one's peers' tests improve subsequent
performance when re-taking the same test (after a week). They found that grading one's own
test to be bene�cial, but grading peer tests did not seem to improve the students' scores on the
subsequent test. This may be because students can �nd their own mistakes when grading their
own tests. Their inability to learn from grading peer tests may also be because they were simply
grading and not providing any feedback. Wooley et al. [2008] found evidence for this second
hypothesis by �nding that college students did not write better papers after simply grading their
peers' papers, but that students who were asked to also give feedback wrote better papers than
students who did not review peer work. This suggests the importance of giving feedback or at
least requiring students to engage with peer work in more e� ortful ways. Consistent with this,
Cho and MacArthur [2011] found that reviewing peer papers led to greater writing quality on a
later writing assignment than simply reading peer papers or not engaging with peer papers at all.
Moreover, Lundstrom and Baker [2009] found that giving feedback in a second language writing
task led to greater improvements than receiving peer feedback in future writing tasks throughout
the course. All in all, peer review is likely an e� ective way of engaging with learner-generated
content, because it requires actively engaging with content rather than passively engaging with
it. There is a wide body of learning sciences literature that supports active engagement [see e.g.,
Chi and Wylie, 2014].

While I build on this work, my work di� ers from prior work on peer review in a number of ways.
First of all, prior work does not view peer-generated content as content per se, but rather looks
at the process of peer review as a well-established practice that is used in educational settings.
By viewing peer solutions as content, I am, interested in seeing how engaging with such content
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compares with reading expert examples, and I am interested in alternative ways of engaging with
peer-generated content beyond just grading them. For example, in Chapter 4 I test the e� cacy of
using learner-generated solutions as worked examples. In short, I am not tied to the process of
peer review, although I do analyze its e� cacy in teaching learners in Chapter 3. Second of all,
this prior work does not look at how to curate the best content. In the following two chapters,
I observe that reviewing random peer work is not necessarily e� ective, and so content curation
is necessary. In the traditional classroom and MOOC context, typically instructors would like to
have all work reviewed, and so content curation is not a concern. Of course, in the crowdsourc-
ing context, we may also need to have all work reviewed, so it may be necessary to distinguish
reviewing for pedagogical purposes and reviewing for grading purposes. Exploring this tradeo�
in both crowdsourcing contexts and traditional educational contexts would be interesting to ex-
plore in future work. Furthermore, reviewing pedagogically valuable peer work may also better
prepare learners for future peer review tasks that are necessary for grading.

2.3 Crowd Training

Several prior studies explore the training of crowdworkers [Dontcheva et al., 2014, Oleson et al.,
2011, Singla et al., 2014, Zhu et al., 2014]. Oleson et al. proposed the use of gold standards
as a form of training on relatively simple microtasks, but their primary focus was on the use of
gold standards for quality assurance rather than on quantifying their e� cacy in training [Oleson
et al., 2011]. Willett et al. used examples for training workers and for calibrating their work to
match the requesters' expectations on visualization microtasks and found that workers exposed
to examples generated higher quality responses than workers who did not [Willett et al., 2012].
Similarly, Mitra et al. used examples followed by a quali�cation test and found that this train-
ing improved the quality of workers' data annotations [Mitra et al., 2015]. Singla et al. used
machine learning to optimize which training examples to show workers in simple classi�cation
tasks [Singla et al., 2014]. Moving beyond microtasks, Dontcheva et al. proposed constructing
platforms that integrate training and crowdsourcing in a photo editing environment [Dontcheva
et al., 2014]. The Duolingo system2 similarly combines language learning and a crowdsourced
translation service in a single platform. However, the construction of such platforms requires
domain-speci�c knowledge and engineering and can be quite costly to build. Dow et al. [2012]
showed that either having workers self-assess their product reviews or having experts give feed-
back on their product reviews improves the quality of subsequent reviews. Of most relevance
to our work, Zhu et al. [2014] compared two forms of training. They found that reviewing the
work of other workers is a more e� ective form of training than doing more tasks. This compar-
ison is similar to our �rst experiment in Chapter 3 and could be considered as advocating for
a form of passive learnersourcing; however, the tasks they studied were subjective tasks (e.g.,
brainstorming novel ideas) that required creativity rather than strategy-driven complex problem
solving tasks that have objective answers [Zhu et al., 2014].

2www.duolingo.com
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2.4 Crowdsourcing as Learning at Scale

In addition to work on learnersourcing and work related to training crowd workers, there is an
emerging body of work studying learning in crowdsourcing platforms. Recent work has looked
into understanding how crowdsourcing platforms can support learning as part of crowdwork and
to foster the longer term development of worker skills [Dontcheva et al., 2014, Jun et al., 2018,
Krause et al., 2016, Suzuki et al., 2016]. For example, Jun et al. showed that workers value
learning about scienti�c studies that they participate in [Jun et al., 2018]. Our work �ts into this
narrative of crowdsourcing platforms as not just platforms to test learning at scale ideas, but to
enact and supportlearning at scale.

2.5 Learning Sciences

To develop hypotheses about di� erent forms of training, I turn to the learning sciences literature,
where instructional interventions have been more intensively studied than in the crowdsourcing
community.Worked examples, or expert step-by-step solutions to a task, have been shown to be
an e� ective form of teaching [Salden et al., 2010b, VanLehn, 1996]. Research has shown the
presence of theworked example e� ect: reviewing examples is more e� ective than solving the
tasks for learning, at least for novices [Sweller and Cooper, 1985]. While theexpertise reversal
e� ect claims that for more advanced students the opposite is true—solving problems is more
e� ective than reviewing examples [Kalyuga et al., 2001]—more recent work demonstrated that
in a less-structured domain, the worked example e� ect holds for both novices and advanced
students [Nievelstein et al., 2013]. This �nding may be relevant to complex problem solving
tasks, such as complex web search, as they are less-structured than problems in many typical
educational settings. Additionally, learning sciences research has shown that novices learn more
from their peers than from experts when being trained directly on the task they are tested on
[Hinds et al., 2001]. However, expert examples have been shown to be more e� ective than
peer examples on transfer tasks—tasks that share some, but not all, properties of the examples
[Boekhout et al., 2010, Hinds et al., 2001, Lachner and Nückles, 2015]. In both crowdsourcing
domains below, I look at tasks that are very di� erent from one another, so we expect many
of our tasks to be in the transfer regime. I aim to explore how these results generalize to the
crowdsourcing of complex tasks.

2.6 Ill-Structured Domains

An ill-structured domain is a domain where the problem space is not (or cannot be) entirely well-
speci�ed and as such we do not have algorithms that can solve problems from such a domain
[Newell, 1969]. According to Newell [1969], an ill-structured problem is one which humans can
often solve but known algorithms (at least under the current state-of-the-art) cannot. It is thus
natural that crowdsourcing tasks are often from ill-structured domains, because the very reason
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we resort to solving them with people is that we cannot do so with computers. As such, they can
also be di� cult to teach.

Prior work in educational psychology and the learning sciences has explored instruction for par-
ticular ill-structured domains. Some work has shown that examples can help novice learners on
retention and near transfer tasks (i.e., tasks that share similar features with the example), but
less so on far transfer tasks [Kyun et al., 2013]. Other work has suggested that direct instruction
(including giving an example for a single task) isin principle not bene�cial for ill-structured
domains [Spiro and DeSchryver, 2009]. Instead, researchers have suggested using multiple ex-
amples from di� erent tasks in ill-structured domains [Spiro et al., 1988], so learners can under-
stand the variety of distinct cases that fall into that domain. This work motivates the methods
we test for training crowdworkers. However, the present work expands on this literature on ill-
structured domains by exploring the use ofpeer-generatedwork for teaching in ill-structured
domains.
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Chapter 3

Validating Peer Work �

The peer approach requires students to take control of the writing
process, and to learn to critique their own work as they review the
work of other students. This may be the most important underlying
idea: students must become active participants in their own
learning, not passive recipients of sacred knowledge from an
authoritative outside source.

HelenSchneider, 1988

To date, crowdsourcing has largely focused on tasks that can be solved without special train-
ing or knowledge. However, many interesting tasks cannot be solved e� ectively by untrained
crowdworkers. Examples of such tasks include using web search to answer complicated queries,
designing an itinerary for someone going on a vacation [Zhang et al., 2012], and condensing
an academic article to an accessible summary for the general public [Kittur et al., 2011]. One
approach to crowdsourcing such tasks is to decompose them into smaller subtasks that are eas-
ier to solve [Bernstein et al., 2010, Cheng et al., 2015, Kittur et al., 2011, 2013a, Zhang et al.,
2012]. However, such task decomposition frequently requires the careful design and engineering
of task-speci�c work�ows. We investigate the less-studied case of crowdsourcing tasks that can-
not be decomposed in a straightforward manner. Speci�cally, we consider the class ofcomplex
problem solving tasksthat satisfy the following three properties: (1) there is a large space of
potential strategies that workers can use to solve the tasks, (2) workers have the capacity to solve
the tasks by discovering and trying di� erent strategies, and yet (3) a signi�cant proportion of
untrained workers are unable to solve these tasks with high accuracy. In this chapter we look at
complex web search tasks, where workers have to perform a series of web search queries to �nd
the right answer, as a prototypical type of complex problem solving task.

Little is known about how to optimally train crowdworkers to perform complex tasks in a cost-
e� ective way. Experts may be unavailable or unwilling to invest time into training crowdworkers
and, in many cases, requesters themselves do not understand how to solve their complex tasks let

� This chapter was adapted from Doroudi et al. [2016].
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alone how to train others to solve them. Furthermore, there may be a large continuum of possible
strategies for solving these problems, with di� erent strategies being optimal in di� erent instances
of the task. The strategies used to solve the task may also need to change over time (e.g, to detect
web spam, workers need to adapt to adversarial shifts in spammer strategies over time). As such,
it can be unwieldy, if not impossible, to write a comprehensive a set of standing instructions
on how to approach these tasks. This makes recent peer-generated work an attractive potential
source of content for training crowd workers. But is such content pedagogically e� ective? This
is the key question we hope to answer in this chapter.

We ran two experiments that explore how to train crowdworkers to do complex web search
tasks, with a focus on how e� ective peer-generated solutions might be for training. The �rst
experiment compares various forms of training including expert examples, learning by doing,
and validating peer work. From the �rst experiment, we �nd that expert examples appear to be
the most e� ective form of training but validating peer work also appears to possibly e� ective.
We then use a regression model to predict which peer solutions are most pedagogically e� ective,
and use that to inform the design of our second experiment. In the second experiment, we
found that presenting workers with crowdsourced solutions that were �ltered by length results
in as high learning gains as using expert examples, and possibly even higher learning gains if
at least one very long solution is validated. These results highlight the feasibility of developing
automated training pipelines for crowdsourcing complex tasks that run in the absence of domain
expertise.

3.1 Task Design

Complex web search is an interesting domain for crowdsourcing because the desired answer
cannot typically be captured by simply querying a search engine once. Instead, workers need
to explore and aggregate multiple sources of information to reach an answer [Aula and Russell,
2008]. Furthermore, complex web search is a prototypical member of the class of complex
problem solving tasks that we de�ned above; users utilize a variety of di� erent strategies when
approaching web search problems [Thatcher, 2008], and as we show below, on average, untrained
workers solve the web search tasks with 50% accuracy, indicating that workers do have the
capacity to solve these tasks, but without training, many solve them with low accuracy.

I developed a pool of questions that were designed to typically require several searches to �nd the
right answer. Questions were adapted and in�uenced from search tasks given in agoogleaday.com
since these questions were found to be at the appropriate level of complexity. Figure 3.2 shows
one such question along with an expert solution that we wrote. The rest of the questions are
shown in Appendix A. We ran a pilot study to decide how many questions to show in each
training session. We hypothesized that using too many training questions may decrease worker
engagement with the study while using too few questions may decrease the e� ectiveness of
training. After trying training sessions with one, two, and three training tasks, we found that
some workers found it unreasonable to have to review three expert examples before being able
to start the task. We settled on giving workers two training tasks. We refer to the two training
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Figure 3.1: Web search task interface
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Figure 3.2: Expert example for training Question Y
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questions as X and Y, and we refer to the �ve test questions that we give workers as A, B, C, D,
and E. We note that optimizing the quantity of training is an interesting question that we do not
further explore here.

In the web search tasks, workers were instructed both to provide an answer to the question and to
write down their thought process and record each step they took towards the answer (including
all visited URLs) in a web form that we call thestrategy scratchpad. Workers were also asked
to record unsuccessful strategies in what we call thefailed attempts box. Figure 3.1 shows the
main interface that workers interacted with when completing the web search tasks. An example
of a worker's solution is shown at the top of Figure 3.3. In this particular solution, we see that
despite having many failed attempts, the worker eventually found the correct answer using a
strategy that was drastically di� erent from the expert example (and from other workers).

3.2 Hypotheses

We formulated several hypotheses on the e� cacy of various forms of training based on the prior
�ndings in the literature. First, the worked example e� ect [Sweller and Cooper, 1985] suggests
the following hypothesis:

Hypothesis 1 Reviewing expert examples is an e� ective form of training in terms of increasing
the accuracy of workers in �nding answers to complex search tasks.

Second, Zhu et al. [2014] showed that reviewing the work of peer workers provides more ef-
fective training than doing more tasks. This can be seen as an analogue to the worked example
e� ect, but instead of simply reading through an example, the worker must readandvalidate the
work of a peer worker. However, the learning sciences literature suggests that expert examples
are more e� ective than peer examples for transfer tasks [Boekhout et al., 2010, Hinds et al., 2001,
Lachner and Nückles, 2015]. These �ndings suggest the following hypothesis:

Hypothesis 2 Validating other crowdworkers' solutions is also bene�cial for increasing worker
accuracy but less so than reviewing expert examples.

Similarly we hypothesize that validating high-quality peer solutions, which are similar to expert
solutions, will lead to more e� ective training than validating low-quality solutions. Furthermore,
we might imagine that the validation process has a bene�t beyond simply reading through an
example, so the training bene�t from validating such high quality peer solutions may even exceed
that of reviewing expert examples. These hypotheses can be formulated as follows:

Hypothesis 3 Having workers validate �ltered crowdsourced solutions that are higher quality
than average leads to a greater increase in accuracy than having them review un�ltered solu-
tions.

Hypothesis 4 If the solutions presented to workers are of high enough quality, this will have at
least the same e� ect as presenting workers with expert examples.
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Con�rming these hypotheses would provide support for building domain-agnostic pipelines that
train crowdworkers using their peers' work. Such pipelines could improve the quality of training
over time via methods for presenting the best peer solutions to workers. Eventually, such a
pipeline could accrue a repository of high quality worked examples from crowd work without
requiring the requester to have extensive domain knowledge. Such a pipeline would have the
additional bene�t of providing quality control of work performed on complex tasks via peer
validation.

3.3 Experimental Design

We ran all of our experiments on Amazon Mechanical Turk.1 Workers were assigned to one
of several di� erent training conditions (i.e. �ve in Experiment I and three in Experiment II) as
soon as they accepted our Mechanical Turk Human Intelligence Task (HIT)2. The workers were
assigned to the conditions in a round robin fashion to balance the number of workers assigned
to each condition. Workers were �rst presented with an informed consent form that did not
reveal we were studying worker training. Upon providing consent, workers were presented with
condition speci�c instructions followed by two training tasks (unless they were in the control
condition), possibly an additional set of instructions depending on the condition, and then �ve
test tasks. For both training and test questions, we assigned the questions to workers in a random
order. For example, workers were as likely to see training question X and then Y as they were to
see Y and then X. While doing any of the tasks, the worker could choose to stop working on the
HIT by completing an exit survey, which was required for payment. When workers began the
survey, we revealed that the primary purpose of the study was to analyze the e� cacy of various
forms of training, and asked them several questions about the tasks in general and about the
e� cacy of the training they received in particular.

3.4 Experiment I

The �rst experiment was performed to compare various forms of training inspired by the lit-
erature. We sought to �nd the most e� ective method for training as characterized by several
metrics including worker accuracy. We focused on validating Hypotheses 1 and 2 on explor-
ing the relative e� cacies of workers reviewing expert examples and validating peer-generated
solutions.
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Figure 3.3: Validation task for training Question Y with a real worker solution
19



3.4.1 Conditions

The �ve conditions we ran in the �rst experiment were as follows:

ˆ Control : Workers receive no training. They are simply given instructions on how to per-
form the web search task and are then given the �ve test tasks (A, B, C, D, and E) in a
random order.

ˆ Solution: Workers are �rst presented with training tasks X and Y in a random order as
a form of training. Workers are given the same instructions as in the control condition,
except that it tells them they will have seven tasks instead of �ve. They are not told that
the �rst two tasks are for training. (We refer to this as thesolutioncondition as workers
aresolvingadditional tasks for training.)

ˆ Gold Standard: Workers start by solving two tasks for training as in the solution condi-
tion. However, after submitting the answer to each of these two tasks, workers are shown
the correct answer to the task along with an expert example solution, such as the one shown
in Figure 3.2. Workers are told that the expert solutions are more thorough than what we
expect from them.3

ˆ Example: Workers are given two expert examples for training, which are the same as
the expert solutions given in the gold standard condition. On the instructions given to
workers for reviewing the examples, workers are informed that they cannot move on to the
next task until 30 seconds elapse so that they are encouraged to spend time reading and
understanding the examples. As in the gold standard condition, workers are also told that
the examples will be more thorough than the task solutions we expect from them. Once
they �nish reading the examples, workers are given explicit instructions for completing
web search tasks followed by the �ve test tasks.

ˆ Validation: Workers are �rst asked to validate two other workers' solutions for questions
X and Y in a random order. The solutions to be validated are randomly chosen from a pool
of 28 solutions collected in a previous pilot study. In each validation task, a worker sees
the answer, strategy scratchpad, and failed attempts box of the solution they are validat-
ing, and are then asked a series of questions about the solution to be validated, as shown
in Figure 3.3. Once they complete the two validation tasks, workers are given explicit
instructions for completing web search tasks followed by the �ve test tasks.

We paid workers between $0.50 and $1.50 for completing a web search task (depending on
whether or not they got the correct answer and the completeness of their strategy), $0.50 for each
validation task, and $0.10 for reviewing an expert example. Workers in the gold standard condi-
tion were only paid for solving the tasks and were not paid extra for reviewing examples, because
we do not enforce them to read through the examples. Additionally, we paid workers $0.50 for

1We recruited only workers from the United States who were at least 18 years old and had at least a 98% approval
rate.

2Every worker did only one HIT, which was composed of a series of tasks.
3Note that we do not refer to these tasks as gold standard tasks to workers since the term “gold standard” may

have negative associations for workers in terms of disquali�cation or rejection of work.
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Number of Workers (Percent of Workers that Start HIT)

Start HIT
Finish� 1

training task
Finish� 1
test task

Finish all
tasks

Control 397 - 210 (0.53) 150 (0.38)
Solution 372 146 (0.39) 93 (0.25) 71 (0.19)
Gold Standard 372 142 (0.38) 95 (0.26) 72 (0.19)
Example 362 280 (0.77) 188 (0.52) 140 (0.39)
Validation 369 225 (0.61) 162 (0.44) 107 (0.29)

Table 3.1: Number of workers starting each condition in Experiment I and the retention rate at
various points in the HIT

completing the survey. Workers who did not submit the survey were not paid at all, since their
data could not be submitted to Mechanical Turk, which we made clear to workers.

3.4.2 Results

Table 3.1 shows how many workers were in each condition (i.e. how many went beyond the
informed consent form) and the retention rates per condition: what percentage of workers did at
least one training task, did at least one test task, and did all of the tasks. We see that the control
and example conditions had the highest retention rates at all points in the HIT, and the solution
and gold standard conditions had the least, with the validation condition in between. This is not
surprising as the control condition has no training and the example condition o� ers the fastest
form of training whereas the gold standard and solution conditions spend the longest time in the
training phases. Workers may be more likely to drop out the longer they are in the task, and this
could be due to either external factors that have nothing to do with the task or due to a variety of
task-related factors such as boredom, annoyance with the task, the di� culty of the task, and/or the
time spent appearing to be not worth the pay. All of these were expressed as reasons for dropping
out in our survey. Nonetheless we �nd that even in the most time-consuming conditions (which
took near an hour on average, but took up to two hours for some workers), nearly 20% of workers
completed all tasks. Moreover, we �nd that in all conditions (except the control) around half of
the workers who did at least one training task �nished all of the tasks, suggesting that among
workers who are willing to �nish the �rst training task, there is roughly an equal proportion of
highly committed workers in every condition.

Table 3.2 reports non-retention metrics for the various conditions. We are particularly interested
in whether training increases the accuracy of workers on the test tasks, and if so, which forms
of training are most e� ective at increasing worker accuracy. We report both the average per task
accuracy (averaged over all test tasks) and the average accuracy per worker (among workers who
did all �ve test questions). The average accuracy per worker is computed by �rst calculating
the average accuracy for each worker on the �ve test questions they did, and then averaging this
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Per Test Task Per Worker

Accuracy Time (min) Strategy Length (char) Accuracy Total Time (min)

Control 0.48 8.28� 7.35 492� 385 0.50� 0.27 41.2� 22.2
Solution 0.54 6.65� 6.33 477� 396 0.55� 0.28 55.2� 23.9
Gold Standard 0.51 6.69� 4.47 467� 297 0.52� 0.21 54.7� 20.8
Example 0.61 9.58� 7.15 625� 424 0.61� 0.26 49.6� 22.0
Validation 0.55 9.47� 7.32 539� 339 0.56� 0.26 57.3� 24.6

Table 3.2: Comparison across conditions in Experiment I on metrics of interest. Mean� standard
deviation is shown. Per task accuracy is a Bernoulli random variable; as accuracies are near 0.5,
standard deviation is nearly 0.5 for every condition. Per worker columns only include workers
who do all �ve test tasks, except for the training cost column, which is averaged over all workers
who do both training tasks. The training cost column shows how much we paid workers for
training on average. Note that workers in the example and validation conditions were paid a
�xed amount.

Question A Question B Question C Question D Question E

Control 0.67 0.43 0.50 0.53 0.29
Solution 0.70 0.49 0.57 0.62 0.35
Gold Standard 0.84 0.26 0.62 0.59 0.25
Example 0.77 0.50 0.72 0.65 0.42
Validation 0.73 0.50 0.54 0.64 0.34

Table 3.3: Comparison across conditions in Experiment I of per task accuracy for each question.
The condition with the highest accuracy for each question is bolded.

measure across the workers.4

We �nd that for both measures of worker accuracy, all training conditions outperformed the con-
trol condition of having no training. The di� erences in per worker accuracy were signi�cant
based on the non-parametric Kruskal-Wallis test (p = 0.0067< 0.05). Doing a post hoc analysis
on the per worker accuracy using Mann-Whitney U tests, we �nd that the example condition
was signi�cantly better than the control after a Bonferroni correction for doing four tests. With
a similar analysis on per task accuracy using two-proportionz-tests5, we �nd that the example
and validation conditions were signi�cantly better than the control after a Bonferroni correc-
tion.

The example condition had the highest gains in accuracy over the control condition with an e� ect

4The accuracy per worker for workers who didat least one taskyields similar results. However, it is a more
noisy measure since workers who did only one task have a much more noisy accuracy than workers who did all �ve,
but in the aggregate average across workers, accuracy rates for workers who completed 5 tasks would be weighted
equally with those that completed 1 task.

5Not all of the assumptions of this statistical test are satis�ed in our domain as answers for the same worker on
di� erent questions are dependent.
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size of 0.25 (Cohen'sh) for per task accuracy, which is considered a small e� ect, and 0.42 (Glass'
� ) for per worker accuracy, which is closer to a medium e� ect. While these e� ect sizes are not
considered large in the educational literature, we note that our form of training ismuchshorter
than traditional educational interventions, so we do not expect e� ect sizes to compare to those of
traditional interventions.

As for time spent per test task, we �nd that the example and validation conditions took longer
than the control by over a minute on average, while the solution and gold standard conditions took
less time than the control by over 1.5 minutes on average. Despite the large di� erence in time per
task, we �nd that in total, the example condition took less time on average for workers who did
all of the tasks than the solution and gold standard conditions since the example condition spends
much less time on training. Furthermore, the number of characters in the strategy scratchpad was
greater for the example and validation conditions than the other conditions.

Finally, we do a comparison of the conditions on the per task accuracy for each of the �ve test
questions, as reported in Table 3.3. We �nd that the example condition achieved the highest
per task accuracy on all questions except for Question A, where the gold standard condition did
much better than any other condition. On the other hand, we �nd that the gold standard condition
did much poorer on Question B compared to all the other conditions. In the discussion section,
we present a case study analyzing why the e� ectiveness of the gold standard condition may vary
between tasks.

3.5 Experiment II

The results of Experiment I demonstrating the e� ectiveness of the example and validation con-
ditions suggest that there might be hope for the validation condition to perform as well as the
example condition if we only present workers with the “best solutions” to validate. This experi-
ment will show how validating peer solutions can possibly be as e� ective or even more e� ective
than reading expert examples, and will provide preliminary evidence for the potential impact of
content curation that we will explore more fully in the next chapter.

3.5.1 Filtering Validation Tasks

We seek to answer the question “what properties of a solution makes it bene�cial for training
when presented as a validation task?” To help answer this question, we performed linear regres-
sion on a set of features for each of the solutions that was validated in Experiment I6 to see how
well they predict the per task accuracy of workers who validated that particular solution. The
features for each validated solution include the answers provided for each quanti�able question

6We removed one one of the solutions that was a clear outlier. It had the longest solution, but the workers who
validated it had a lower average accuracy than workers who validated any other solution, which violates the trend
we discuss below. In addition to being a bad solution, it was formatted very strangely (without newline characters)
and its length was due to long URLs; this seems to have had a negative e� ect on workers.
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Figure 3.4: Average per worker accuracy on tasks done after seeing a particular validation task for
training vs. the number of characters in the strategy scratchpad for that validation task. Each point
represents a particular solution given as a validation task. The blue circles show solutions that
arrived at the correct answer and the red x's show solutions that arrived at the wrong answer. The
diamonds indicate the two expert solutions provided in the example condition for comparison;
the average accuracy in this case is for all workers in the example condition.

asked in the validation task (see Figure 3.3) averaged over workers who validated that solution.
To this set of features we also added the number of characters in the strategy scratchpad for that
task, the number of characters in the failed attempts box for that task, and the amount of time
the worker who authored the solution spent solving that task. We performed regularized linear
regression (LASSO with a regularization parameter that was chosen using Leave-One-Out cross-
validation). The resulting analysis indicated that only the number of characters in the strategy
scratchpad was correlated with accuracy7.

Figure 3.4 shows for each solution presented as a validation task, the per worker accuracy (in
the testing phase) of workers who validated that solution vs. the number of characters in the
strategy scratchpad for that solution. The Pearson correlation coe� cient is 0.46. We also see

7That is, the LASSO assigned a coe� cient of 0 to all other predictors.
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from the plot that whether the solution had a correct or incorrect answer does not seem clearly
correlated with the later accuracy of workers who validated it. This suggests that in this setting,
regardless of solution correctness, longer solutions are generally more e� ective for training. Thus
a requester could potentially decide whether a solution should be given for training as soon as the
solution is generated, by checking how long it is, without needing to �rst assess if the solution is
correct.

Since our goal was to mimic the training process followed in Experiment I, in which all training
conditions involved two tasks, our next task was devising a method for automatically identifying
good pairsof validation tasks to present workers. We split the solutions into “short” and “long”
ones by whether the solution length was longer or shorter than a single handset threshold. When
we analyzed the e� ect of the di� erent orderings of short and long solutions on worker accuracy
on the data collected from Experiment I, we found that presenting a short solution followed
by a long solution appears better than the other combinations for various thresholds. We note
that we had very little data to evaluate presenting two long solutions, so it may have actually
been the best option, but we chose the more conservative option that was supported by our data.
Choosing to present a short solution followed by a long one also has the practical advantage that
all solutions collected from prior workers can be validated, resulting in automated quality control
for all solutions collected from crowdworkers. In our second experiment, we test the e� cacy of
this approach for �ltering solutions that we present workers.

3.5.2 Experimental Design

Experiment II compared three conditions:example-II, validation-II , and�ltered validation .
Example-II and validation-II are the same as the corresponding conditions from the �rst experi-
ment with a new worker pool. To see how the trends from Experiment I generalize when a new
set of solutions is provided for validation, we refreshed the solution set for validation-II with
solutions collected from Experiment I. The set included 100 solutions to Questions X and Y ran-
domly sampled from those collected from the solution condition of Experiment I as well as the
28 solutions used in the validation condition of the previous study.

The solutions used in the �ltered validation condition came from the same randomly sampled
set of 100 solutions generated in Experiment I. As before, the ordering of questions X and Y
was randomized. The �rst solution each worker validated was chosen from among those that had
fewer than 800 characters, and the second solution they validated was chosen from among those
that had at least 800 characters. This threshold of 800 characters resulted in 76 short and 24 long
solutions used in the �ltered validation condition.

3.5.3 Results

Table 3.4 displays how many workers were in each condition and the retention rates in each
condition. Although our main focus is on how conditions compared within Experiment II, we
note that the example-II condition had a lower retention rate than the earlier example condition,
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Number of Workers (Percent of Workers that Start HIT)

Start HIT
Finish� 1

training task
Finish� 1
test task

Finish all
tasks

Example-II 310 239 (0.77) 150 (0.48) 102 (0.33)
Validation-II 330 189 (0.57) 140 (0.42) 95 (0.29)
Filtered Validation 314 195 (0.62) 142 (0.45) 88 (0.28)

Table 3.4: Number of workers starting each condition in Experiment II and the retention rate at
various points of the HIT

Per Test Task Per Worker

Accuracy Time (min) Strategy Length (char)
Accuracy

Total Time
(min)

Example-II 0.59 8.66� 7.25 550� 379 0.59� 0.26 42.6� 20.0
Validation-II 0.57 9.02� 6.81 561� 362 0.58� 0.23 53.5� 22.1
Filtered Validation 0.59 9.58� 7.87 618� 415 0.60� 0.25 52.4� 21.5

Filtered Medium-Long 0.69 10.96� 10.50 692� 424 0.74� 0.17 55.4� 21.6

Table 3.5: Comparison across conditions in Experiment II on metrics of interest. Mean� stan-
dard deviation is shown.

indicating the worker pool may have slightly changed. The validation-II and �ltered validation
conditions have similar retention rates.

Table 3.5 presents non-retention metrics. The example-II and �ltered validation conditions had
nearly identical performance on per task and per worker accuracy. These conditions perform
slightly better than the validation-II condition, but the di� erences are not signi�cant. Interest-
ingly, there may be a regression to the mean e� ect between the �rst and second experiment, as
the di� erence between the standard validation and example conditions in Experiment I was larger
(0.06 for worker accuracy) than the di� erence between validation-II and example-II (0.02).

In Experiment I, we had a limited number of longer task length solutions provided to workers to
validate, thereby limiting our ability to explore the e� ects of providing workers with two longer
tasks to validate. However, a number of the solutions presented to workers in Experiment II (i.e.
solutions generated during Experiment I) had a longer length, and so we can now analyze how
well workers who were provided with only medium and long solutions performed. To do so, we
selected the subset of workers in the �ltered validation condition whose �rst task was to validate
a solution between 500 and 800 characters long (since the �rst task was never longer than 800
characters by design), and whose second task was to validate a solution that was at least 1000
characters long (n=34 workers). We refer to this subset of workers as the�ltered medium-long
group.

We �nd that workers in the �ltered medium-long group have a much higher average per task
accuracy (0.69) than the example-II condition (0.59), validation-II condition (0.57), and �ltered
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validation condition (0.59). The di� erence is signi�cant (p < 0.05) between the �ltered medium-
long group and validation-II condition after doing a Bonferroni correction for multiple tests.
The e� ect size of per task accuracy for the �ltered medium-long workers as compared to the
example-II condition was 0.19 (Cohen'sh) and the e� ect size for per worker accuracy between
the two conditions was 0.55 (Glass'� ). The average time per test task and average strategy
length were also considerably larger for these workers than for workers in all three of the actual
conditions.

3.6 Discussion and Conclusion

We compared the e� cacy of various forms of training for complex problem solving tasks. In our
�rst experiment, we found that using expert examples was the most e� ective form of training as
captured by several metrics, including increasing the accuracy of workers on the task. We then
showed that having workers validate crowdsourced solutions that are beyond a threshold length
can be even more e� ective than having them read expert examples.

Follow-up studies on training may be informative to better understand the nature of cognitive
processes involved in training for complex tasks. For example, it is not clear to what extent
the validation process is essential to the training bene�ts of the validation task. Perhaps we
could simply present long crowdsourced solutions to workers as expert examples. However, we
hypothesize that the validation process is useful, in part because it provides workers a “rubric”
of what constitutes a good solution. This was also seen in the work of Dow et al. [2012] where
workers who self-assessed their work or had an expert assess their work had similar performance
gains, possibly because both groups saw similar rubrics. We also expect that the validation task
encourages actively engaging with an example rather than passively reading it, which could be
more bene�cial for learning [Chi and Wylie, 2014]. Validating peer work requires more cognitive
load than reading an expert example, but likely requires less cognitive load than solving web
search tasks from scratch. Therefore, based on the expertise-reversal e� ect [Kalyuga et al.,
2001], perhaps validating peer work is most e� ective for workers who have some familiarity
with web search, but would struggle to complete a web search task on their own, which we
imagine is the case for many crowdworkers.

While our focus has been on learning from peer solutions, workers can likely also learn from their
own work. As such, we expect that worker performance may have improved simply because we
asked workers to document their strategies, which can be viewed as a kind of self-explanation
[Chi et al., 1989]. Would our results hold if we no longer have workers document their strategies
after training?

Finally, we think the most practically important future direction is to run similar experiments
across a series of domains to see if our results generalize. In particular, it would be interesting to
�nd if �ltering by solution length is e� ective in all domains, and if not, if we can �nd a general
machine learning protocol for �nding the features of high-quality validation tasks in any domain.
We hypothesize that this is possible, and if so, that we can create crowdsourcing platforms that
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automatically learn to train unskilled workers. As one step in this direction, in the next chapter,
we examine the e� cacy of �ltering high quality solutions based on crowdworker ratings in a
di� erent complex crowdsourcing task.
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Chapter 4

Reading Peer Examples�

The world is often unkind to new talent, new creations. The new
needs friends. Last night, I experienced something new, an
extra-ordinary meal from a singularly unexpected source. To say
that both the meal and its maker have challenged my preconceptions
about �ne cooking is a gross understatement. They have rocked me
to my core. In the past, I have made no secret of my disdain for
Chef Gusteau's famous motto: `Anyone can cook.' But I realize,
only now do I truly understand what he meant. Not everyone can
become a great artist, but a great artist can come from anywhere.

Anton Ego, Ratatouille

While the previous chapter was focused on complex problem solving tasks, here we turn to
more creative, open-ended writing tasks. In particular, we examine how to e� ectively use peer-
generated examples in the context of a task where crowd workers read two Amazon product
pages and write a review that compares and contrasts the two products. Since these tasks are more
open-ended, the work cannot be validated in the same way as in complex problem solving tasks,
where a worker can follow another worker's solution steps to see if they arrived at the correct
answer. Instead, we wanted to see if simply presenting worker product reviews as peer-generated
examples is an e� ective form of training in this context. Our initial aim was to compare the
e� cacy of various ways of presenting peer-generated artifacts (i.e., showing a single example,
showing pairs of examples, and showing worker-generated guidelines) to prepare workers for
transfer tasks(i.e., writing product comparison reviews for very di� erent kinds of products).
However, we found in our �rst experiment that randomly presenting peer-generated examples
or guidelines was not very e� ective, presumably because the average quality of peer-generated
examples was low. We ran a second experiment that showed that peer-generated examples can be
useful when examples that are of su� ciently high quality are shown, at least on anear transfer
task (i.e., a task that closely resembles the example).

� The work described here was done in collaboration with Ece Kamar and Emma Brunskill.
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Figure 4.1: Product comparison task. The task here is to compare smoke alarm products.

Further, our analysis seems to indicate that even among high quality examples, there are di� er-
ences in how pedagogically e� ective they seem to be. Our preliminary analysis seems to suggest
that surface-level features like the format of the example may cause some examples to be less
e� ective than others, but more work is needed to con�rm this. This suggests the need to automat-
ically search the space of peer-generated examples to �nd ones that are more e� ective, which we
motivated in the previous chapter. By automatically discovering what makes a learnersourced
example pedagogically e� ective, future work could not only serve the practical goal of boot-
strapped example creation, but also serve the scienti�c goal of determining what makes a great
example great.
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4.1 Task Design

The domain in this task is writing open-ended product comparison reviews. Workers are given
links to two Amazon pages for products that are somewhat similar (but with several salient
di� erences). Writing product reviews is a crowdsourcing task that has been used in prior research
in training crowd workers [Dow et al., 2012, Steuer et al., 2017, Zhu et al., 2014]. Prior work had
crowd workers review products that they own, but this limits the ability to use crowdsourcing to
review particular products. Therefore, we wanted workers to review speci�c products available
on Amazon. We chose to have workers compare two products, instead of reviewing one, both
because the comparative nature of the task would help ground the content of the review and
because product comparisons are a common service that many websites provide.

Figure 4.1 shows an example of a product comparison task with instructions as was presented to
workers. As can be seen from the instructions, that task was intentionally left open-ended. This
was for several reasons. First, we wanted workers to have some creativity in determining how
to write the review; a good review can come in many shapes and forms, and the worker should
be able to determine that. Second, the particulars of a good review might vary when comparing
di� erent types of products, and so we do not want to give overly speci�c instructions that might
limit the worker's ability to write a good review for a new product type. Relatedly, the requester
might not know what a good review would look like for all types of products. However, the task
is not meant to be completely subjective; we do give workers a metric for assessing quality of
a review—usefulness for potential buyers who want to choose which product to purchase. As
such, to evaluate the quality of reviews, we had workers grade the reviews on a scale that tries to
assess how useful a review would be for potential buyers.

We had workers write reviews for three distinct categories of products: smoke alarms, board
games, and gluten-free macaroni and cheese products. We choose product categories that are
very di� erent from one another so that we could test both whether seeing examples of reviews
for products from the same category helps as well as whether seeing examples from products
of a di� erent category is still useful. We were particularly interested in identifying how to best
support transfer to other categories, as one can imagine crowdsourcing requesters may need to
have workers complete many similar tasks but for di� erent categories, and the categories of
interest might change over time. We used �ve tasks in particular: two for smoke alarms (Tasks
A and A'), two for board games (Tasks B and B') and two for mac and cheese (Task C). Tasks
A and B were used to collect an initial pool of examples that we could show workers, and Tasks
A', B', and C were used to test workers to see if examples improve their performance.

4.2 Hypotheses

Our �rst experiment was guided by three main hypotheses that were supported by the psychology
literature.

Hypothesis 1 Seeing peer-generated artifacts leads to improved performance on future tasks.
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Motivated by results from Spiro and colleagues, we additionally hypothesize that it is important
to see multiple peer-generated examples for far transfer tasks in ill-structured domains [Spiro
and DeSchryver, 2009, Spiro et al., 1988].

Hypothesis 2 Seeing multiple peer-generated examples from di� erent categories will lead to
greater performance than seeing a single peer-generated example on far transfer tasks (i.e.,
tasks that are from di� erent categories than the single example).

Additionally, prior work has shown that giving guidelines that are abstracted from solving dif-
ferent tasks will lead to greater transfer than examples, but is less bene�cial for performance
support and near transfer [Eiriksdottir and Catrambone, 2011], thus motivating our �nal hypoth-
esis.

Hypothesis 3 Seeing peer-generated guidelines will lead to greater performance on far transfer
tasks than seeing a single peer-generated example, but will have worse performance on near
transfer tasks.

While these hypotheses guided the design of the �rst experiment, I �nd that none of these hy-
potheses were met, perhaps due to the low quality of random peer-generated examples, which
was not an issue in prior work on ill-structured domains, since prior work used expert worked
examples. Thus, the focus of this chapter will be more on how thequality of examples a� ects
performance on future tasks, rather than how to best support transfer. However, I will also discuss
what our results seem to suggest in terms of best supporting transfer.

4.3 Experimental Design

All of our experiments were conducted on Amazon Mechanical Turk. Workers who accepted our
Mechanical Turk Human Intelligence Task (HIT) were �rst given a consent form and randomly
assigned to one of several conditions (depending on the experiment). After giving consent, work-
ers were given instructions followed by some form of training (seeing examples or guidelines)
depending on the condition they were assigned to (unless they were in the control condition).
Workers were asked to spend as much time as they needed reading the examples or guidelines
they were presented. They then do up to three tasks in order (A', B', and C) followed by a
short survey with qualitative questions about the di� culty of the task and usefulness of training.
Workers were free to stop working on the tasks at any point in time, at which point they were
given the survey. Workers were paid $0.50 just for doing the HIT and survey, in addition to $2
for each product comparison review they completed. They were told that they would receive
the bonus payment provided that they follow the instructions. Additionally, workers were given
$0.50 for each example or guidelines that they had to read. The pay was chosen so that workers
could expect a wage of $11/hour1 if they spent 10 minutes on each review, and as such workers
were suggested to not spend more than 10 minutes writing each review.

1This is in line with Dynamo's ethical standards for paying crowdworkers:http://wiki.wearedynamo.org/
index.php/Fair_payment .
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After each experiment, we had workers grade the solutions both in terms of overall quality as
well as checking whether the review contained speci�c features. We �rst released a HIT to
test workers' abilities to accurately grade some gold standard product comparison reviews. Only
workers who had participated in the associated experiment were allowed to take the HIT. Workers
who were quali�ed were then given access to HITs for each review that needed to be graded.
Each review was graded by three to �ve di� erent workers. The rubric consisted of two parts.
First, the graders were asked whether or not the review mentioned particular points that we
believed were eithergenerallygood to mention in a product review (i.e., price, average star rating,
and number of reviews on Amazon) or important to mention when comparing thoseparticular
products (e.g., mentioning that both mac and cheese products are gluten free or mentioning that
one of the products is vegan/dairy-free but the other is not). Second, the graders were asked to
rate the overall quality of the solution using the following scale:

5. It's hard to imagine a more useful resource for someone to decide which product to buy.
The review appears to contain no factual errors.

4. The review would help you decide which product is best, but could have had some more
information or could have been structured better.

3. The review would be helpful, but you would need to do more research to decide which
product to buy.

2. The review has some distinctions between the two products, but you basically need to do
your own research from scratch to decide which product to buy.

1. The review is misleading or does not really contain useful information (e.g., contains a
major factual error that could result in purchasing the wrong product).

This overall quality scale is our primary metric for evaluating the e� cacy of di� erent types of
training.

4.4 Example Collection

We recruited 70 Mechanical Turk workers to complete up to three tasks (A, B, and C). In addition,
to collecting examples from tasks, we also wanted to collected general guidelines for doing
product comparison review tasks which we could also test. Workers were randomly assigned
to one of two conditions. In one condition, workers just completed the three tasks, but in the
second condition, after doing two tasks, workers were asked to write down general guidelines
for doing the tasks. The experimental design is shown in Figure 4.2(a). We randomly assigned
the workers to these two conditions in order to assess whether writing guidelines is bene�cial to
the workers who write the guidelines themselves, namely whether it improves their performance
on Task C. 56 workers submitted acceptable work; work was rejected when workers clearly
did not put an honest e� ort into the task for example by copy-pasting text from the Amazon
product pages (which the instructions explicitly told them not to do). This process resulted in 56
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Figure 4.2: Experimental design for (a) the example collection phase and (b) Experiment 1.
The reviews and guidelines generated from the example collection phase are the examples and
guidelines used in Experiment 1.

reviews for Task A, 47 reviews for Task B, and 41 reviews for Task C (which were not used as
examples).

Each review was graded by �ve workers. To measure the inter-rater reliability, we computed
the intraclass correlation coe� cient, namely ICC(1,k), which measures how likely it is that two
randomly chosen samples ofk graders would assign the same quality (1-5) for a given review
[Shrout and Fleiss, 1979]. The intraclass correlation for the example collection phase as well
as the subsequent experiments is shown in Table 4.1. In the next two experiments, we only
used 3 workers to grade each review, which could explain why the correlation was a little lower.
However, overall the intraclass correlation tends to be high, meaning the average overall quality
per review can be a reliable way of measuring review quality.

There appeared to be no di� erence between the two conditions in the overall quality of Task C
(2.4 for workers who created guidelines vs. 2.42 for workers in the control condition).

4.5 Experiment 1: Random Examples

In our �rst experiment, we wanted to test whether randomly presenting examples or guidelines
improves the performance of workers on future tasks. In addition, we wanted to use this exper-
iment to test our hypotheses on what types of peer-generated artifacts are e� ective for training,
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Task A Task B Task C

Example Collection 0.86 0.86 0.90

Task A' Task B' Task C

Experiment 1 0.74 0.75 0.67
Experiment 2 0.75 0.87 0.88

Table 4.1: Intraclass correlation coe� cients, ICC(1,k), of overall quality ratings given to reviews
from each experiment

Mean Overall Quality� Std Dev

Condition
Num of
Workers

Task A' Task B' Task C

Control 92 2.43� 0.7 3.00� 0.7 2.58� 0.7
One Example 102 2.27� 0.7 2.85� 0.7 2.66� 0.7
Two Examples 97 2.47� 0.7 3.02� 0.7 2.67� 0.7

Guidelines 101 2.47� 0.6 2.94� 0.7 2.68� 0.7

One Example� 52 2.40� 0.7 2.87� 0.7 2.68� 0.8
One Example< 50 2.14� 0.7 2.83� 0.6 2.64� 0.7

Two Examples� ; � 23 2.57� 0.8 3.09� 0.8 2.86� 0.7
Two Examples� ; < 24 2.65� 0.5 3.01� 0.7 2.74� 0.7
Two Examples<; � 27 2.47� 0.7 3.07� 0.6 2.45� 0.6
Two Examples<; < 23 2.20� 0.6 2.90� 0.7 2.61� 0.8

Table 4.2: Experiment 1 Results. The highest-performing condition for each task is shown in
bold and the lowest-performing condition is italicized. The highest-performing median-split
condition for each task is also shown in bold.� indicates above-median (greater than or equal to
median) example quality and< indicates below-median example quality.

both for near-transfer tasks as well as for transfer tasks. As such, we randomly assigned work-
ers to one of four conditions. In thecontrol condition workers received no training, in theone
examplecondition, workers saw a single randomly chosen example from Task A, in thetwo ex-
amplescondition, workers saw a randomly chosen example from Task A followed by a randomly
chosen example from Task B (both presented on the same page), and in theguidelinescondition,
workers saw randomly chosen guidelines generated by workers (after completing Tasks A and
B). These conditions are depicted in Figure 4.2(b). The workers were told that the examples and
guidelines they saw were randomly chosen, so that workers would not be confused if they saw
bad product comparison reviews. For examples, workers in the one example condition were told
“The product comparison review shown below was randomly selected from ones submitted by
other workers, so it is not necessarily of high quality. Good and bad examples can both help
inform your work. If the peer example is bad, think about ways it could be improved.” In this
way, we were also hoping that seeing bad examples could sometimes be instructive, which would
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potentially increase the value of randomly presenting peer-generated examples. Workers were
also given the average overall quality score for each example they saw.

4.5.1 Results

We recruited 433 participants from Mechanical Turk, of which 416 submitted acceptable work
and 392 completed at least one of the test tasks. The results are shown in Table 4.2. Since,
workers were allowed to stop working on the tasks at any time, the number of workers decreases
after each task. Among the workers who did the �rst task, 86% of workers do all three tasks
in the control and two examples conditions, 75% in the one example condition, and 73% in the
guidelines condition. For each task, we ran a Kruskal-Wallis test comparing the four conditions,
and found that there is no signi�cant e� ect of condition for each task (p = 0:09 for Task A'
with largerp-values for the other two tasks). However, we observe that seeing a single example
appears to be no better than control, and trends worse on Tasks A' and Task B'. Seeing two
examples or guidelines generally results in performance that is comparable to or better than not
receiving training.

We hypothesize that the reason none of these conditions appears e� ective and that a single exam-
ple might even be bad is that these examples and guidelines were randomly chosen. To analyze
this further, we looked at the results depending on whether the examples shown to workers were
of above median or below median overall quality. The median example quality for Task A was
2.05 in the one example condition and 2.1 in the two examples condition and the median quality
for Task B was 3 in the two examples condition. The results for these median-split conditions is
shown at the bottom of Table 4.2. We observe the following trends:

ˆ Seeing an example of above median quality appears better than seeing an example of below
median quality on average. This is clearest when comparing two examples that are both
above median quality to two examples that are both below median quality.

ˆ Seeing a single example does worse than the control on Task A' and B' regardless of
whether the example was of above or below median quality.

ˆ Seeing two examples of above median quality has the highest or second highest perfor-
mance of all above/below median splits.

ˆ For Task A', seeing an above median example on Task A is better than below median,
regardless of the quality of the example on Task B, and analogously for Task B', seeing an
above median example on Task B is better than below median, regardless of the quality of
the example on Task A.

Taken together, these trends seem to suggest that seeing random examples may not help (or only
marginally help), but seeing two high quality (e.g., above median) examples is likely to lead to
more learning gains. Moreover, the results suggest that seeing a good example from the same
category as the task to be completed is helpful (e.g., seeing a good example from Task A is
helpful in doing Task A'). Given that these are just trends, we run a second experiment to test if
seeing two high quality examples is actually bene�cial.
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4.6 Experiment 2: High Quality Examples

To test if only presenting high quality reviews is pedagogically e� ective, we decided to try the
simplest condition that we had reason to believe would have the highest performance bene�ts
over not receiving any training. Thus, we chose to show two examples (one from Task A and
one from Task B as before) that were both among the highest quality for their respective task. In
particular, for each task, we randomly chose one of the three examples that had the highest overall
quality score. We did not want to simply use the best example, because it would be possible that
that particular example would have been ine� ective for some reason, and hence the experiment
would have been uninformative. On the other hand, we were also hoping to discern if the exact
examples that were seen would make a di� erence, and so we wanted to ensure we would have
several workers see each example. Using three examples for each task seemed to balance these
two competing goals. For Task A, the three best examples had average quality scores of 3.9, 3.9,
and 3.6, and for Task B, the three best examples had average overall quality scores of 4, 3.8,
and 3.82 Therefore, in terms of overall quality, these examples were all comparable and much
higher than the median overall quality for each task (2.2 for Task A and 2.8 for Task B). The
three examples for each task are shown in Figures 4.3 and 4.4.

4.6.1 Results

We ran an experiment comparing the newtwo good examplescondition with a control condition
as before. Other than the examples shown, everything was the same as the previous experiment.
We recruited 161 workers on Mechanical Turk, of which 151 completed at least one task. The
results are shown in Table 4.3. We note that there seems to be a decrease in performance com-
pared to Experiment 1 (which can be seen by comparing the two control conditions). This could
either be due to a change in the worker pool or due to biases in grading. We note that Experi-
ment 1 had lower inter-rater reliability, so perhaps the grading was de�ated in that experiment.
However, given the reliability is relatively high, we do not think this largely impacts the results.
As before, the number of workers drops after each task: 84% of workers �nished all three tasks
in the control condition, and 71% of workers complete all three tasks in the two good examples
condition. While the completion rate for the control is comparable to the previous experiment,
the completion rate of the two good examples condition is considerably lower than that of the
two examples condition in Experiment 1. This could be due to some workers dropping out due to
high quality examples setting a high bar for the work they need to do, however, we do not know
for certain if that is the case.

2There were other examples for Task A with a score of 3.6 and for Task B with a score of 3.8, so we just chose
some particular examples that we thought might lead to interesting results.
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If you're looking for a hardwired solution, The First Alert is designed for that, plus it has a
battery backup, in case you lose power. The First Alert is also the cheapest option.
The COOWOO Smoke Alarm is battery only, and while the manufacturer claims the battery
will last 10 years, I seriously doubt that, and in general, you should replace your smoke alarm
before then, anyways.
The First Alert, however, uses an ionization sensor, which tends to go o� more frequently from
cooking or other sources, and isn't recommended for more modern setups, while the COOWOO
is photoelectric, which is considered more reliable, and has less of a chance of going o� from
someone burning their food on the stove.
I recommend the COOWOO for that purpose, despite it being slightly more expensive.

(a) Example A1 (3.9)

First of all, the price di� erence:
First Alert BRK 9120B Hardwired Smoke Alarm with Battery Backup - $12.56
10 Years Battery-Operated Smoke and Fire Alarm/Detector(Not Hardwired) with Silence
Button and 10-Hours Eliminates Late Night Low Battery Chirps Mode Photoelectric Sensor &
UL Listed Smoke&Fire Alarm - $$19.99

First Alert has a backup battery, so it will work in case of a power outage. It also has an
ionization sensor, which detect smoke reliably. It can connect with other compatible alarms so
it will all sound when one detects smoke. 10 year limited warranty.

10 Years Battery-Operated Smoke and Fire Alarm/Detector is not hard wired, so it will be easier
to install. It has a long battery life of 10 years. 7 year warranty. The design of the case is more
sleek and modern looking than First Alert.

(b) Example A2 (3.6)

COOWOO Smoke Alarm versus First Alert Smoke Alarm. One big di� erence in these two
smoke alarms is that the COOWOO is not hard wired. Instead, the CooWoo is operated by a
10-year lithium battery whereas the First Alert is hard wired and relies on a 9-volt battery back
up to keep your family safe during a power outage. The �rst alert also has an ionization sensor
which helps to detect fast �aming �res.

The First Alert can be interconnected with up to 12 other compatible smoke alarms and six
compatible devices such as repeaters, door closers, bells, and horns. If one unit triggers an
alarm, all the smoke alarms will sound. There is also an indicator which will show which unit
initiated the alarm.

On the other hand, the COOWOO has a photoelectric Sensor and an alarm sensitivity of
1.0 2.52%/ft. OBS. When the smoke alarm device detects particles of combustion and the
concentration of smoke reaches the alarm threshold, the red LED �ashes once per second and
emits a loud pulsating alarm until the smoke is cleared. It has an alarm volume of &gt;85dB(A)
3 meters.

(c) Example A3 (3.9)

Figure 4.3: Three examples for Task A (comparing First Alert and COOWOO smoke alarms)
used in Experiment 2. The overall quality of each example as rated by workers is shown in
parentheses.
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Ticket to Ride tries to emulate cross country train journey in a board game while in Pandemic
players work together to stop diseases from spreading. Both support similar number of players
i.e. Pandemic 2-4 and Ticket to Ride 2-5. Play time is also similar with Pandemic advertising
45-60 and Ticket to Ride 30-60 minutes of game play. Both games are recommended for players
aged 8 and above while the cost of Ticket to Ride is slightly more $49.99 than Pandemic $39.99.
Main di� erence between the two games is obviously the game setting which is vastly di� erent
and hence game selection is mainly dependent on players preferences for that particular setting.

(a) Example B1 (3.8)

Pandemic and Ticket to Ride are both well reviewed board games worth considering. Pandemic
is listed at $35.97 and is suitable for 2 - 4 players with a game running about 60 minutes.
Ticket to Ride is priced at $44.97 and a game runs 30 - 60 minutes for 2 - 5 players.

Ticket to Ride is train adventure strategy game with the user traveling around the United States
in a takeo� of "Around the World in 80 Days" with a winner takes all format. In Pandemic
four diseases have broken out and players must work together as a team of specialists to save
the world.

So, if you are in the mood to compete against other players, Ticket to Ride would be your choice.
If you would prefer a cooperative game where all players win or lose together, Pandemic would
be the better �t.

(b) Example B2 (3.8)

Today I am comparing two board games, Ticket to Ride and Pandemic, both which I personally
own and love!

Both games will require at least 2 players to play! The nice thing about both of these games
is that the game time is relatively fast and either game wont take more than 60 minutes to
complete and both games are for ages 8+!

The main di� erence is that in Ticket to Ride you are playing alone, competing against everyone
else to try and win, while in Pandemic you are working together to try and win the game! If
you are trying to budget, Pandemic is also about $10 cheaper than Ticket to Ride.

Either way, you cannot go wrong as both games have over 4 stars and thousands of reviews!
(c) Example B3 (4)

Figure 4.4: Three examples for Task B (comparing the board games Ticket to Ride and Pan-
demic) used in Experiment 2. The overall quality of each example as rated by workers is shown
in parentheses.

For each task, we ran a Mann-Whitney-U test to see if the two good examples condition had
signi�cantly higher median overall quality than the control. The result was signi�cant for Task
A' ( p = 0.005) with a Glass'� e� ect size of 0.4, but not for the other two tasks. However,
the trend seems to indicate that two good examples is better than control for the other tasks as
well.
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Mean Overall Quality� Std Dev

Condition
Num of
Workers

Task A' Task B' Task C

Control 82 2.23� 0.8 2.62� 0.8 2.57� 0.9
Two Good Examples 69 2.53� 0.7 2.72� 0.9 2.76� 1.0

Example A1 18 2.26� 0.7 2.40� 0.8 2.58� 0.9
Example A2 27 2.60� 0.7 2.83� 1.0 2.81� 1.1
Example A3 24 2.64� 0.7 2.81� 0.7 2.83� 0.9

Example B1 20 2.45� 0.8 2.35� 0.9 2.67� 0.9
Example B2 20 2.87� 0.7 3.04� 0.6 3.10� 0.8
Example B3 29 2.34� 0.6 2.78� 0.9 2.6� 1.2

Table 4.3: Experiment 2 Results. The highest-performing condition for each task is shown in
bold. The highest-performing example-split condition is also shown in bold for each task.

Mean Number of Newline Characters

Example Task A' Task B' Task C

Example A1 1.7 1.7 1.3
Example A2 2.3 2.2 2.0
Example A3 2.3 3.1 1.9
Example B1 1.0 1.2 1.1
Example B2 3.0 3.6 2.3
Example B3 2.4 2.5 2.0

Table 4.4: Average number of newline characters in reviews written by workers who saw each
example

Exploratory Comparison of Examples

Recall that one of our goals was to see if there are di� erences in the e� cacy of the various exam-
ples that workers saw, even though these examples all had comparably high quality. To examine
this, we run a series of post-hoc comparisons. We note that the results reported here are ex-
ploratory and reportedp-values do not indicate rigorous statistical signi�cance. Nonetheless, we
believe these analyses provide evidence that even among high quality examples, the pedagogical
usefulness of the examples vary.

The bottom two sections of Table 4.3 show the results for the two good examples condition sub-
divided by each particular example. For example, a worker in the Example A1 row saw Example
A1 as well as any of the three examples for Task B. We ran a post-hoc Kruskal-Wallis test for
each task to determine if there were signi�cant di� erences in performance based on the partic-
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ular example that was seen from Task A; the test indicated no signi�cant di� erences. However,
a similar test for Task B seems to indicate that there are di� erences between the examples (p =
0.02 for Task A' andp = 0.06 for Task B'). To see which examples induce statistically signif-
icant improvements on review quality, we ran Mann-Whitney-U tests comparing workers who
saw each particular example (coming from Task A or B) to the control, for each test task. For
Task A', it appears that Example A2 and A3 had a positive e� ect on review quality (p < 0:01)
and for all tasks, Example B2 had a positive e� ect on review quality (p < 0:001 for Task A' and
p < 0:02 for Tasks B' and C). From Table 4.3, we can also see that Examples A1 and B1 in
particular seem to be generally no better or possibly even worse than the control. Interestingly,
Examples A2 and B2 are both not the highest rated examples. This suggests simply picking the
highest quality example may have not led to as high improvements.

We now turn to see if the di� erences we see between the examples actually make sense. If we
look at the content of the examples in Figures 4.3 and 4.4, we notice that Examples A1 and B1
both contain a single block of text (i.e., no spacing designating di� erent paragraphs, although
Example A1 does contain newline characters). Thus, while the content of these examples is
not necessarily bad, the formatting may have a role in the e� ectiveness of the example. It is
di� cult to know what kind of a role formatting plays in workers' subsequent reviews, but it
could potentially have an e� ect on cognitive load or where the workers' focus is drawn. A
worker that merely skims a review might get more out of a review where a series of facts are
quickly mentioned such as in the �rst paragraph of Examples A2 and B2 than a review that is
front-loaded with dense text like Example A1.

In order to verify that the formatting actually has an e� ect on workers, we look at the average
number of newline characters in reviews written by workers who saw each example, as shown
in Table 4.4. Indeed, it appears that workers who see visually dense examples are more likely to
write product comparison reviews with fewer newline characters. For example, workers who saw
Example A1 or B1 used the least number of newline characters in their reviews, while workers
who saw Example B2 included the most newline characters. While it is not clear if writing more
newline characters is a proxy for writing a better review, it does seem clear that the examples
have an impact on both the form and the quality of subsequent reviews. More work is needed to
determine what factors contribute most to the pedagogical value of examples.

4.7 Discussion

As mentioned earlier, none of our initial hypotheses were met in the �rst experiment. Contrary
to what we hypothesized, the one example condition did worse than control on the near transfer
task (Task A') and seemingly not worse than control on the Task C (far transfer task). However,
the results of our �rst experiment did seem to suggest that showing multiple examples from
di� erent categories of products appears to be more useful than seeing a single example. As
mentioned earlier, we hypothesize that the one example condition performed poorly due to the
quality of the examples. Indeed the median example quality from Task A that was shown to
workers was 2.05 out of 5, which could explain why seeing even an above median example was
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not helpful. We cannot say whether two examples is really necessary or if a single good example
(for instance, an example from Task B) is su� cient. However, our results do suggest that seeing a
good example from the same category as the task to be completed by the worker does help. Thus,
seeing multiple examples from di� erent categories might be useful to provide more coverage of
the type of tasks seen in the future. More work is needed to determine if seeing multiple good
examples is better for far transfer than seeing a single good example.

In the second experiment, we did �nd statistically signi�cant evidence for Hypothesis 1 (namely
that training helps), but only for Task A', although the results suggest that seeing good examples
helped on all three tasks. It could be that we did not have enough power to detect a signi�cant
e� ect on Tasks B' and C, both because there was a drop-out of workers after the �rst task and
because the e� ect of examples might be lower on Tasks B' and C.

However, our results seem to suggest that if we had only shown a particular pair of examples to
all workers (for instance, Examples A2 and B2), we may have seen a signi�cant di� erence on
Tasks B' and C. For example, the four workers who saw Examples A2 and B2 had an average
performance of 3.67, which a post-hoc Mann-Whitney-U test suggests was signi�cantly better
than the control (p = 0.01) with a Glass'� e� ect of 1.2. These results seem to indicate that prop-
erly chosen examples can be pedagogically valuable for both near and far transfer tasks. Future
experiments are needed to con�rm this. This also suggests the potential bene�t of using machine
learning to try to automatically �nd the best example. One approach would be to use a multi-
armed bandit to select the best example, perhaps after narrowing examples to ones that are of
high quality, so that the algorithm would converge more quickly to �nding a good example. This
approach would be similar to the AXIS system [Williams et al., 2016]. However, unlike AXIS,
our results suggest that we do not simply want to �nd examples that are rated as being of high
quality, but rather, examples that actually lead to higher performance gains for workers.

Another approach is to �t a model that predicts how pedagogically valuable each example is.
Prior work has examined �tting models to characterize the pedagogical value of crowdsourced
examples and explanations [Aleahmad et al., 2010, Mustafaraj et al., 2018], but they have not
actually used such models to select examples. Such a model could potentially generalize to pre-
dicting the pedagogical value of peer-generated examples that we have never tested on learners
before. Additionally, such a model could predict what kinds of features make up a good peer-
generated example, contributing to the learning sciences literature. A key challenge to this would
be identifying the features of the examples that the model would use. Prior work has shown that
simple features such as the length of the example could be a good indicator of pedagogical value
[Doroudi et al., 2016]. Our second experiment suggests that possibly the presence of multiple
paragraphs (newline characters) can also possibly serve as an indicator of how good a solution
is. This agrees with prior work showing that clearly delineating sub-goals improves the e� cacy
of worked examples [Eiriksdottir and Catrambone, 2011]. Thus, it is possible that structural fea-
tures of examples can be good proxies for whether the example is pedagogically valuable, but
perhaps richer features that are based on the natural language of the examples could improve
the accuracy of predictions. We plan to pursue such an approach to choosing examples in future
work.
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4.8 Conclusion

Taken together with the results of the last chapter, these results indicate that with adequate content
curation, using peer work can be an e� ective way to generate new content for both problem
solving tasks and open-ended writing tasks. However, the best way to curate content may vary
from task to task. As such, future work should investigate whether domain agnostic machine
learning methods can help �lter peer content for di� erent tasks. Curating content from large
pools of learner-generated work can also have scienti�c value as it could help researchers better
understand what constitutes e� ective pedagogical content for various tasks.

In Chapter 3, I examined the e� cacy of validating peer work, and in this chapter, I examined the
e� cacy of presenting peer work as examples. I have shown that both could be e� ective, but have
yet to perform a head-to-head comparison of these two modes of interacting with learnersourced
content. Of course, each method has its advantages beyond learning gains. Validation can serve
as a way to grade content, which may be necessary. (Indeed, even in this study we needed to have
crowdworkers grade their peers' work to get quality metrics for each product review.) However,
validation is more time consuming, so presenting peer work as examples may be a quicker way
to get workers up to speed. Also, workers who are new to a task may not have enough prior
knowledge to successfully validate peer work. However, future work should look into directly
comparing these various modes of interacting with peer work, in addition to others, in order to
develop a science of learnersourced curriculum design.
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Part II

Instructional Sequencing
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Chapter 5

Background: Mastery Learning and
Reinforcement Learning

What is the next step in the evolution of self-teaching devices? It
would seem to be separation of the control and material presentation
functions. The control function might logically be placed in a
computer that has the memory and computational ability necessary
to ascertain the student's knowledge and to learn and remember the
student's learning characteristics...The teaching-learning process
would now be a give-and-take procedure between student and
machine similar to the student-teacher relationship.

Ronald Howard, 1960

In 1960, a book was published by the name ofDynamic Programming and Markov Decision
Processesand an article by the name ofMachine-Aided Learning. The former established itself
as one of the foundational early texts about Markov decision processes (MDPs), the model that
underpins reinforcement learning (RL). The latter is a virtually unknown two-page vision paper
suggesting that computers could help individualize the sequence of instruction for each student.
Both were written by Ronald Howard, who is one of the pioneers of decision processes and is
now considered the “father of decision analysis.” These two lines of work are not unrelated; in
1962, Howard's doctoral student Richard Smallwood wrote his dissertation,A Decision Struc-
ture for Teaching Machines, on the topic of how to use decision processes to adapt instruction
in a computerized teaching machine. This is perhaps the �rst example of using reinforcement
learning (broadly conceived) for the purposes of instructional sequencing (i.e., determining how
to adaptively sequence various instructional activities to help students learn). Instructional se-
quencing was thus one of the earliest applications of reinforcement learning. Since then a variety
of attempts have been made to automatically determine how to sequence instructional activities
for students.

In the next few chapters, I will investigate two broad types of automating instructional sequenc-
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ing. Cognitive mastery learning1 [Bloom, 1968, Corbett, 2000] is a standard approach to se-
quencing instructional practice that is used in many ITSs. Cognitive mastery learning typically
assumes a model of student learning, such as Bayesian knowledge tracing (BKT), and provides
students with practice on each knowledge component until the student is believed to have reached
mastery for that knowledge component. An assumption made in cognitive mastery learning is the
knowledge decomposition hypothesis—that knowledge can be decomposed into parts that can be
learned independently once all prerequisite knowledge is learned [Corbett, 2000]. Determining
how much practice to give on each knowledge component is a simple form of instructional se-
quencing. To tackle broader forms of instructional sequencing, one can use reinforcement learn-
ing to �nd an instructional policy (a method of sequencing problems that is often adaptive to
some student state). While reinforcement learning approaches to instructional sequencing date
back to the 1960s when Markov decision processes �rst emerged, they have recently regained
popularity with modern advances in reinforcement learning.

The key point in this part of my dissertation is that various approaches to instructional sequenc-
ing, such as cognitive mastery learning and reinforcement learning, lie on a bias-variance trade-
o� . The bias-variance tradeo� is an important concept in machine learning and statistics [Geman
et al., 1992] that refers to the fact that when trying to make a statistical prediction (e.g., estimat-
ing a parameter of a distribution or �tting a function), there is a tradeo� between the accuracy of
the prediction (bias) and its precision (variance). This is perhaps best understood in the context
of machine learning algorithms that must �t a function using amodel class. A model class is
a set of models that usually have the same underlying form, but must be instantiated with par-
ticular parameters. For example, the class of linear estimators using a particular set of features
in linear regression is one model class. The bias of a model class represents how di� erent the
best �tting model in the model class is from the target function. For example, if we wanted to
predicty wherey = 3:5x2 � x using a linear estimator, we could never �t the curve perfectly, and
thus, the model would have bias. On the other hand, if we were to use a model class of quadratic
estimators (i.e., all functions of the formy = ax2 + bx+ c, then we could �t the target perfectly,
and so the model would have no bias. Variance represents the amount of variability in models
of the model class, or in other words is a measure for the complexity or size of the model class.
The model class of quadratic estimators has higher variance than linear estimators because it has
more degrees of freedom.

To make accurate predictions, one must try to �nd a model class that e� ectivelybalancesthe bias-
variance tradeo� . Figure 5.1 shows various approaches to instructional sequencing that I discuss
in my thesis and how they lie on the bias-variance tradeo� . I will refer to this diagram throughout
the next few chapters, both to discuss the limitations of some of these approaches, as well as to
introduce ways of navigating this tradeo� . In this rest of this chapter, I provide background on
mastery learning and reinforcement learning applied to instructional sequencing.

1I will often use the terms cognitive mastery learning and mastery learning interchangeably, although technically
cognitive mastery learning speci�cally refers to cases where mastery learning involves some cognitive model of
student learning to contrast it with other approaches to mastery learning that were used in pen-and-paper settings
[Bloom, 1968] as well as mastery learning approaches that use heuristics such as three-consecutive-correct-in-a-row
[Kelly et al., 2016].
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Bias
(Model-Driven)

Mastery Learning

Model-Based RL

Variance
(Data-Driven)

Deep RL

Importance Sampling

Figure 5.1: The bias-variance tradeo� in approaches to instructional sequencing. At the upper
left are approaches that are more model-driven (i.e., make stronger assumptions about how peo-
ple learn), and at the bottom right are more data-driven approaches (i.e., make less assumptions
about how people learn and make more data-driven inferences). The more model-driven tech-
niques are biased and are prone to under-�tting, while the more data-driven approaches have high
variance and are prone to over-�tting. The ideal would be to �nd a method that is closer to the
origin of the axes. (The positioning of these methods is meant for illustrative purposes only and
is by no means meant to precisely capture the bias and variance of the various methods.)

5.1 Mastery Learning

Knowledge tracing algorithms are used in learning technologies such as intelligent tutoring sys-
tems [Corbett and Anderson, 1995, Ritter et al., 2007], massive open online courses [Rosen et al.,
2018], and Khan Academy [Hu, 2011], in order to adaptively assess learners' knowledge states
and use that assessment to implement mastery learning (i.e., decide when students have mas-
tered skills and are ready to move on to other skills). We assume that for each skill, students
are given a number of practice opportunities for that skill and on each practice opportunity the
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student will give a response that is either correct or incorrect. The goal of a knowledge tracing
algorithm when used for mastery learning is to determine when to stop giving students practice
opportunities for the given skill. Knowledge tracing is often performed by a statistical model of
student learning that could be �t to data. I will describe two such model classes and how they can
be used to implement mastery learning. In addition to model-based knowledge tracing, simple
heuristics can be used to implement mastery learning such as theN-Consecutive Correct Re-
sponses (N-CCR) heuristic, which simply gives practice opportunities until the student answers
N questions correctly in a row. For simplicity, throughout this chapter and Chapters 6 and 7,
I assume students are only learning a single skill, but all the ideas can be extended to learning
multiple skills.

5.1.1 Bayesian Knowledge Tracing (BKT)

The BKT model is the most commonly used model for knowledge tracing [Corbett and Anderson,
1995, Ritter et al., 2007, Rosen et al., 2018]. The Bayesian Knowledge Tracing model is a two-
state hidden Markov model (HMM) that assumes for each skill, that the student either knows the
skill or they do not. At each practice opportunityi � 1 (i.e., when a student has to an answer
a question corresponding to the skill), the student has a latent knowledge stateKi 2 f0;1g. If
the knowledge state is 0, the student has not learned the skill, and if it is 1, then the student
has learned it. The student's answer can either be correct or incorrect:Ci 2 f0;1g (where 0
corresponds to incorrect and 1 corresponds to correct). Students initially know the skill with
probabilityP(L0) = P(K0 = 1). With every practice opportunity, students have some probability
of learning the skill if they do not already know it (P(T)). If the student does not know the
skill, the student will guess the correct answer with probabilityP(G) and if the student does
know the skill, the student will answer correctly unless they slip with probabilityP(S). These
four parameters fully describe the standard BKT model for each skill. The Bayesian knowledge
tracing algorithm proceeds by maintaining a probabilistic belief that the student has learned the
skill given the sequence of observed responses and the parameters of the BKT model. Once this
probability exceeds some mastery threshold (typically taken to be 0.95), the algorithm assumes
the student has mastered the skill.

One can learn the parameters of the BKT model by �tting it to a dataset consisting of sequences
of student responses. In Chapter 6, we �t the BKT models using brute-force grid search over the
entire parameter space in 0.01 increments with the BKT Brute Force model �tting code [Baker
et al., 2010a].

5.1.2 Additive Factor Model (AFM)

AFM is another popular model of student learning, but it is not typically used to perform knowl-
edge tracing; rather, AFM is often used to examine learning curves after students go through
mastery learning [Cen, 2009]. Unlike BKT, AFM assumes that learning takes place incremen-
tally; with each practice opportunity, the probability that the student will answer correctly on
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future practice opportunities increases. This also means that unlike BKT, AFM does not try to
predict a latent knowledge state (whether the student has learned the skill or not), but rather
directly models student performance (the probability of answering correctly at any given time).
In particular, a simpli�ed version of AFM for when there is only one skill is governed by the
following logistic function:

P(Ci = 1) =
1

1 + exp(� (� � � +  i))

where P(Ci = 1) is the probability that the student will answer theith practice opportunity
correctly,� is the student ability (which could encapsulate the student's prior knowledge),� is
the di� culty of the skill, and is the learning rate. Since we are only interested in a single skill,
we set� = 0 and let� combine the student ability and the item di� culty. Notice that another
di� erence between AFM and BKT is that AFM allows for individual di� erences via� . Thus, if
we want to use AFM for knowledge tracing, assuming we have not interacted with a particular
student before, we would need to estimate� online (as is done in computerized adaptive testing).
When using AFM to implement mastery learning, we need to choose a certain level of desired
accuracy for the mastery threshold.

5.2 Reinforcement Learning: Towards a “Theory of Instruc-
tion”

In 1972, the psychologist Richard Atkinson wrote a paper titledIngredients for a Theory of
Instruction[Atkinson, 1972b], in which he claims a theory of instruction requires the following
four “ingredients”:

1. A model of the learning process.

2. Speci�cation of admissible instructional actions.

3. Speci�cation of instructional objectives

4. A measurement scale that permits costs to be assigned to each of the instruc-
tional actions and payo� s to the achievement of instructional objectives.

Atkinson further describes how these ingredients for a theory of instruction map onto the de�ni-
tion of a Markov decision process (MDP). Formally, a �nite-horizon MDP [Howard, 1960a] is
de�ned as a �ve tuple (S; A;T;R; H), where

ˆ S is a set of states

ˆ A is a set of actions

ˆ T is a transition function whereT(s0js; a) denotes the probability of transitioning from state
s to states0 after taking actiona
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ˆ R is a reward function whereR(s;a) speci�es the reward (or the probability distribution
over rewards) when actiona is taken in states, and

ˆ H is the horizon, or the number of time steps where actions are taken.

In reinforcement learning(RL), the goal is for anagentto learn a policy� that speci�es the action
to take in each state (or a probability distribution over actions) that incurs a large reward [Sutton
and Barto, 1998]. There exist various methods forplanningin a MDP, such as value iteration
[Bellman, 1957] or policy iteration [Howard, 1960a], which yield the optimal policy for the given
MDP. However, RL refers to the task of learning a policy when the parameters of the MDP (the
transition function and possibly the reward function) are not known ahead of time.

As Atkinson explained, in the context of instruction, the transition function maps on to a model
of the learning process, where the MDP states are the states that the student can be in (such
as cognitive states). The set of actions are instructional activities that can change the student's
cognitive state. These activities could be problems, problem steps, �ashcards, videos, worked
examples, or game levels in the context of an educational game. Finally, the reward function
can be factorized into a cost function for each instructional action (e.g., based on how long each
action takes) and a reward based on the cognitive state of the student (e.g., a reward for each
skill a student has learned). As we show below, the natural formulation of the instructional
process as a decision process and a problem that can be tackled by reinforcement learning drew
many researchers, including psychologists like Atkinson, to this problem. In theory, RL could
formalize that which was previously an art: instruction. How well it can do so in practice is the
subject of investigation in Chapter 9.

5.2.1 Examples of RL for Instructional Sequencing

In order to better situate how RL is used for instructional sequencing, it is worth giving some
concrete examples of how the techniques of decision processes and RL could be applied to in-
structional sequencing. We will begin with one of the simplest possible MDPs that could be used
in the context of instructional sequencing, and then consider a series of successive re�nements
to the model to be able to model more authentic phenomena, ending with the model considered
by Atkinson [1972b]. While there are many more ways of applying RL to instructional sequenc-
ing, this section will give us a sense of one concrete way in which it has been done, as well as
introduce several of the design decisions that need to be made in modeling how people learn
and using such models to induce instructional policies. In the review of empirical studies below,
we will discuss a much broader variety of ways in which various researchers have used RL to
implement instructional sequencing.

The �rst model we will consider is a simple MDP that assumes for any given fact, concept,
or skill to be learned (which we will refer to as a knowledge component or KC), the student
can be in one of two states: the “correct” state or the “incorrect” state. Whenever the student
answers a question correctly, the student will transition to the correct state for that the associated
KC, and whenever the student answers a question incorrectly, the student will transition to the
incorrect state for that KC. The complete state can be described with a binary vector of all the
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individual KC states. The set of actions is the set of items that we can have students practice,
where each item is associated with a given KC. For each item, there is a 2-by-2 transition matrix
that speci�es the probability of its associated KC transitioning from one state to another. (For
simplicity, we assume that all items for the same KC have the same probability of transitioning
to the learned state.) Suppose our goal is to have the student reach the correct state for as many
KCs as possible. Then we can specify a reward function that gives a reward of one whenever the
student transitions from the incorrect state to the correct state, a reward of negative one whenever
the student transitions from the correct state to the incorrect state, and a reward of zero otherwise.
In this case, the optimal instructional policy is trivial: always give an item for the KC that has the
highest probability of transitioning to the correct state among all KCs in the incorrect state.

Of course to use this policy in practice, we need to learn the parameters of the MDP. We can learn
the maximum likelihood transition parameters using data collected from prior students. Given
the assumptions we made, the only parameters in this model are the transition probabilities for
each KC. In this case, the maximum likelihood transition probability can be inferred simply by
computing how many times students transitioned from the unlearned state to the learned state
divided by the number of time steps where the students were in the unlearned state.

However, notice that the MDP presented above is likely not very useful if students have some
chance of guessing questions correctly, because then a student might answer correctly without
really understanding a KC. In reality, we may assume that students' answers are only noisy
signals of their underlying knowledge states. To model this, we would need to use a partially
observable Markov decision process (POMDP) [Sondik, 1971]. In a POMDP, the underlying
state is inaccessible to the agent, but there is some observation function (O) which maps states to
potential observations. In our example, the observation at each time step is whether the student
answers a question right or wrong and the probability of answering a question right or wrong
depends on whether the student is in the learned state or unlearned state for the current KC that
is being taught. If we ignore the reward function, this POMDP is equivalent to the BKT model.
Typically BKT is not considered in the RL framework, because a reward function is notexplicitly
speci�ed, although using BKT for mastery learning doesimplicitly follow a reward function. One
possible reward function for mastery learning would be that each time our estimated probability
that the student has learned a particular KC exceeds 0.95, then we receive a reward of one,
and otherwise we receive a reward of zero. Such a model would then keep giving items for a
given KC, until we are 95% con�dent that the student has learned that KC before moving on.
Notice that the optimal policy under this reward function (i.e., cognitive mastery learning) is very
di� erent from the optimal policy under a di� erent reward policy (e.g., get a reward of one for
each KC that isactuallylearned).

The parameters of a POMDP like the BKT model are slightly more di� cult to infer, because we
do not actually know when students are in each state, unlike in the MDP case. However, there are
number of algorithms that could be used to estimate POMDP parameters including expectation
maximization [Welch, 2003], spectral learning approaches [Falakmasir et al., 2013, Hsu et al.,
2012], or simply performing a brute-force grid search over the entire space of parameters [Baker
et al., 2010b].

We consider one �nal modi�cation to the model above, namely that which was used by Atkinson
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[1972b] for teaching German vocabulary words. Note that the BKT model does not account for
forgetting. Atkinson [1972b] proposed a POMDP with three states for each word to be learned
(or KC, in the general case): an unlearned state, a temporarily learned state, and a permanently
learned state. The model allows for some probability of transitioning from either the unlearned
state or the temporarily learned state to the permanently learned state, but one can also transition
from the temporarily learned state back to the unlearned state (i.e., forgetting). Moreover, this
model assumes that a student will always answer an item correctly unless the student is in the
unlearned state, in which case the student will always answer items incorrectly. The reward
function in this case gives a reward of one for each word that is permanently learned at the end
(as measured via a delayed posttest, where it is assumed that any temporarily learned word will
be forgotten). The optimal policy in this case can be di� cult to compute because one needs to
reason about words that are forgotten over time. Therefore, Atkinson [1972b] used a myopic
policy that chooses the best next action as though only one more action will be taken. In this
case, the best action is to choose the word that has the highest probability of transitioning to the
permanently learned state.

5.2.2 Design Considerations in Reinforcement Learning

Before continuing, it is worthwhile to describe several di� erent settings that are considered in re-
inforcement learning, and the design considerations that researchers need to make in considering
how to apply RL. RL methods are often divided intomodel-basedandmodel-freeapproaches.
Model-based RL methods learn the model (transition function and reward function) �rst and then
use MDP planning methods to induce a policy. Model-free methods use data to learn a good pol-
icy directly without learning a model �rst. Most of the studies that have used RL for instructional
sequencing have used model-based RL. All of the examples described above are model-based—a
model is �t to data �rst and then a policy (either the optimal policy or a myopic policy) is derived
using MDP/POMDP planning.

There are two di� erent ways in which RL can be used. InonlineRL, the policy is learned and
improved as the agent interacts with the environment. Ino� ine RL, a policy is learned on data
collected in the past, and is then used in an actual environment. For instance, in the examples
we presented above, the models were �t to previously collected data in an o� ine fashion, which
was then used to do model-based RL.

In online RL, the agent must decide whether to use the current best policy in order to accrue a
high reward or to make decisions which it is uncertain about with the hopes of �nding a better
policy in the future. This is know as the exploration vs. exploitation trade-o� . Exploration refers
to trying new actions to gather data from less known areas of the state and action space, while
exploitation refers to using the best policy the agent has identi�ed so far. This trade-o� has rarely
been considered in applying RL to instructional sequencing.

As discussed in our examples, since the cognitive state of a student usually cannot be observed,
it is common to use a partially observable Markov decision process rather than a (fully observ-
able) MDP. Planning, let alone reinforcement learning, in POMDPs is, in general, intractable,
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which is why researchers often use approximate methods for planning, such as myopic planning.
However, some models of learning (such as the BKT model discussed above) are very restricted
POMDPs, which makes it possible to �nd an optimal policy.

In model-based RL, our model is generally incorrect, not only because there is not enough data to
�t the parameters correctly, but also because the form of the model could be incorrect. As we will
see, researchers have proposed various models for student learning, which make rather di� erent
assumptions. When the assumptions of the model are not met, we could learn a policy that is not
as good as it seems. To mitigate this issue, researchers have considered various methods ofo� -
policy policy evaluation, or evaluating a policy o� ine using data from one or more other policies.
O� -policy policy evaluation is important in the context of instructional sequencing, because it
would be useful to know how much an instructional policy will help students before testing it on
actual students. Ultimately, a policy must be tested on actual students in order to know how well
it will do, but blindly testing policies in the real world could be costly and potentially a waste of
student time.

From the intelligent tutoring systems literature, we can distinguish between two broad forms of
instructional sequencing in terms of the granularity of the instructional activities:task-loop(or
outer loop) adaptivity andstep-loop(or inner loop) adaptivity [Aleven et al., 2016a, Vanlehn,
2006, VanLehn, 2016]. In task-loop adaptivity, the RL agent must select distinct tasks or instruc-
tional activities. In step-loop adaptivity, the RL agent must choose the exact sequence of steps
for a �xed instructional task. For example, an RL agent operating in the step loop might have to
decide for all the steps in a problem whether to show the student the solution to the next step or
whether to ask the student to solve the next step [Chi et al., 2009]. While step-loop adaptivity is
a major area of research in adaptive instructional sequencing in general [Aleven et al., 2016a],
relatively little work has been pursued in this area using RL-based approaches.

Finally, I note that in this thesis, I speci�cally focuses on applications of reinforcement learn-
ing to the sequencing of instructional activities. Reinforcement learning and decision processes
have been used in other ways in educational technology that we do not consider here. For exam-
ple, Barnes and Stamper [2008] have used MDPs to model students' problem solving processes
and automatically generate hints for students. Similarly, Ra� erty et al. [2015b, 2016b] modeled
student problem solving as a MDP and used problem solving trajectories to infer the MDP so
they could ultimately give feedback to the students about misconceptions they might have. In
these papers, the actions of the MDP are problem solving stepstaken by studentsin the course
of solving a problem, whereas in our paper, we focus on studies where the actions are instruc-
tional activitiestaken by an RL agentto optimize a student's learning over the course of many
activities.
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Chapter 6

The Bias of Bayesian Knowledge
Tracing�

All models are wrong but some are useful

GeorgeBox, 1979

The key point I explore in the following two chapters is the idea that our statistical models of
student learning are not accurate representations of how students learn. This point is not con-
tentious; psychologists and neuroscientists do not actually believe that students acquire complex
skills according to the Bayesian knowledge tracing model (especially when students are assumed
to never forget what they have learned) [MacLellan et al., 2016]. The question that remains is,
are such models accurate enough to be e� ective in driving instructional sequencing? To explore
this issue we explicitly consider model misspeci�cation: what happens if student learning is ac-
tually governed by a di� erent model of learning than the particular statistical student model that
we choose to use to model it? I speci�cally look at how model misspeci�cation can lead to mis-
guided conclusions about the BKT model. Again, most researchers and practitioners realize that
BKT is likely not an accurate model of student learning—and therefore model misspeci�cation
is not a foreign concept—but I content that we often use student models (like BKT) and interpret
them as though they are “correct” models. According to the famous quantitative sociologist, Otis
Dudley Duncan [1975]: “there are many more wrong models than right ones, so that speci�cation
error is very common, though often not recognized and not easily recognizable.”

The overall argument I use in both this chapter and the next is as follows. First I describe a
problem noticed by researchers when using the BKT model. I then show how this problem can
potentially be explained in terms of model misspeci�cation. Finally, I discuss the consequences
of using such a misspeci�ed BKT model for mastery learning. The general methodology I use
was aptly explained by Duncan [1975]:

Analysis of speci�cation error relates to a rhetorical strategy in which we suggest

� The work described in this chapter was largely adapted from Doroudi and Brunskill [2017].
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a model as the “true” one for sake of argument, determine how our working model
di� ers from it and what the consequences of the di� erence(s) are, and thereby get
some sense of how important the mistakes we will inevitably make may be.

Therefore, when I propose “a model as the `true' one,” it is important to note that I am doing so
“for sake of argument”, and by no means am I claiming such a model is the true model of student
learning or even a more correct model than BKT.

The particular argument I make in this chapter is as follows. I �rst present the problem that
BKT models that are �t to data often have unrealistic guess and slip parameters. Prior work
has tried to explain this as a result of identi�ability. However, I have shown that BKT does not
su� er from an identi�ability problem as was previously thought [Doroudi and Brunskill, 2017].
Rather, I show that these parameters might be due to model misspeci�cation. Namely, if learning
is actually more of a gradual process than the all-or-nothing assumption that BKT makes, then
the �tted BKT model might have parameters that are semantically implausible. I then show how
using such a BKT model for mastery learning can lead to incorrectly assuming many students
have mastered a skill before they actually have. In the following chapter, I examine how using
a misspeci�ed BKT model might lead to giving less practice than needed to under-performing
students, hence suggesting that mastery learning could be inequitable when using the wrong
model.

By highlighting these concerns with using BKT, my point is not to suggest that there is some
other model that is unbiased; rather my point is that when using simple models of student learn-
ing for instructional sequencing, we need to understand how robust those models are to model
misspeci�cation. Chapter 8 will then look at how we can use multiple models of learning to
robustly identify good instructional policies.

6.1 Semantic Model Degeneracy

Problem: Several researchers have found that when �tting a BKT model to data, the model might
have parameters that are not semantically plausible. For example, Baker et al. [2008] found that
for 75% of skills in their middle school mathematics tutoring system, eitherP(G) > 0:5 or
P(S) > 0:5, which is hard to reconcile with our intuitive notions of guessing and slipping, which
suggest that they should be infrequent events.

Explaining the Problem: Beck and Chang [2007] proposed that this is due to anidenti�abil-
ity problem, where multiple sets of parameters can explain the data equally well. However, I
have shown using prior results on the identi�ability of hidden Markov models that BKT (ex-
cept in some technically degenerate cases) is an identi�able model [see Doroudi and Brunskill,
2017].

Contribution : Since unidenti�ability cannot explain semantically implausible BKT parameters,
I instead claim that this problem ofsemantic model degeneracymight be explained by model
misspeci�cation. That is, when BKT does not accurately capture student learning, the resulting
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model �t might be semantically degenerate. To better understand this, I �rst classify the various
types of semantic model degeneracy. I then show how model misspeci�cation can result in
semantically degenerate BKT models and how that could have adverse consequences when the
models are used for mastery learning.

6.1.1 Types of Semantic Model Degeneracy

Baker et al. [2008] distinguish between two forms of semantic model degeneracy:theoretical
degeneracyandempirical degeneracy. They de�ne a model to be theoretically degenerate when
either the guess or the slip parameter is greater than 0:5. They de�ne a model to be empirically
degenerate if one of two things occur: (1) for some large enoughn the model's estimate of the
student having mastered the skill decreases after the student gets the �rstn skills correct or (2) for
some large enoughm, the student does not achieve mastery (our estimate of the student having
learned the skill does not go beyond 0.95) even afterm consecutive correct responses [Baker
et al., 2008]. The authors chose the valuesn = 3 andm = 10. The �rst form of empirical
degeneracy is only possible if 1� P(S) < P(G) (i.e., the student is more likely to answer a
question correctly if they have not learned the skill than if they have learned the skill), as was
shown by van De Sande [2013]. This is true, even forn = 1. Thus, this �rst notion of empirical
degeneracy is equivalent toP(G) + P(S) > 1, which implies eitherP(S) > 0:5 or P(G) > 0:5,
meaning that it always implies theoretical degeneracy! Huang et al. have noted that whileP(G)+
P(S) > 1 implies semantically degenerate parameters as it contradicts mastery, the condition that
P(G) < 0:5 andP(S) < 0:5 may not always be necessary for the parameters to be semantically
meaningful, since, for example, there may be some domains where the student can guess the
correct answer easily [Huang et al., 2015]. We agree that suggestingP(G) < 0:5 is degenerate
does seem somewhat arbitrary depending on the domain; however, we do thinkP(S) > 0:5
should be characterized as a form semantic degeneracy, because, as [Baker et al., 2008] claimed,
it does not make sense for a student who has learned a skill to answer questions of that skill
incorrectly most of the time—that goes against our intuitions of what mastery means. Given
the limitations of empirical and theoretical degeneracy, we �nd it more useful to categorize the
forms of semantic model degeneracy by what they suggest about student learning:

ˆ Forgetting: This occurs whenP(G) + P(S) > 1, which suggests that not only are students
not learning, but that students are more likely to lose knowledge of a skill as they receive
more practice opportunities for that skill. Another way to view this degeneracy is that
the state we would conceptually call the learned knowledge state is now the state where
performance is worse.

ˆ Low Performance Mastery: This occurs whenP(S) > 0:5. We can also set a lower thresh-
old for low performance mastery (e.g.,P(S) > 0:4).

ˆ High Performance Guessing: This occurs whenP(G) > t, wheret is some threshold. As
mentioned earlier, this seems like a weak form of degeneracy, as students can often guess
an answer easily even if they have not learned a skill, but we can sett to a large enough
value, to make this a form of model degeneracy.

56



Statei

0 1 2 3 4 5 6 7 8 9

P(K0 = k) 0.1 0.1 0.1 0.2 0.2 0.3 0 0 0 0
P(Ci = 1jKi = k) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P(Ki = k + 1jKi = k) 0.4 0.3 0.2 0.1 0.05 0.05 0.05 0.05 0.05 -

Table 6.1: Alternative model of student learning where there are ten levels of mastery

10-State HMM AFM

# of Practice Opportunities 20 200 20 200

P(L0) 0.30 0.001 0.09 0.001
P(T) 0.05 0.02 0.05 0.05
P(G) 0.27 0.49 0.14 0.28
P(S) 0.44 0.13 0.46 0.03

Table 6.2: BKT models �t to data generated from the model described in Figure 6.1 and an addi-
tive factors model described in the text. The �rst column for each model is �t to 500 sequences
of 20 practice opportunities, while the second column is �t to 100 sequences of 200 practice op-
portunities. The models were �t using brute-force grid search over the entire parameter space in
0.01 increments for the parameters using the BKT Brute Force model �tting code [Baker et al.,
2010a].

ˆ High Performance; Learning: This is the second form of empirical degeneracy given by
[Baker et al., 2008]: for some choice ofm, the probability that the student has learned a
skill is less than some thresholdp (typically taken to be 0.95) afterm consecutive correct
responses

6.2 Model Misspeci�cation and Semantic Model Degeneracy

We will now consider a possible explanation for why BKT models can result in semantic model
degeneracy (which we believe to be part of the reason that researchers look towards identi�ability
and local optima to explain the strange parameters that result from �tting BKT models). First of
all, note that forgetting degeneracy will occur whenever students actually do forget or when they
learn misconceptions; it is not unreasonable to believe that students will sometimes learn and
reinforce a misconception, causing their knowledge of some skill to decrease over time. Thus,
while this form of degeneracy technically violates our notion of mastery, it is to be expected if
we switch the semantic interpretation of the two states and suppose that students forget instead
of learn. We now consider sources of the other forms of semantic model degeneracy.

We claim that such forms of semantic model degeneracy can result from not accurately being
able to capture the complexity of student learning with a two state HMM. When this is the case,
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�tting the data with a two state HMM will result in trying to �nd the best �t of the data for a two
state HMM. However, this may result in a model that does not align with our intuitions about
what it means for a student to have learned a skill.

To support our claim, suppose student learning is actually governed by a 10-state HMM with
ten consecutive states representing di� erentlevelsof mastery. From each state, the student has
some probability of transitioning to the next state (slightly increasing in mastery), and from each
state, the student has a probability of answering questions correctly. This probability strictly
increases as the student's level of mastery increases. Speci�cally consider the model presented
in Table 6.11. Now suppose we try to use a standard BKT model to �t data generated from this
alternative model of student learning. The �rst two columns of Table 6.2 show the parameters of
BKT models �t to 500 sequences of 20 practice opportunities or 100 sequences of 200 practice
opportunities, both generated from the the model in Table 6.1.

Notice that the model �ts (nearly) degenerate parameters in both cases. When we only have 20
observations per student, the model estimates a very high slip parameter. This is because it has to
somehow aggregate the di� erent latent states which correspond to di� erent levels of mastery, and
since not many students would have reached the highest levels of mastery in 20 steps, it is going
to predict that students who have “learned” the skill are often getting it wrong. However, what's
more interesting is that for the same model, if we simply increase the number of observations
per student from 20 to 200, we �nd that the slip parameter is reasonably small, but now the
guess probability is 0.49. This is because, by this point most students have actually reached
the highest level of mastery, so to compensate for the varying levels of mastery that occurred
earlier in student trajectories, the model will have to estimate a high guess parameter. So we
�nd that not only can alternative models of student learning lead to �tting (near) degenerate
parameters, but varying the number of observations can lead to di� erent forms of degeneracy.
This is a counterintuitive phenomenon that we believe is not the result of having insu� cient data
(students) to �t the models well, but rather the result of the mismatch between the true form of
student learning and the model we are using the �t student learning.

We �nd similar results if we �t a BKT model to data generated from another alternative model of
student learning that is commonly used in the educational data mining community, the additive
factor model (AFM) [Cen, 2009]. In particular, we used the model

P(Ci = 1) =
1

1 + exp(� � + 2 � 0:1i)

where� � N (0;1) is the student's ability2. The second two columns of Table 6.2 show the
parameters of BKT models �t to data generated from this model. We again �nd that when using

1Recall that we are proposing the 10-state HMM for sake of argument, not to actually suggest that this is a more
reasonable model for how students learn. In particular, our motivation for using such a model is that it suggests
students learn more gradually than the BKT model, and as we show, this could lead to semantic model degeneracy.
We show below that we obtain similar results if learning were governed by the additive factor model, another
more incremental model of learning. Thus, we believe these results generally hold when learning happens more
incrementally than suggested by BKT.

2This model suggests that students who are two standard deviations above the mean initially will answer correctly
half the time, and after 20 practice opportunities the average student will answer correctly half the time.
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only data with 20 practice opportunities, we �t a high slip parameter, but when we using data with
200 practice opportunities, we �t a higher guess parameter and a very small slip parameter.

These results collectively suggest that if the assumption that learning is all-or-nothing (or that stu-
dents learn a skill instantaneously with some probability) is incorrect, �tted BKT models could
be semantically degenerate. Of course, this is only one form of statistical model misspeci�ca-
tion. While it seems reasonable that at least in some cases learning is more incremental than BKT
suggests, we cannot conclude that this is always the reason that BKT models have semantically
degenerate guess and slip parameters. In particular, another form of model misspeci�cation,
namely KC model misspeci�cation may also lead to semantically degenerate parameters. KC
model misspeci�cation occurs when it is incorrectly assumed that multiple items share or do not
share the same knowledge component. KC model misspeci�cation and various techniques for
mitigating it have been studied much more, to our knowledge, than statistical model misspeci�-
cation, although typically in the context of AFM, not BKT [Koedinger et al., 2012a, Stamper and
Koedinger, 2011]. In reality, it is likely that both forms of model misspeci�cation occur in real-
world settings, and as such we must be aware of the consequences of each (and how they might
interact). In this thesis, I only consider BKT models for a single skill, and as such it only makes
sense to consider statistical model misspeci�cation. Future work should consider the interplay
between the two.

6.3 Model Misspeci�cation and Mastery Learning

These observations have important implications for how learned models might be used in auto-
mated sequencing of content, such as cognitive mastery learning. Using such a BKT model to
predict student mastery can lead to problematic inferences. For example, for the �rst model in
Table 6.2, the BKT model assumes that when a student has reached mastery, they have a 56%
chance of answering a question correctly, whereas a student who has actually mastered the skill
will have a 90% chance of answering correctly (see Table 6.1). Thus, an intelligent tutoring
system that uses such a BKT model to determine when a student has had su� cient practice on
a problem, will likely give far fewer problems to the student than they actually need in order to
reach mastery. To illustrate this, Table 6.3 shows the average number of practice opportunities
the �rst model in Table 6.2 will give, when students actually learn according to Table 6.1. In
contrast, the average number of practice opportunities needed to reach mastery according to the
true model is around 100. Thus, cognitive mastery learning could lead to a signi�cant amount of
under-practice, even with a very high mastery threshold (e.g., 0.9999). This case study provides
an example of how reasoning about model mismatch can be informative in terms of understand-
ing the instructional consequences of our models.
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Mastery
Threshold

Avg. # Opportunities to
Mastery

% Students with
Under-Practice

0.95 28.4 99.4%
0.99 38.3 99%

0.9999 53.4 95%

Table 6.3: The average number of practice opportunities needed for the model given in the �rst
column of Table 6.2 to reach mastery for various mastery thresholds, given that the true model is
the model from Table 6.1. Averages were taken over 500 simulated students. The third column
shows the percentage of simulated students that received less practice than needed. In contrast,
the average number of practice opportunities that it took simulated students to reach mastery was
around 100.

6.4 Discussion

If the analysis above suggests that BKT is the wrong model and that this can have problematic
consequences for mastery learning, what should we do to mitigate these concerns? One option is
to continue our quest for �nding more accurate student models. However, we must acknowledge
that models that have higher predictive accuracy are not necessarily more correct. For example,
two models may have similar predictive accuracy while making drastically di� erent predictions
about how students learn (such as AFM and BKT). In this case, the two models may capture
various competing aspects of learning, but miss other aspects (since learning is a complex, multi-
faceted phenomena). Moreover, even if we knew the true form of the model to capture student
learning, if that model has many parameters it could require inordinate amounts of data to �t;
thus with �nite data, a simple model such as BKT may actually result in better model �ts than
the “true model.” Therefore, while �nding models with higher predictive accuracy can help in
improving the quality of our student models, we should proceed with caution. Moreover, the
work above suggests additional metrics we can use in determining how good a model is beyond
standard metrics for predictive accuracy. For example, we can see if the parameters of our models
are semantically plausible, and moreover if the parameters are stable when we change the number
of practice opportunities used to �t the models. While model �t should improve when we have
more training data, the parameters should not vary drastically (e.g., changing from highP(S) to
high P(G)).

If our ultimate goal in using student models is a pragmatic goal of improving student learning
rather than a scienti�c goal of fully understanding and accurately modeling how people learn,
then perhaps we do not need to get caught up in a quest for the perfect student model. Instead,
we should search for models that are e� ective towards the ends that are being used for, such as
accurately predicting when students have mastered skills. We will revisit how to do this to some
extent in the next chapter and moreso in Chapter 8. For now, su� ce it to say that perhaps we
should not be searching for correct models, but rather for useful ones; after all, “all models are
wrong but some are useful” [Box, 1979].
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Chapter 7

The Equitability of Bayesian Knowledge
Tracing�

Educational equity means that each child receives what he or she
needs to develop to his or her full academic and social potential.

National Equity Project

A major challenge in any learning environment is ensuring that students with di� erent needs re-
ceive personalized instruction to suit those needs. If instruction is not individualized, then some
students may lag behind, while others proceed at a pace that is slower than ideal. Adaptive educa-
tional technology is designed to alleviate some of these concerns by giving students instruction
and practice at the pace they need it. While this means that some students may need to work
longer than others, ideally all students will eventually be able to master the content at hand. In
practice, however, adaptive technologies sometimes fall short of this goal, with lower-performing
students receiving less practice and instruction than they need. As some researchers have pointed
out, educational technologies that aim to bene�t all learners might disproportionately bene�t
more advantaged groups of learners [Hansen and Reich, 2015, Reich and Ito, 2017].

In this chapter, I examine the equitability of knowledge tracing algorithms that implement mas-
tery learning, following the same methodology as in the previous chapter. I �rst show that the
adaptivity provided by knowledge tracing makes it substantially more equitable than providing
all students with the same amount of instruction. However, I show that knowledge tracing al-
gorithms can still be inequitable (favoring fast learners over slow learners or high prior ability
learners over low prior ability learners) when they rely on inaccurate models of student learning.
In particular, I show that this issue could arise in two situations: (1) when using a BKT model
that is �t to aggregate populations of students, and (2) when students learn more incrementally
than suggested by the BKT model (i.e., when students learn according to AFM, as studied in
the previous chapter). Moreover, I show that using AFM for mastery learning may lead to more
equitable outcomes, even under model misspeci�cation. Using AFM for mastery learning has

� The work described in this chapter was largely adapted from Doroudi and Brunskill [2019].
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some limitations, so our results demonstrate the need for more work in developing robustly equi-
table knowledge tracing algorithms. The following chapter will present a general methodology
for evaluating instructional policies (beyond just mastery learning policies) to ensure they are
robust to model misspeci�cation, which can also be applied to ensuring instructional policies are
equitable. The broader message of this chapter is that when designing learning analytics algo-
rithms, we need to explicitly consider whether the algorithms act fairly with respect to di� erent
populations of students, and if not, how we can make our algorithms more equitable.

7.1 Equity of Mastery Learning

Problem: Even though mastery learning aims to help each student master all skills, several re-
searchers have found that using BKT for mastery learning sometimes leads to worse outcomes
for some learners than others. For example, Corbett and Anderson [1995] found the follow-
ing:

The model underestimates the true learning and performance parameters for above-
average students. As a result, these students who make few errors receive more
remedial exercises than necessary and perform better on the test than expected. In
contrast, the model overestimates the true learning and performance parameters for
below-average students who make many errors. While these students receive more
remedial exercises than the above average students, they nevertheless receive less
remedial practice than they need and perform worse on the test than expected.

Similarly, when comparing a single BKT model �t to all students (population model) against
individualized BKT models, Lee and Brunskill [2012] found that:

17% of students would be expected to have a probability of mastery of only 60%
or less when the population model would expect the student is at a probability of
mastery of 95% or higher

These results suggest that using BKT for mastery learning may result in more higher-performing
students reaching mastery than lower-performing students.

Explaining the Problem: Many papers have suggested this problem is due to the lack of individ-
ualizing the BKT model to di� erent populations of students. For example, Corbett and Anderson
[1995] suggested a way to individualize the parameters of the BKT model in real-time by using
the students' error rates when working on the tutoring system. Several other researchers have
looked at other methods for �tting BKT parameters that are individualized per student [Lee and
Brunskill, 2012, Pardos and He� ernan, 2010, Yudelson et al., 2013]. However, these authors did
not explicitly consider the equity implications of this or explicitly quantify how inequitable the
models could be. Moreover, while Corbett and Anderson's [1995] individualization algorithm
lead to better predicting student posttest scores, they found in future experiments, which used
their individualized BKT algorithm, that lower-performing students still tended to achieve lower
posttest scores, even though the model predicted nearly all students had mastered the material.
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Therefore, lack of individualization may not fully account for why mastery learning may lead to
better outcomes for high-performing students.

Contribution : I suggest that inequitable outcomes could result not only from lack of individu-
alization but also from misspecifying the student model. Using simulations, I show that while
mastery learning algorithms are substantially more equitable than giving all students the same
amount of practice, such algorithms can still be inequitable when they rely on inaccurate models.
Model inaccuracies can result both from lack of individualization and from model misspeci�ca-
tion. I conclude this section by showing that knowledge tracing with the additive factor model
may be more equitable than using BKT, but at the cost of giving extra practice.

7.2 Value Judgments

When discussing ethical concerns such as equity, we must necessarily make value judgments. In
this section, we de�ne what we mean when we say a knowledge tracing algorithm is more or
less equitable. Although we believe our notion of equity is sensible, we do not mean to convince
the reader that our de�nition of equity is the correct de�nition or the only de�nition. Rather, we
hope that this work generates discussion around when a learning analytics algorithm should or
should not be considered equitable.

In this paper, we assume that an equitable outcome is when students from di� erent populations
(e.g., students that have di� erent needs) reach the same level of knowledge after receiving in-
struction. In what follows, we will typically assume there are only two types of students: either
slow learners and fast learners or low prior ability learners and high prior ability learners. The
speed of learning and prior ability could be thought of as proxies for separating students who are
more or less disadvantaged. For example, low prior ability learners could correspond to students
from low socio-economic backgrounds who have had limited access to good instruction or have
come into a course with existing gaps in prior knowledge, or slow learners could be coming
from a particular demographic background that is more likely to face a stereotype threat or �xed
mindset in a particular domain.

Notice that in our notion of equity, the only thing that matters is how much students learned, not
how long it took them to reach their level of knowledge. Therefore, we assume it is equitable if
slow learners take longer to reach the same level of knowledge as fast learners; it may even be
unavoidable. However, if all we cared about was equity, then we could simply give all students
inordinate amounts of instruction, but of course that would not be ideal. Therefore, we would
ideally want knowledge tracing algorithms that are equitable while minimizing the amount of
time wasted on having students do extra practice opportunities. Moreover, a secondary equity
concern could be to have slow learners and fast learners have equal amounts of super�uous
practice opportunities. Thus, we will also compare algorithms on how much extra practice they
give students, but that is not the primary focus of this paper.
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BKT-Slow BKT-Fast BKT-Mixed

P(L0) 0.0 0.0 0.071
P(T) 0.05 0.3 0.096
P(G) 0.2 0.2 0.209
P(S) 0.2 0.2 0.203

Table 7.1: BKT Models used in simulations in Section 7.3

7.3 Case 1: Lack of Individualization

We �rst demonstrate what happens when the BKT mastery learning algorithm uses a single
model that is �t to data coming from a mix of slow learners and fast learners. In this case, we are
assuming that we are modeling how students learn accurately, except that we incorrectly assume
all learners have the same model parameters. This is a weak form of model misspeci�cation,
where the misspeci�cation lies in not individualizing the model to di� erent sub-groups of stu-
dents. As before, we do not mean to actually suggest that learners learn according to BKT or
that there are only two types of students. Rather, the goal is to demonstrate how mastery learn-
ing could be inequitableeven ifthe assumptions of BKT were accurate, but our model is not
individualized.

The BKT models we used are shown in Table 7.1. Notice that the two models, BKT-Slow and
BKT-Fast, only di� er in theP(T) parameter, which we will refer to as the learning rate. Table 7.1
also shows BKT-Mixed, the model that was �t to 200 simulated students from a population of
students who were equally likely to come from BKT-Slow and BKT-Fast and who received 20
practice opportunities each. Notice that the key di� erence between BKT-Mixed and the other
models is that it has an intermediate learning rate, since the best �tting model is trying to average
over the di� erent rates of learning that were present in the data.

To assess whether the BKT-Mixed algorithm would behave equitably, we ran simulations where
BKT-Mixed was used to implement mastery learning for both slow and fast learners. As men-
tioned before, we are primarily interested in comparing the percentage of slow learners and fast
learners who did not learn the skill (even though the algorithm believes they did with 95% cer-
tainty), but as a secondary concern, we are also interested in the average amount of extra practice
for students who did learn the skill. We �rst compare the BKT-Mixed algorithm to non-adaptive
instructional policies that give a �xed amount of practice to all students. Figure 7.1 shows that
for non-adaptive instructional policies, there is a tradeo� between the equity gap between slow
and fast learners (i.e., the % of fast learners - % of slow learners that learn the skill) and the
amount of extra practice given. However, BKT-Mixed achieves a much better balance between
equity and extra practice than the non-adaptive policies. In particular, to achieve the same gap
between slow and fast learners for a non-adaptive policy, one would have to give around 46 extra
practice opportunities to students on average.

However, Figure 7.1 also con�rms that the BKT-Mixed algorithmis inequitable, even if much
less than non-adaptive algorithms. As shown in Table 7.2, the BKT-Mixed algorithm leads to
more slow students (5.5%) not learning the skill than fast students (0:3%), while giving roughly
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