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Abstract 

Nicotine underlies the reinforcing properties of tobacco cigarettes and e-cigarettes. After 

inhalation and absorption, nicotine binds to various nicotinic acetylcholine receptor (nAChR) 

subtypes localized on the pre- and post-synaptic membranes of cells, which subsequently leads 

to the modulation of cellular function and neurotransmitter signaling. In this chapter, we begin 

by briefly reviewing the current understanding of nicotine’s actions on nAChRs and highlight 

considerations regarding nAChR subtype localization and pharmacodynamics. Thereafter, we 

discuss the seminal discoveries derived from genetically modified mouse models, which have 

greatly contributed to our understanding of nicotine’s effects on the reward-related mesolimbic 

pathway and the aversion-related habenulo-interpeduncular pathway. Thereafter, emerging 

areas of research focusing on modulation of nAChR expression and/or function are considered. 

Taken together, these discoveries have provided a foundational understanding of various 

genetic, neurobiological and behavioral factors underlying the motivation to use nicotine and 

related dependence processes, which are thereby advancing drug discovery efforts to promote 

long-term abstinence. 
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Introduction 

Nicotine is the primary active constituent in tobacco-containing products, which is responsible 

for maintaining smoking behavior in humans (Stolerman and Jarvis 1995).  Recently, nicotine has 

also been formulated for vapor inhalation via e-cigarettes devices (Electronic Nicotine Delivery 

Systems, or ENDS; (St Helen et al. 2016)). Concomitant with a decrease in combustible tobacco 

cigarette use, use of e-cigarettes, especially among adolescents, has drastically risen in recent 

years (Wang et al. 2018). Indeed, from 2017-2018, there was a rapid increase in vaping 

prevalence among adolescents aged ~13-18 years old, with nicotine vaping rates translating to 

roughly an additional 1.3 million adolescent users in 2018 compared to 2017 (Miech et al. 2019). 

Although e-cigarettes may have value as a nicotine replacement strategy for current tobacco 

smokers (Hajek et al. 2019), the increasing patterns of e-cigarette use among adolescents has 

become of high concern and warrants further investigation. As well, among current smokers, 

some studies show that e-cigarettes are not liked as much as tobacco cigarettes (Strasser et al. 

2016), and therefore, additional research is needed to determine the ability of e-cigarettes to 

accomplish nicotine replacement, harm reduction, or act as a quit aid (Rennie et al. 2016; Selya 

et al. 2018).  

 

Chronic exposure to nicotine or nicotine-containing products is associated with detrimental 

health effects, including enhanced brain injury and/or stroke risk (Sifat et al. 2018), altered blood 

brain barrier permeability (Hawkins et al. 2004), promotion of tumor growth via nicotine and its 

carcinogenic metabolites cotinine, Nʹ-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-

pyridyl)-1-butanone (NNK; (Ginzkey et al. 2013; Ginzkey et al. 2012; Jacob et al. 2009; Nakada et 
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al. 2012), early onset of menopause in women (Bellavia et al. 2016), among others. Of 

importance, recent research has found that e-cigarette smoke may be carcinogenic and lead to 

increased risk of lung and bladder cancer, as well as heart disease, due to DNA damage (Lee et 

al. 2018). Given the harmful health effects associated with chronic use of nicotine-containing 

products, understanding the mechanisms that drive nicotine use is essential. 

 

Nicotine is an agonist at nicotinic acetylcholine receptors (nAChRs), the structure and function of 

which were discovered in the early 1980s using ligand-binding assays (Clarke et al. 1985; Patrick 

and Stallcup 1977). The nAChRs are members of a large family of cys-loop homologous receptors, 

which also includes muscle acetylcholine receptors (mAChRs), GABAA/C, glycine, and serotonin 

type 3 receptors (Miller and Smart 2010). The nAChRs are pentameric ion channels, whereby 

either homomeric or heteromeric subunits combine together to form a central pore (Zoli et al. 

2015). The subunit composition and stoichiometry of nAChRs determine its unique 

pharmacological binding profile, as well as its susceptibility to desensitization (Picciotto et al. 

2008).   

 

Decades of research has uncovered important neural mechanisms that drive nicotine self-

administration behavior. Specifically, nicotine engenders self-administration through activation 

of high affinity β2 subunit-containing (denoted b2*) nAChRs localized on dopamine-containing 

cell bodies within the ventral tegmental area (VTA; (Klink et al. 2001; Picciotto et al. 1998)), and 

by altering glutamatergic and GABAergic tone in the VTA (Mansvelder et al. 2002). The net result 

of nicotine-induced activation of nAChRs is increased levels of extracellular dopamine within the 
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nucleus accumbens (NAc; (Pontieri et al. 1996)), which is hypothesized to contribute to its 

reinforcing effects. Although activation of nAChRs can lead to motivated behavior, it is also 

through desensitization/inactivation that nAChRs can alter acetylcholine signaling and neuronal 

function (Colombo et al. 2013), which may also contribute to modulation of nicotine-motivated 

behavior. Importantly, both acetylcholine and nicotine lead to nAChR desensitization; however, 

nicotine leads to prolonged inactivation of these receptors, with a slower rate of recovery than 

the endogenous ligand (Giniatullin et al. 2005). Interestingly, ɑ4β2 nAChR desensitization occurs 

following cigarette smoking, which is correlated with reductions in cigarette craving (Brody et al. 

2006). 

 

It is important to note that nAChRs are expressed neuronally, on both pre- and post-synaptic 

terminals as well as on post-synaptic somatodendrites (Albuquerque et al. 2009). Additionally, 

some nAChRs (e.g., homomeric ɑ7) are localized on astrocytes and microglia in the brain (Graham 

et al. 2003; Jensen et al. 1997; Noda and Kobayashi 2017; Shen and Yakel 2012; Shytle et al. 

2004), which have important functions at glutamatergic neuronal synapses that impact synaptic 

plasticity (Wang et al. 2013). Subunit composition of nAChRs in the brain can vary depending on 

region and cell-type specific localization, the topography of which continues to be studied 

(Gaimarri et al. 2007; Gotti et al. 2006; Hendrickson et al. 2013), and is important in 

understanding neurobehavioral processes modulated by nAChRs.  

 

In this chapter, we describe the current state of the knowledge regarding nAChR subtype 

expression in a brain region- and pathway-specific manner as it relates to nicotine dependence 
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and comorbid pathologies. To accomplish this goal, we address current tools in the field that have 

allowed for exploration of the role of nAChR function and expression in addiction-related 

processes, with a focus on findings garnered from transgenic mouse models. As well, we 

illuminate novel areas of research focusing on modulating nAChR expression and/or function, 

which may have important implications for nicotine dependence processes. Given the evolving 

landscape of nicotine-containing product use (Fowler et al. 2017), a better understanding of the 

neural processes underlying the motivation to use nicotine is needed to enhance drug discovery 

efforts to promote cessation from nicotine-containing products. 

 

nAChR Function and Signaling 

As noted above, the nAChR receptor composition plays an important role in response to 

pharmacological agents. When an agonist (e.g., acetylcholine or nicotine) is bound to nAChRs, 

the receptors are first activated and then can desensitize, followed by recovery once the agonist 

is unbound. The EC50 value, which represents nAChR activation for the concentration of agonist 

producing half-maximal response amplitude, varies based on subunit composition. For example, 

the acetylcholine EC50 value is 513 for rat ɑ7 (Papke and Porter Papke 2002), but is 14 for rat 

ɑ3β4 (Bohler et al. 2001). Conversely, the measure for desensitization, or the concentration of 

agonist required to reduce the amplitude of the response by 50%, is termed the IC50. Based on 

subunit composition, desensitization-induced inhibition of receptors can vary when activated by 

the same agonist; for instance, the rat ɑ4β2 IC50 with nicotine is <0.01 (Paradiso and Steinbach 

2003), whereas rat ɑ7 is 1.3 (Fenster et al. 1997; Giniatullin et al. 2005). These values represent 

different rates of activation and inhibition, which have profound effects on nAChR modulation of 
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neuronal function. It should be noted that the same receptor subtype can desensitize at different 

rates based on the agonist present. For example, rat ɑ7 IC50 value is 1.3 for nicotine, but is 

>10,000 for acetylcholine (Fenster et al. 1997; Papke and Porter Papke 2002). This is important 

because recovery rates are dependent upon the agonist present, with recovery rate from nicotine 

taking longer than acetylcholine in some cases (e.g., ɑ4β2; (Paradiso and Steinbach 2003)). Given 

the important role of nAChR subtypes such as ɑ4β2 in the reinforcing effects of nicotine 

(Changeux et al. 1998) and in modulating dopamine release (Mansvelder and McGehee 2002), 

different rates of desensitization and recovery of different nAChRs likely play key roles in the 

neural circuitry underlying nicotine addiction. 

 

There are generally two binding sites for neuronal heteromeric nAChRs, each of which is formed 

by a pocket between subunits extracellularly at the ligand-binding N-terminal domain (Karlin 

2002; Sine et al. 2002). Neuronally, ɑ7 nAChRs are mainly homomeric and have five potential 

binding sites between the ɑ subunits (Drisdel and Green 2000). Recently, additional binding sites 

for heteromeric nAChRs have been identified which are dependent on subunit composition (Jain 

et al. 2016). When a ligand is bound, the channel opens within microseconds (Albuquerque et al. 

2009), indicative of the rapid responsivity of these channels. A sequence of events occurs to alter 

the conformational state of the channel in order to open. Through computer generated 

modeling, it has been determined that when acetylcholine or nicotine is bound, hydrogen bonds 

among amino acids rearrange near the binding pocket. Subsequently, the C-loop moves toward 

the central pore, which then allows the Cys-Cys pair to interact with the bound ligand and results 
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in the ligand being trapped deep within the pore between the subunits (Gao et al. 2005; Hansen 

et al. 2005).   

 

As mentioned above, neuronal nAChRs can be expressed somatodendritically, pre-synaptically, 

or post-synaptically (Broide and Leslie 1999; McGehee et al. 1995; Wonnacott 1997). Nicotine 

binds to nAChRs located in the brain, which have identified subunits of α2-7, and β2-4 (Boulter 

et al. 1987; Couturier et al. 1990; Picciotto et al. 2008). Somatodendritically-expressed nAChRs 

play a modulatory role in the neurotransmission of other systems in response to nicotine 

(Wonnacott et al. 2006), such as dopamine (Nisell et al. 1994). nAChRs that are expressed 

somatodendritically and modulate dopamine release appear to contain α6 and β3 subunits, and 

differ in pharmacological response to nicotine and epibatidine compared to those expressed on 

terminals in the striatum (Reuben et al. 2000). Presynaptic nAChRs are also important in 

modulating neurotransmitter release. For instance, α7 nAChRs are Ca2+-permeable, rapidly 

desensitize following activation and are expressed on many cell types including at glutamatergic 

terminals in brain regions such as the hippocampus and NAc (Fabian-Fine et al. 2001; Kaiser and 

Wonnacott 2000). Thus, nAChRs can enhance release of neurotransmitters from synaptic 

terminals, and may provide a feedforward mechanism by which cholinergic signaling gates 

neurotransmitter release. Post-synaptically, nAChRs modulate many functions within the brain, 

including the flow of auditory information in the thalamus. Specifically, β2-containing 

heteromeric nAChRs are located on neurons within the medial geniculate body receive 

cholinergic input from the pontomesencephalic tegmentum, and these receptors undergo an 

age-related decline in their expression and function (Sottile et al. 2017). As well, postsynaptic 
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nAChR subunits such as α6, α7, β2, and/or β4 within the laterodorsal tegmentum, undergo 

changes in subunit composition due to age, which results in differential nicotine-induced 

neuronal excitability (Christensen and Kohlmeier 2016; Kaneda 2017; Kaneda et al. 2016; 

Shinohara et al. 2014; Taoka et al. 2016).  

 

For decades, research has shown that chronic exposure to nicotine significantly alters expression 

and function of neuronal nAChRs (Fenster et al. 1999a; Fenster et al. 1999b; Gentry and Lukas 

2002; Quick and Lester 2002). One nAChR subunit heavily involved in nicotine-induced striatal 

dopamine release and nicotine self-administration behavior, β2 (see a more thorough description 

below), is upregulated and desensitized after chronic nicotine exposure, as measured via binding 

assays in intact oocytes (Fenster et al. 1999b). Following chronic activation due to nicotine, 

different subunit-containing nAChRs appear to desensitize at different rates, which is thought to 

underlie their ability to modulate different neurotransmitter systems. Further, changes in 

receptor expression with chronic nicotine appears to be cell type and nAChR subtype dependent 

(Benwell et al. 1988; Lallai et al. 2019; Marks et al. 1992; Perry et al. 1999). Both neuronal and 

non-neuronal cholinergic signaling involves some of the same subtypes of nAChRs and are 

associated with pathologies such as lung cancer (Mucchietto et al. 2016). One such subunit is ɑ5, 

which is expressed in non-neuronal tissues (Chini et al. 1992) such as lung, pancreas, stomach, 

and gliomas (Jia et al. 2016; Yoshikawa et al. 2005; Zia et al. 1997), and may mediate nicotine-

induced lung cancer cell proliferation (Ma et al. 2014; Sun and Ma 2015). This subunit forms 

functional complexes with ɑ4β2 or ɑ3β4 subunits, and polymorphism of the human a5 gene, 

CHRNA5, is associated with nicotine dependence and lung cancer (Bierut et al. 2008; Chen et al. 
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2009; Saccone et al. 2009; Saccone et al. 2007). Importantly, the variant of ɑ5, characterized by 

a change in the 398th amino acid from aspartic acid to asparagine (D398N), has been associated 

with a reduction in the function of the human α3β4α5 nAChR (George et al. 2012), which has 

important implications for smoking cessation outcomes as well as other health pathologies. 

 

nAChRs Mediating Nicotine Reinforcement 

Genetically modified mouse models have allowed for the interrogation of receptors and circuits 

underlying complex behaviors. In the tobacco and nicotine field, groundbreaking studies by 

Picciotto, Changeux and colleagues (Picciotto et al. 1995; Picciotto et al. 1998) have provided an 

important foundation for the further progression of these animal models. Beginning with 

knockout mice, subsequent approaches have incorporated various genetic and technical tools to 

achieve more select manipulation of target protein or neurotransmitter function. These advances 

include, but are not limited to, humanized knockin genes, modified receptors, cre driver lines 

with floxed viral approaches, optogenetic and chemicogenetic expression of receptors in a cell 

type specific manner, promotor driven fluorescent reporter lines, and most recently, CRISPR-

Cas9 directed genetic modifications. Findings derived thus far from such approaches within each 

circuit are discussed in the following paragraphs. 

 

Mesolimbic Pathway 

The positive rewarding effects of nicotine involve the brain’s mesolimbic pathway (Kenny and 

Markou 2005; Rice and Cragg 2004), consisting of dopaminergic projections from the VTA. The 

VTA integrating circuits and projection regions contain various nAChR subtypes expressed on 
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dopaminergic, glutamatergic and GABAergic neurons (Charpantier et al. 1998; Klink et al. 2001; 

Mameli-Engvall et al. 2006; Mansvelder and McGehee 2002). For instance, inhibitory GABAergic 

projections from the rostromedial tegmental nucleus (RMTg) express terminal a4b2* nAChRs. 

VTA dopaminergic cells projecting to both the NAc and prefrontal cortex (PFC) express a4a6b2, 

a4b2, and a6b2 nAChRs, allowing for regulation of dopamine signaling through either somatic 

or presynaptic expression. These VTA dopaminergic neurons may also co-express glutamate or 

GABA, and it has been recently shown that heteromeric nAChRs mediate excitatory signaling in 

the dopaminergic-glutamate co-expressing cells (Yan et al. 2018). Within the NAc, the 

dopaminergic terminal nAChRs become activated by cholinergic interneurons and modulate 

dopamine’s activation of GABAergic medium spiny neurons expressing dopamine D1 or D2 

receptors. Intra-VTA glutamatergic circuits also appear to modulate GABAergic signaling via 

axoaxonic connections onto RMTg terminals. Further, glutamatergic projections from other brain 

regions, such as the PFC and subiculum, express presynaptic a7 nAChRs and have been found to 

terminate on the soma of dopaminergic neurons. Moreover, expression of the a2, a5 and b3 

nAChR subunits have also been localized within the VTA. Together, this complicated pattern of 

nAChR expression makes defining the specific subtype contribution to nicotine reward and 

reinforcement challenging. However, significant advances have been made in this regard.  

 

Initial studies in knockout mice have supported pharmacological findings implicating nAChRs 

expressing the b2 nAChR subunit in mediating reward- and reinforcement-related processes. In 

the striatum, nicotine application induces a robust increase in dopamine release, which can be 

blocked by administration of the nAChR antagonist mecamylamine (Mifsud et al. 1989). However, 
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this nicotine-mediated increase in dopamine release was absent in the striatum of mice lacking 

the b2 nAChR subunit (Picciotto et al. 1998). To examine the involvement of this subunit on 

nicotine reinforcement, mice were assessed in an intravenous nicotine self-administration 

protocol, a technique with high translational validity to patterns of nicotine consumption in 

humans. Interestingly, while the wildtype mice exhibited sustained nicotine self-administration 

behavior, the b2 knockout mice did not self-administer nicotine (Picciotto et al. 1998). A further 

study revealed similar findings with a lack of sustained self-administration behavior in the 

absence of the b2 nAChR subunit with nicotine infusions directly into the VTA (Maskos et al. 

2005). More recently, viral mediated re-expression of the b2 nAChR subunit in the VTA of the 

knockout mice was shown to ‘rescue’ the behavioral phenotype, in which this site-specific re-

expression led to the mice acquiring nicotine self-administration (Orejarena et al. 2012). 

Additional support from studies with b2 knockout mice demonstrate that the b2* nAChR is 

necessary for the formation of a conditioned place preference to a nicotine-paired environment 

and the discriminative stimulus properties of nicotine (Shoaib et al. 2002; Walters et al. 2006). In 

a cutting edge approach, Mourot and colleagues used a viral technique to express light-

controllable b2* nAChRs in the VTA, and during light exposure, the VTA b2* nAChRs became 

inhibited, which thereby was sufficient to prevent the formation of a nicotine-induced 

conditioned place preference (Durand-de Cuttoli et al. 2018).  

 

In addition to the b2 subunit, lack of sustained nicotine self-administration has also been found 

in mice with knockout of the a4 and a6 nAChR subunits, and importantly, the behavioral 

phenotype could be restored with reexpression of these subunits in the VTA of each respective 
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knockout line (Exley et al. 2011; Maskos et al. 2005; Picciotto et al. 1998; Pons et al. 2008). 

Further, dopaminergic neuron specific deletion of the a4 subunit was found to prevent the 

formation of a nicotine-mediated conditioned place preference (McGranahan et al. 2011). In a 

complementary approach, transgenic a4 and a6 nAChR hypersensitive knockin mice were 

generated, in which a single point mutation renders the receptor subtype more responsive to 

nicotine. For the a4 subunit, this genetic modification led to an enhancement of the rewarding 

effects of nicotine, as assessed with conditioned place preference (Tapper et al. 2004), and for 

the a6 subunit, mice exhibited a potentiation of nicotine-mediated locomotor effects and 

increased glutamatergic transmission with VTA neurons (Berry et al. 2015).  As further evidence 

for these specific receptor subtypes, pharmacological administration of the relatively selective 

a4b2 nAChR antagonist, DHbE, also decreased nicotine self-administration in rats (Corrigall and 

Coen 1989; Harvey et al. 1996; Watkins et al. 1999). These findings are paralleled by studies 

demonstrating that DHbE attenuates the stimulatory effects of nicotine on brain reward systems 

(Harrison et al. 2002). Together, these findings support the notion that a4b2 and/or a4a6b2 

nAChRs on dopaminergic circuits in the VTA mediate the reinforcing properties of nicotine.  

 

The involvement of the a7 nAChR in nicotine dependence has been somewhat controversial. As 

noted above, glutamatergic axons containing presynaptic a7 nAChRs terminate on the soma of 

dopaminergic neurons in the VTA, suggesting a regulatory role for downstream dopaminergic 

signaling. Initial pharmacological studies demonstrated that administration of the a7 selective 

antagonist, methyllycaconitine, attenuates nicotine self-administration in rats (Markou and 

Paterson 2001), a finding that was further substantiated with site-specific VTA injections in 
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wildtype mice (Besson et al. 2012). However, studies in a7 nAChR knockout mice failed to find 

differences with intravenous nicotine self-administration and nicotine-mediated conditioned 

place preference compared to wildtype littermates (Pons et al. 2008). However, more recently, 

Granon and colleagues (2012) were able to establish a dose-dependent effect with intra-VTA 

nicotine self-administration, in which the a7 nAChR knockout mice exhibited decreased self-

administration at a low, but not high, nicotine dose. Further, when administered a peripheral 

injection of nicotine, nicotine-induced dopamine outflow in the NAc was sustained over a longer 

period of time in the a7 knockout mice (120 min), as compared to the wildtype mice (15 min) 

(Besson et al. 2012). In consideration of a7 nAChRs’ presynaptic circuit localization, lower affinity 

for nicotine, and rapid recovery from desensitization, the receptor’s effects on the mechanisms 

underlying nicotine reinforcement appear to be more nuanced.   

 

Habenulo-Interpeduncular Pathway 

As a drug of abuse, nicotine is distinctive in that the aversive properties appear to sharply 

contrast the rewarding properties of the drug, thereby limiting the range of doses that promote 

reinforcement and drug consumption.  Nicotine’s aversive effects are mediated by the medial 

habenula (MHb), a brain structure that directly projects to the interpeduncular nucleus (IPN). The 

MHb-IPN circuit has been characterized as containing the densest expression of cholinergic fibers 

and various nAChR subunits within the brain, including the a5, a3 and b4 nAChR subunits (Marks 

et al. 1992; Villani et al. 1983). The aversive signaling of this circuit has been demonstrated in 

several studies with genetically modified rodents. For instance, a5 nAChR subunit knockout mice 

exhibit a high level of motivation to consume large quantities of nicotine, and viral mediated re-
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expression of a5 subunits within this pathway restores nicotine intake to wildtype levels (Fowler 

et al. 2011). In addition, while wildtype mice exhibit inhibitory motivational effects at high doses 

of nicotine, the a5 nAChR knockout mice continue to exhibit reward-related effects, as assessed 

with both conditioned place preference and intracranial self-stimulation (Fowler et al. 2013; 

Jackson et al. 2010). The conclusions drawn from the knockout mice are supported by 

complementary studies using viral mediated knockdown of the a5 nAChR subunit in rats, in which 

decreased expression of a5 nAChR subunits selectively in the habenula similarly increase nicotine 

intake and also decreased the inhibitory effects of higher nicotine doses on the activity of the 

brain reward circuitry (Fowler et al. 2011). Presynaptic a5* nAChRs on MHb terminals appear to 

facilitate glutamate release from cholinergic and glutamatergic coexpressing axons in the IPN 

(Fowler et al. 2011; Girod and Role 2001), which is thought to mediate this effect. Further, chronic 

nicotine appears to mitigate the activation of a subpopulation of a5-expressing neurons in the 

IPN, which subsequently provide negative feedback onto habenular terminals and mitigate 

nicotine reward, as assessed with conditioned place preference (Ables et al. 2017). The presence 

of the α5 nAChR subunit in α4β2, α3β2 and α3β4 nAChR receptors have been shown to alter 

nicotine binding and/or desensitization kinetics in vitro (Ramirez-Latorre et al. 1996; Wang et al. 

1996), and all of these subtypes are expressed in the MHb-IPN pathway. Furthermore, the b4 

nAChR subunit has also been shown to mediate aversive processing for nicotine. Under 

conditions of  b4 nAChR subunit over-expression, mice consume less nicotine solution (Frahm et 

al. 2011), thereby suggesting that an a5b4* nAChR subtype may underlie an inhibitory 

motivational signal for nicotine in the MHb-IPN pathway. These findings in mouse models are 

further supported by human genome wide association studies demonstrating that allelic 
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variation in the CHRNA3-CHRNA5-CHRNB4 gene cluster, which encodes a3, a5 and b4, 

respectively, increases vulnerability to developing tobacco dependence (Bierut et al. 2008; 

Kapoor et al. 2012; Wang et al. 2009). Recently, the non-synonymous SNP in the a5 gene that 

has been implicated in nicotine dependence in humans was inserted into the genome of rats to 

generate a transgenic humanized a5SNP model (Forget et al. 2018). The behavior of the a5SNP 

rat closely parallels the mouse knockout model, in which greater levels of nicotine are self-

administered at high doses. In addition, an increase in nicotine-induced reinstatement was found 

in the a5SNP rats (Forget et al. 2018), suggesting a role for this genetic variant in relapse-related 

behavior.  

 

nAChRs in Other Aspects of Nicotine Dependence 

Nicotine Enhancement of Cue Association 

Nicotine administration has been shown to enhance the acquisition of certain learned behaviors, 

such as contextual fear conditioning and trace cued fear conditioning. These findings may 

underlie nicotine’s cue-related conditioning effects with drug use, in that later exposure to the 

cue during abstinence may promote drug relapse. Nicotine’s enhancing effect on contextual fear 

conditioning is prevented in mice with knockout of the b2, but not a7, nAChR subunit (Davis and 

Gould 2007; Portugal et al. 2008). These effects likely involve the hippocampus since systemic or 

site-specific hippocampal administration of the b2 nAChR antagonist DHbE mitigates contextual 

fear learning in wildtype, but not b2 subunit knockout, mice (Davis and Gould 2007; Portugal et 

al. 2008). An enhancement of nicotine-mediated cued, but not trace or contextual, fear 

conditioning was also found in female, but not male, a2 nAChR subunit knockout mice (Lotfipour 
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et al. 2013).  Interestingly, mice with a hypersensitive a2* nAChR exhibit impaired contextual 

fear conditioning, an effect which could be rescued with pretreatment of nicotine (Lotfipour et 

al. 2017).  

 

Nicotine Withdrawal 

Following chronic nicotine administration, wildtype mice exhibit a range of behaviors indicative 

of the withdrawal state, including somatic signs (such as shaking, paw tremors, writhing), 

increased anxiety-like behavior in the elevated plus maze, increased brain reward thresholds, 

learning deficits in a contextual fear conditioning paradigm, and development of a conditioned 

place aversion to a withdrawal-associated environment. Studies with the b2 knockout mouse 

indicate that b2* nAChRs are involved in withdrawal-related anxiety-like behavior and 

conditioned place aversion, but not in the expression of somatic withdrawal signs (Jackson et al. 

2008; Salas et al. 2004).  Further, a7 nAChRs have been implicated the initial expression of 

withdrawal symptomology, including anhedonia and somatic signs, but the a7 subunit knockout 

mice do not differ from wildtype mice at later time points (e.g., 24+ hours) (Grabus et al. 2005; 

Salas et al. 2007; Stoker et al. 2012). Moreover, decreased somatic withdrawal signs have been 

found in a2, a5 and b4 nAChR subunit knockout mice, as compared to their respective wildtype 

littermates (Lotfipour et al. 2013; Salas et al. 2004; Salas et al. 2009). Interestingly, all of these 

subunits exhibit selectively dense expression in the MHb-IPN pathway, which has also been 

specifically implicated in somatic aspects of nicotine withdrawal. Administration of the general 

nAChR antagonist mecamylamine into the MHb-IPN pathway is sufficient to precipitate 

withdrawal, whereas injections into the cortex, VTA or hippocampus are ineffective (Salas et al. 
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2009), and re-exposure to nicotine during withdrawal results in increased activity of MHb and 

IPN neurons (Arvin et al. 2019; Gorlich et al. 2013). Further, injections of antagonists for a4b2* 

or a6b2*, but not a3b4*, nAChRs in the MHb decrease the expression of anxiety-related 

behavior under conditions of nicotine withdrawal in mice (Pang et al. 2016).  Together, these 

findings suggest that nAChRs are involved in various aspects of nicotine withdrawal based on 

their localization and expression patterns within the brain.  

 

Modulators of nAChRs influencing expression and function 

The expression and function of nAChRs may be modulated at various points from protein 

translation to membrane insertion to subsequent function. Early receptor binding studies in 

humans found increased expression of nAChRs in chronic smokers (Benwell et al. 1988; Perry et 

al. 1999), suggesting a change in cellular activation following prolonged nicotine exposure. Given 

that chronic agonist receptor activation typically results in receptor downregulation, this finding 

was unexpected, although it was also evidenced in more controlled rodent studies (Marks et al. 

1983; Marks et al. 1992). The likely mechanism underlying receptor upregulation was recently 

elucidated as it was found that nicotine and nAChR ligands can act as ‘chaperones’ for a4 and b2 

nAChR subunits (Henderson et al. 2014; Kuryatov et al. 2005; Srinivasan et al. 2011), thereby 

allowing for increased expression of the high affinity nAChR subtype in the membrane. As the 

nAChR subunit protein is translated in the endoplasmic reticulum, the chaperone mechanism is 

thought to facilitate transport by promoting the trafficking of the protein to the plasma 

membrane, and subsequent insertion of the assembled nAChR.  
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Intracellular proteins have also been shown to stabilize nAChR subunits in the endoplasmic 

reticulum and regulate subunit assembly into specific nAChR subtypes, resulting in either an 

increase or decrease in nAChR subtype-specific membrane expression (Dau et al. 2013; 

Wanamaker and Green 2007). For instance, a7 nAChRs are selectively targeted to the dendritic 

membrane by Ric-3, thus facilitating receptor expression (Alexander et al. 2010). In contrast, 

members of the Ly-6/neurotoxin gene superfamily, which includes lynx1 and lynx2, have been 

demonstrated to decrease receptor expression by acting as inhibitory chaperones during protein 

translation and trafficking, and moreover, lynx proteins also bind directly to the extracellular face 

of nAChRs on the cell membrane, resulting in a decrease in ligand binding efficiency and increase 

in the desensitization rate for nAChRs containing the a4, a3, a5, a7, b2, and/or b4 subunits 

(George et al. 2017; Ibanez-Tallon et al. 2002; Lyukmanova et al. 2011; Miwa et al. 1999; Nichols 

et al. 2014).  In the cortex, Lynx1 is expressed in both glutamatergic and GABAergic neurons, 

whereas Lynx2 has been mainly localized in glutamatergic neurons (Demars and Morishita 2014). 

Lynx1 also appears to exhibit preferential binding affinity to the α:α interface, which would allow 

for increased interaction with the stoichiometry present in the lower sensitivity α43β22 nAChRs 

(Nichols et al. 2014). In addition to intracellular proteins, other endogenous factors may interact 

with nAChRs to modulate function. For instance, estradiol has been shown to bind to the C-

terminal tail of the a4 subunit to potentiate the activation of a4* nAChRs in the presence of 

acetylcholine, an effect that was selective for a4 as differences were not found with the a3 

subunit (Curtis et al. 2002). More recently, phosphorylation sites have been identified on a4b2* 

nAChRs, suggesting a direct role for the receptor in mediating calcium/calmodulin-dependent 

protein kinase II and protein kinase A intracellular signaling (Miller et al. 2018). Together, these 
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nAChR subtype specific interactions, along with cell type-specific expression patterns, may allow 

for selective modulation of various aspects of cholinergic signaling, thereby permitting each 

endogenous modulator to differentially regulate neural processes. 

 

Beyond nicotine dependence 

Although heavily involved in processes of nicotine dependence, nAChRs have also been 

implicated as mechanisms underlying other disease states, including Alzheimer’s Disease (AD; 

(Lombardo and Maskos 2015)), schizophrenia (specifically, α7; (Jones 2018)), Parkinson’s Disease 

(PD; (Jurado-Coronel et al. 2016)), overeating/weight gain (Shariff et al. 2016), among others. 

Discovery of these mechanisms has led to multiple Phase II clinical trials for nAChR compounds 

that have pro-cognitive effects (although many of these attempts have failed, see (Lewis et al. 

2017)). Varenicline, a full agonist at α7 and a partial agonist at α4β2 nAChRs, is prescribed as a 

smoking cessation agent but also has efficacy in decreasing sucrose consumption and producing 

pro-cognitive effect in rodent models (Potasiewicz et al. 2018; Shariff et al. 2016). Interestingly, 

varenicline may improve cognitive function in patients with schizophrenia (Shim et al. 2012). In 

AD, medications have been developed that inhibit breakdown of the enzymes that metabolize 

acetylcholine (inhibition of acetycholinesterase and/or butyrylcholinesterase), such as Donezepil 

(Aricept) or Rivastigmine (Exelon). Additionally, drug development efforts have included 

compounds that act as positive allosteric modulators at α7 nAChRs in addition to AChE inhibition, 

including Galantamine (Reminyl). Galantamine slows progression of plaque formation 

preclinically (Bhattacharya et al. 2014), and has shown efficacy in improving cognition and global 

functioning in patients with AD (Deardorff et al. 2015). Although statistically significant, these 
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benefits are modest and thus additional drugs are needed. Taken together, these studies 

illustrate a need for refinement of medications that target nAChRs for indications beyond 

nicotine dependence. 

 

Conclusions  

Since the mid-1990’s, significant advances have been made with transgenic animal models to 

allow for better interrogation of specific nAChRs and circuits underlying nicotine dependence. 

Studies have built upon prior findings to reveal integral roles for various subunits in the 

mechanisms underlying nicotine’s actions in the brain, with relevance to addiction. The a4a6b2* 

nAChRs in the mesolimbic pathway appear to be important in mediating the reinforcing 

properties of nicotine, whereas the a5 and b4 nAChR subunits in the MHb-IPN mitigate the 

aversive properties of higher nicotine doses that thereby limit drug intake. In addition to these 

effects on drug consumption, nAChRs have also been implicated in other aspects of the 

dependence processes, including withdrawal, cue-associated learning, and psychiatric 

comorbidity. This foundation holds the promise to provide the field with a basis for new 

discoveries to formulate more efficacious therapeutics. For instance, in consideration of the 

involvement of the a4b2* nAChRs in nicotine reinforcement, it is perhaps not surprising that 

varenicline has similar or greater effectiveness in promoting smoking cessation compared to 

nicotine replacement therapy and other approved therapeutics, such as bupropion (Gonzales et 

al. 2006). Drug development efforts are also focused on modulating the MHb-IPN circuit to 

enhance nicotine-mediated aversion and thus decrease further drug intake (Fowler and Kenny 

2014; Jin et al. 2014). For instance, GLP-1 receptors have been shown to alter nicotine intake via 
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modulation of the MHb-IPN circuit (Tuesta et al. 2017), and a GLP-1 receptor agonist, liraglutide, 

is currently being tested for smoking cessation in a clinical trial (Ashare 2019). In another 

approach to minimize nicotine entry into the brain, NicA2-J1 has been developed as a 

reengineered nicotine-degrading enzyme (Kallupi et al. 2018). Interestingly, while NicA2-J1 does 

not appear to induce significant differences in nicotine intake, decreased withdrawal and relapse-

related behaviors were found in rats (Kallupi et al. 2018). Therefore, the field will certainly 

continue to advance by better defining the various genetic, behavioral and biological mechanisms 

underlying addiction so that long-term abstinence can be readily achieved by those seeking to 

quit tobacco and e-cigarettes. 
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