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Abstract

We consider how human subjects establish signaling conventions in the context
of Lewis-Skyrms signaling games. These experiments involve games where there
are precisely the right number of signal types to represent the states of nature,
games where there are more signal types than states, and games where there are
fewer signal types than states. The aim is to determine the conditions under which
subjects are able to establish signaling conventions in such games and to identify a
learning dynamics that approximates how they succeed when they do. Our results
suggest that human agents tend to use a win-stay/lose-shift with inertia dynamics
to establish conventions in such games. We briefly consider the virtues and vices
of this low-rationality dynamics.

1 Introduction

David Lewis (1969) introduced signaling games to study how linguistic conventions might
be established without appeal to prior conventions. Lewis signaling games are classical
games that presuppose sophisticated players possessing both a high level of rationality
and access to natural saliences. Brian Skyrms (2010, 2014) subsequently showed how to
represent the basic structure of Lewis signaling games as evolutionary games that may be
considered in a population or a learning context and that may lead to the establishment
of successful conventions even when played by low-rationality agents without access to
natural saliences. Here we focus on how human agents in fact establish linguistic con-
ventions during a Lewis-Skyrms evolutionary game in a learning context. In brief, we
find that they often evolve successful conventions by gradually tuning their strategies on
the basis of a win-stay/lose-shift with inertia dynamics, a low-rationality trial and error
learning dynamics. We will discuss how signaling games work, then turn to consider the
empirical data.

A Lewis-Skyrms signaling game is a common interest evolutionary game played be-
tween a sender who can observe nature but not act and a receiver who can act but not
observe nature. The simplest signaling game is a 2× 2× 2 game, where the first number
is the number of possible states of nature, the second is the number of possible signals
the sender might send, and the third is the number of acts the receiver might perform
after getting a signal. Here nature randomly produces one of the two possible states in an
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unbiased way, the sender observes the state, then sends one of her two available signals to
a receiver who performs one of his two possible actions as illustrated in Figure 1. Each of
the two actions corresponds to one of the two states of nature. The players are successful
if and only if the receiver’s action matches the current state of nature.

In a 2× 2× 2 signaling game, neither of the two signal types begins with a meaning.
If the agents are to be successful in the long run, they must evolve signaling conventions
where the sender communicates the current state of nature by the signal she sends and the
receiver interprets each signal appropriately and produces the corresponding act. Such
conventions may evolve gradually by means of a low-rationality learning dynamics like
simple reinforcement (SR).
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Figure 1: A basic 2× 2× 2 signaling game. Following Bruner et al. (2018)), the diagram
on the left depicts the extensive form of the game. Nature (N) passes state S1 or S2 to
the sender (S), who passes message M1 or M2 to the receiver (R), who chooses act A1
or A2. Choosing the correct act yields payoff of 1 for both players and 0 otherwise. The
dotted lines connecting nodes represent information partitions for the receiver: she cannot
distinguish which of the nodes she has arrived at if she arrives at either. The diagram
on the right gives another view of the two players as they are prepared to update using
simple reinforcement. States (and acts) are 0 and 1; signals are a and b. Each agent
has two urns corresponding to their two possible inputs and each of those start with two
balls, one for each possible output. Additional balls are added when the players succeed.

SR is among the simplest of trial and error learning dynamics, and there is a long
tradition of using it to model human learning.1 On this dynamics one might picture the
evolution of the two players’ dispositions in a signaling game in terms of balls and urns.
In the 2 × 2 × 2 signaling game, one might imagine the sender with two urns, one for
each state of nature (0 or 1), each beginning with one a-ball and one b-ball. The receiver
has two urns, one for each signal type (a or b), each beginning with one 0-ball and one
1-ball. The sender observes nature, then draws a ball at random from her corresponding
urn. This determines her signal. The receiver observes the signal, then draws a ball from
his corresponding urn. This determines his act. If the act matches the state, then it is
successful and each agent returns the ball drawn to the urn from which it was drawn and
adds a duplicate of that ball. If unsuccessful, then, on basic reinforcement learning, each
agent simply returns the ball drawn to the urn from which it was drawn. In this way
successful dispositions are made more likely conditional on the states that led to those

1See Herrnstein (1970) for the basic theory and Erev and Roth (1998) for an example of experimental
results for human agents.
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actions.
Since the initial urn contents are unbiased, the sender’s signals clearly have no pre-

established meanings. She begins by signaling randomly and the receiver begins by
acting randomly, but as they play, the sender’s signals may acquire meanings that allow
for increasingly successful actions by the receiver. Indeed, if nature is unbiased, then one
can prove that a 2 × 2 × 2 signaling game will almost certainly converge under simple
reinforcement learning to a signaling system where each state of nature produces a signal
that leads to an action that matches the state.2

Importantly, n × n × n signaling games do not always converge to optimal signaling
systems on SR for n > 2. For n = 3 about 9% of runs fail to converge to optimal signaling
on simulation . For n = 4 the failure rate is about 0.21. And for n = 8 it is about 0.59.3

When the game does not converge to an optimal signaling system, the players get stuck
in one of a number of sub-optimal pooling equilibria associated with different success
rates.

The behavior of agents in 2×m× 2 population games are central to the experiments
we considered. To give a baseline idea of what the evolution of agent dispositions looks
like in such games, Figure 2 shows the relative rates of convergence under SR learning
with six players in the sender population and six in the receiver population when players
are randomly paired in each round. Note that the simulated SR agents do best with four
signals and that it takes a few thousand plays for the agents to evolve firm conventions.

0.5 

0.55 

0.6 

0.65 

0.7 

0.75 

0.8 

0.85 

0.9 

0.95 

1 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 

M
ea

n 
C

um
ul

at
iv

e 
Su

cc
es

s R
at

e 

Number of 100's of plays 

2 signals 

3 signals  

4 signals 

8 signals 

20 signals  

Figure 2: Mean cumulative success rate for 2 ×m × 2 population games (six players in
each population) across 10,000 runs each under simple reinforcement learning. Agents
equipped with four signals learn fastest in the short and medium run.

2See Argiento et al. (2009) for the proof.
3See Barrett (2006) for a discussion of these results and what they mean.
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Figure 2 illustrates that the rate at which agents are observed to approach optimal
signaling is a non-monotonic function of n, the number of distinct signals available: four
signals allows for the quickest convergence, and having more or less slows things down.
This counterintuitive phenomenon can be explained as a trade-off. On the one hand,
extra signals afford the players flexibility in the signaling systems they can reach. For
instance, if n = 2 then there are only two signaling systems at which players might arrive.
If n = 3 then there are many more (some featuring effectively mixed strategies, which
we discuss later). This flexibility expedites the speed at which players approach optimal
signaling. On the other hand, too many signals may delay the evolution of successful
dispositions, especially in the early game. In our simulations, n = 4 appears to strike the
optimal balance between these two factors.

SR learning allows for a number of natural variants. One might consider starting
with urns populated by more balls or adding more than one ball of the type that led to
the successful action on a successful play. On reinforcement learning with punishment,
balls of the type used on an unsuccessful play are removed from the urns that were
consulted in producing the unsuccessful action. Reinforcement learning with punishment
often does significantly better than SR in evolving signaling conventions, but if the level
of punishment on failure is too high relative to the level of reward on success, the agents
may not be able to learn anything at all.

Lewis-Skyrms signaling games have been studied extensively under a variety of learn-
ing dynamics.4 Experiments have also been done to observe the behavior of human
agents when they play such games in the laboratory. Blume et al. (1998) shows that hu-
man subjects were able to evolve conventions in 2× 2× 2 games relatively quickly when
arranged into small sender and receiver populations. Blume et al. (2001) provides further
empirical results on up to 3× 3× 3 signaling games with only partially aligned interests.
And Blume et al. (2002) provides some evidence of learning in signaling games. More
recently, Bruner et al. (2018) provide further empirical evidence supporting a number of
theoretical predictions for 2× 2× 2 and 3× 3× 3 games, and Rubin et al. (2019) provide
experimental results on the sim-max game, a close cousin of Lewis signaling games in
which a similarity metric is defined over the states.

Taken together, these experiments show that human agents are able to form signaling
game conventions in a variety of contexts. Our aim here is to investigate how human
agents in fact learn to form conventions in such games. To this end, we consider ex-
periments involving games where there are precisely the right number of signal types to
represent the states of nature, games where there are more signal types than states, and
games where there are fewer signal types than states. The present paper represents the
first experimental investigation into the effect of message space size on human subjects’
speed and ability to reach a convention in complete common interest signaling games5.
As such it provides special insight into how subjects learn in the context of signaling
games.

In brief, we find that human subjects often significantly outperform well-studied low-
rationality learning dynamics like SR in the context of Lewis-Skyrms signaling games.
Their success, however, is not the result of high-rationality learning. Rather, the evi-

4See, for example, Barrett and Zollman (2009), Huttegger et al. (2014), Barrett et al. (2017).
5The experiments discussed in Blume et al. (2008) are similar to ours in that they investigate whether

the sender having more or less available signal types impacts player behavior in the lab. The game they
investigate, though, is a variant of the traditional Lewis signaling game in which players have only
partially aligned common interests.
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dence suggests that it is primarily the result of their using a low-rationality dynamics
win-stay/lose shift with inertia (WSLSwI). While WSLSwI is well-suited to establishing
conventions quickly and reliably in the context of a broad array of signaling games, there
are some where it does not work well at all. That human subjects have difficulty estab-
lishing signaling conventions in precisely those games is part of the evidence that they
are relying on this learning dynamics.

2 Experimental setup

The basic structure of the present experiments mirrors that of Bruner et al. (2018).
Sixteen total sessions were conducted. Twelve subjects participated in each session.
Subjects were seated at divider-separated computers and then followed the prompts on
their screen until the experiment’s conclusion.6 Subjects engaged in between one and
three of the following treatments during each session: 2× 2× 2, 2× 3× 2, 2× 6× 2, and
3× 2× 3. The 3× 2× 3 treatment was administered 12 times across 12 sessions; each of
the others was administered 8 times. Treatment order was varied within each session to
minimize ordering effects.

At the beginning of the session, the computer displays instructions for the game and
randomly divides subjects evenly into a group of six senders (“Group A”7) and a group of
six receivers (“Group B”). In part I of the experiment subjects participate in (usually8)
60 rounds of the first treatment. During every round each sender is paired randomly with
a receiver. Subjects are aware that their opponent is arbitrarily chosen but do not know
their identity. Once paired for a round, the computer randomly generates six states of
nature (one for each sender) and reveals these to the appropriate senders. Each sender
is then prompted to choose a “message” to send to her receiver partner in Group B. She
does this by clicking a button with the desired signal (see Figure 4). Each receiver then
witnesses her sender partner’s signal and chooses an act. All players are then taken to
a round results screen in which each pair is informed of the state of nature, the sender’s
signal, the receiver’s act, and whether they succeeded on this round (see Figure 5). Similar
to Bruner et al. (2018), and notably different from Blume et al. (1998)9, subjects are not
given access to the decisions of other players or to a history table of their own actions.
Once all players press “Next” on the round results screen, the next round commences.
This iterated process is illustrated in Figure 3. When all rounds of a treatment have been
played, instruction and then play for the next treatment began. All subjects are made
aware of the state space and signal space before each treatment.

Once all treatments are complete and a post-play survey has been taken, the session
is over and subjects are paid in cash according to their performance. At the beginning of
the experiment, the subjects are informed that, in addition to the $7 show-up payment,
two rounds from each treatment would be randomly selected and they would be paid $4

6The experiment was written using the software oTree (Chen et al., 2016).
7Terms such as sender and receiver were avoided in an effort to keep players’ potential predisposed

biases about communication at bay as they developed their own language.
8The exception being the four sessions in which the only administered treatment was 3×2×3. These

ran for 90 rounds to see if extra time might assist players in reaching a stable convention.
9In the Blume et al. (1998) experiment, the decisions of all subjects were revealed to all participants

at the end of each round. Their subjects could also view all decisions of all participants from past rounds
as well. As language users are not generally privy to all conversations and have limited memory, our
experiment only grants subjects knowledge of their own current play and that of their present partner.
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Figure 3: Example rounds of play in a 2 × 2 × 2 treatment. In round 1, each sender is
matched with a random receiver. Nature chooses a unique state for each sender (here, 	
or �). Each sender sees their state and sends a signal to their receiver. Each receiver sees
their signal and chooses an act. They and their sender partner are either correct (green)
if their act matches the state or incorrect (red) otherwise. In round 2, senders are again
matched to (perhaps different) random receivers and play starts again.

for each success and $1 for each failure in those rounds at the end of the game.10

Much of the theoretical work on signaling games assumes that senders are not pre-
disposed to associate a particular signal with a particular state of nature a priori (and
similar for receivers when choosing their act), but this may not be true in practice. When
selecting a word to represent the sound made when one hiccups, for instance, the word
“hiccup” may have been a preferred candidate because it sounds somewhat like the phe-
nomenon it describes. These potential naming conventions for “Hiccup” and other cases
of onomatopoeia are examples of what Schelling (1960) calls focal points : game actions
which somehow “jump out” at players in coordination games and which therefore may be
selected in order to facilitate cooperation. In his original argument, Lewis (1969) appeals
to such natural saliences in explaining how agents may arrive at a convention in the con-
text of a single-shot classical game.11 Signaling game models which assume no natural

10This mimics the payoff scheme in Bruner et al. (2018). In the present case the minimum subject
payoff possible across all experiments is $9 (achievable only in the isolated 3×2×3 session); the maximum
is $31. Paying subjects only in certain rounds and not telling them which rounds they are being paid is
in part to avoid wealth effects.

11Skyrms’ evolutionary signaling games have no natural saliences. That they allow one to explain
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Figure 4: Sender is prompted with state of nature and must select signal.

Figure 5: Round results screen.

salience might be thought of as worst-case scenarios in which coordination is maximally
difficult to achieve due to a lack of focal points.

In the present experiment signals were carefully selected to minimize natural salience:
each collection of symbols are either reflections of one another or exhibit bilateral sym-
metry. These12 symbols are displayed in Figure 6. While an individual participant may
immediately associate a particular signal (act) with a state (signal), this poses no prob-
lem as it only assists subjects’ coordination if the salience is identified systematically
by multiple players. The order in which signal (act) buttons were presented to senders
(receivers) was also randomized for each subject and in each round to prevent symbol
order from becoming a source of salience.

3 Macro-results

Subjects in the 2 × 2 × 2, 2 × 3 × 2, and 2 × 6 × 2 treatments had varying degrees of
success in approaching a signaling system, but, in all cases, there were more runs that
led to firmly established conventions than not. In the 2 × 2 × 2 treatment, seven of

the evolution of conventions is all the more remarkable. Lacroix (2018) introduces a variant of Skyrms
signaling games in which the degree of natural salience can be varied by setting a parameter.

12While the 2 × 2 × 2 treatment shares some of its state and signal symbols with the 2 × 3 × 2 and
2× 6× 2 treatments, no state or signal was included in multiple treatments of the same session.
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Figure 6: List of state, signal, and act symbols used in different treatments.

the eight sessions approached an optimal convention. In the 2 × 3 × 2, six of the eight
did; in the 2 × 6 × 2, five of the eight reached equilibrium. As noted in Bruner et al.
(2018), we found that subjects seldom converge to a 100% successful signaling system.
Forgetting, experimentation, or stubbornness in a handful of players usually precluded
this. In fact, excessive stubbornness and desultory strategies in a few individuals appear
to be partially responsible for the few 2 × n × 2 runs which did not succeed13. Figure
7 summarizes participants’ observed success rate over all 60 rounds for converging runs
(Figure 8 shows the same thing but for all runs). Since subjects’ success on each round
can vary wildly (especially during early plays), data points represent the average success
rate over every ten rounds. This provides a more holistic and stable sense of performance
over time.

When a convention was reached in the presence of extra signals, synonyms almost
always emerged. Out of the six runs that established a signaling convention in the
2 × 3 × 2 treatment, synonyms evolved in five. For the 2 × 6 × 2 treatment, all five
successful runs evolved synonyms. Unlike in the 2× 3× 2 treatment, there are multiple
possible distributions of synonyms in the case of six signals: we could have anywhere from
one to five signals representing each state in a signaling system. Interestingly, though, the
same synonym distribution emerged in all five successful runs of the 2× 6× 2 treatment:
three signals came to represent one state, two signals came to represent the other, and
one signal remained completely unused. We would have undoubtedly seen every possible
distribution of synonyms (including a complete absence of synonyms) if we had run many
more sessions. That said, it is possible that certain synonym distributions, like the one
we observed five times, are more likely to emerge than others. A natural next step would
be to estimate a probability distribution over synonym distributions using a variety of
learning dynamics.

It is important to be clear regarding the sense in which synonyms are exhibited.
Rarely did an individual sender actually utilize multiple signals to represent the same
state once a convention was reached. Most of the time, each sender eventually used
exactly one signal to represent each state, leaving the other(s) unused. The receivers,

13In one run, multiple senders stubbornly clung to state-signal mappings which were at odds with one
another. Across 60 rounds of play, their cumulative success rate was only 0.53. In another run, one
sender would sometimes use the same signal to represent different states and would sometimes abandon
a state-signal association immediately after it had succeeded! If such behaviors were to persist, the
associated agents would never reach a set of fully successful conventions.
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Figure 7: Success rates measured over 10 round periods for the converging 2 × 2 × 2,
2× 3× 2, 2× 6× 2 treatments.

who did not know the identity of their partner each round, might be paired with any one
of these senders, each with their own unique vocabulary. From the receiver perspective,
their sender opponent each round is then effectively mixing over several signals. Indeed,
the bulk of the cognitive load in those games with more signals than states, especially
the 2× 6× 2, is borne by the receivers. To succeed, the receivers must wade through the
initially arbitrary flood of signals (one through six), somehow co-establish a convention
with senders, and, once a convention is reached, remember what all signals in circulation
mean. This can be particularly challenging because certain signals may only be used
by one sender and are therefore rarely encountered. We sometimes observed receivers
correctly interpret a particular signal when its meaning had been settled but then seem
to misremember its meaning several rounds later.

The subjects’ behavior regarding synonyms captures an important feature of natural
language. An agent may be partial to using certain terms over other equivalent ones,
like “pop” over “soda”, but still bear the burden of maintaining a mental catalogue of
synonyms in order to understand others.

Regarding speed, figures 7 and 8 suggest that having more signals slows progress
towards a convention. On average, the 2 × 2 × 2 treatment outperformed 2 × 3 × 2 in
terms of speed, which in turn outperformed 2× 6× 2.

This is not what one would expect if the subjects were using simple reinforcement
learning. As indicated in Figure 2, on simulation, SR learners establish conventions
fastest in the experimental set up for two states and two acts when they have four signals
to choose from. More to the point here, they do better in the 2× 3× 2 than they do in
2× 2× 2 game. Note also that when they are successful, human subjects are a full two
orders of magnitude faster than simulated SR learners. This is further evidence against
modeling the human subjects as gradual reinforcement learners.

Human subjects may have difficulty with games where there are more signals than
states because of the increased demands on memory. In the 2 × 6 × 2 game a receiver
typically sees a particular signal less often than she would in a 2 × 2 × 2 game. This
increases the time between each signal’s appearance and the number of signal/act matches
each receiver must memorize. This seems to pose a significant challenge for human
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Figure 8: Success rates measured over 10 round periods for all 2×2×2, 2×3×2, 2×6×2
treatments.

subjects. In the mid-late game of the 2 × 6 × 2 treatment, receivers were sometimes
at a complete loss concerning what to do when they saw lesser-used signals: it was not
uncommon to see receivers succeed on a particular signal, only to use a different act when
that signal occurred again several rounds later.

In general, the results of recent plays mattered more to the subjects than the results
of plays in the more distant past. Whether this is due to memory limitations alone or
a combination of factors, the result is that the human subjects are not well-modeled
as gradual reinforcement learners. SR learners remember everything, and each of their
experiences, regardless of how long ago it occurred, is weighted equally in determining
their future actions. We will seek to characterize in more detail how the human subjects
learn in the next section, but we will first briefly consider here what happens when there
are fewer signals than states.

In contrast with games where there are the same or more signals than states, perfect
signaling is impossible in the 3 × 2 × 3 signaling game. Here the best possible expected
return is 2

3
. That said, there are numerous signaling conventions that achieve this optimal

level of expected return. The sender might use one signal for state 1 with the receiver
always doing act 1 when he sees that signal, and the sender might use the second signal for
states 2 and 3 with the receiver always doing act 2 when he sees that signal. Such agents
would always fail when the state is 3, but with unbiased nature, they would still succeed
2
3

of the time. Since neither player does better by unilaterally changing their strategies,
such a convention is a Nash equilibrium. There are many other similarly successful and
stable signaling conventions. See Figure 9 for another example. When paired with each
other, SR learners typically evolve a stable signaling convention with an expected success
rate of 2

3
.14

Importantly, SR learners also do well achieving optimal expected return in the six-
sender/six-receiver 3×2×3 game represented in the present experiment. On simulations
with six players in each population, each paired randomly with an ideal SR learning
partner from the other population in each round, the overall cumulative success rate
was nearly optimal at 0.66479 over the course of 104 runs with 106 plays each. The

14See Barrett (2006) for a discussion of this in the one-sender/one-receiver case.
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proportion of runs with an average success rate of 0.65 or higher was 0.99. With an
average cumulative success rate of 0.6145 after just 104 plays, the speed of convergence
is roughly comparable with that of simulated SR learners in the six-sender/six-receiver
2×m×2 games (as illustrated in Figure 2) remembering that optimal play in the 3×2×3
game has an expected success rate of 2

3
rather than 1.

Nature 1

Act 2

Act 1

Nature 2

Sender’s signal Receiver’s act

Nature 3 Act 3

Figure 9: Example of an optimal signaling configuration in a two player 3× 2× 3 game.
The receiver mixes over acts 1 and 2 upon witnessing signal 1. Success is only guaranteed
when the state is 2. The expected payoff is 2

3
, which, while less than 1, is certainly better

than the expected payoff from random guessing: 1
3
.

The human subjects, however, struggled in the 3× 2× 3 game when compared with
their performance in games where they had enough signals. Out of the twelve sessions in
which this treatment was featured, only three came anywhere close to reaching optimal
conventions. Even the four sessions in which subjects played this treatment for 90 rounds
(instead of 60) failed to perform; the extra time yielded no improvements in observed
success. In terms of speed this may be significantly better than what one would expect
from a gradual reinforcement learner, but it is no where near what the subjects were able
to accomplish in the other games.

Of course, having three state and acts increases the difficulty of the game. Bruner
et al. (2018) report mixed results from their 3×3×3 treatments: sometimes agents reach
optimal signaling and sometimes they do not. Taking away one of the available signals
makes the task yet more difficult. Players in the 3× 2× 3 game are more likely to meet
with failure for their arbitrary choices in the early game, and it may be unclear how to
proceed in the face of these, especially when switching is still sure to result in further
failures. In the post-play survey, some subjects admitted to just randomly guessing the
whole time (“Group A did not affect my symbols”). That the human subjects had such
difficulty with the 3× 2× 3 game provides additional evidence against their behaving as
SR learners.

In some sessions the 3× 2× 3 treatment treatment was first, in some it was second,
and in others it was last. The three sessions which did converge to maximally efficient
signaling were exactly the ones in which subjects (1) encountered the 3 × 2 × 3 last
and (2) approached perfect signaling in both of their previous treatments. This may be
a coincidence. It could also be that these subjects were demonstratively good at these
games and so simply performed well in all treatments. Or this may have been an instance
of task priming where the subjects’ past play influenced their future play. In particular,
subjects may have noticed over the course of the first two treatments that a necessary
condition for perfect success was an injection from states to signals. This would make
them acutely aware that perfect success was not possible in the 3 × 2 × 3 game and
that failure on a particular play was not necessarily indicative of a poor strategy. But
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if success required this sort of sophisticated reasoning by the subjects, then this is again
evidence against their being well-modeled as simple reinforcement learners in the context
of this game.

The three sessions which did succeed on this difficult treatment also illustrate an
important phenomenon in understanding the experiments. While many of the maximally
efficient conventions in the 3×2×3 game require agents to statistically mix over strategies,
an individual human subject seldom mixed over signals or acts in our experiments (though
this was not unseen). Instead, each subject typically played a pure strategy (i.e. mapping
each state/signal to a unique signal/act) that was then effectively mixed in aggregate over
the full population. For example, session 15’s convention, though noisy, looked something
like Figure 10. All senders mapped nature 2 to signal 1. All senders mapped nature 3 to
signal 2. In response to signal 1, though, some senders used signal 1 and some sent signal
2. Although these are pure strategies, they appear mixed to a receiver, whose opponent
sometimes uses signal 1 to represent nature 1 and sometimes uses signal 2. The other two
sessions which succeeded in the 3× 2× 3 treatment evolved a convention most similar to
the one depicted in Figure 9 earlier.

In contrast to the behavior of human subjects, individual simulated SR agents in the
3 × 2 × 3 game typical play genuine mixed strategies—that is, sometimes a particular
sender chooses signal 1 and sometimes signal 2 in response to state 1. This is further
evidence against human agents being well-modeled as simple reinforcement learners.

Nature 1

Act 2

Act 1

Nature 2

Sender’s signal Receiver’s act

Nature 3 Act 3

Figure 10: Loosely the signaling convention reached by session 15 in their 3 × 2 × 3
treatment.

4 How human agents learn

While the present experiment does not allow us to directly determine how each participant
learns, we can look for persistent patterns in their behavior, then consider what learning
rules would explain the patterns we find. One such pattern exhibited by participants
was a stronger than expected aversion to changing signals after a period of initial or
short-term local success. The sort of aversion to change we saw provides strong evidence
against modeling human agents as simple reinforcement learners.

One might naturally expect a degree of aversion to change from a simple reinforcement
learner. If an SR receiver sees signal 2, selects act 3, and succeeds on one play, then she
will tend to repeat this action the next time she witnesses signal 2. For an SR learner,
past successes of actions in a particular context translate to a correspondingly higher
likelihood of repeating those actions when that context is encountered in the future. But
such gradual reinforcement learning does not mesh well with our observations.
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Observed proportion 

Role (treatment)

Expected proportion 

p-value

Sender 
(2 x 2 x 2)

Sender 
(2 x 3 x 2)

Sender 
(2 x 6 x 2)

Sender 
(3 x 2 x 3)

0.896

0.667

0.0008***

0.979

0.5

~0***

0.833

0.2857

~0***

0.792

0.667

0.0248*

Receiver 
(2 x 2 x 2)

Receiver 
(2 x 3 x 2)

Receiver 
(2 x 6 x 2)

Receiver 
(3 x 2 x 3)

0.92

0.667

0.0002***

0.792

0.667

0.0669

0.875

0.667

0.0022**

0.667

.5

0.0047**

Table 1: Observed proportion vs expected proportion (under simple reinforcement) of
subjects who did not deviate from the first signal (act) which landed them a success.

To get a sense of how success influences the subjects’ future actions, we measured the
proportion who repeated the signal/action corresponding to their first success at the next
opportunity. For example, if a sender’s first success within a treatment occurred when
she witnessed state 1 and sent signal 2, what is the probability that she sends signal 2 the
next time she sees state 1? If 2 × 2 × 2 subjects reinforced using simple reinforcement,
we would expect players to stick with their previous choice 2

3
of the time. Instead, both

senders and receivers stayed loyal to the choice that gave them their first success roughly
90% of the time. In other treatments too, subjects repeat the choice corresponding to
their first success far more than one would expect from a simple reinforcement learner
with gradually evolving dispositions.

Table 1 depicts the proportion of subjects who do not deviate from the choice that
yielded their first success, the expectation for what this proportion would be under simple
reinforcement, and p-value the probability that our subjects would have proportions this
high if they were using this kind of reinforcement learning. Put simply, the null hypothesis
is that players’ first reinforcement is done using gradual, one-ball-at-a-time reinforcement.
More specifically, in an n×m×n signaling game, let X be the state (signal) witnessed by
a sender (receiver) on the first round in which that player succeeds and Y be the signal
(act) chosen by that player in that succeeding round. The null hypothesis then is as
follows: Immediately following this first success, that player updates her dispositions in
accordance with simple reinforcement (as we described it). The next time she witnesses
X, she will choose Y with probability 2

m+1
if she is a sender and 2

n+1
if she is a receiver.

For almost all treatments, participants resisted changing signals after their first success
much more than simple reinforcement players would have (in expectation).

Of course, one might model this sort of behavior in the context of a modified version
of reinforcement learning by making the magnitude of the reinforcement on success very
large in comparison to the strength of the subjects’ initial dispositions (represented in the
SR learning model as the initial urn contents). This would explain the subjects’ strong
and quickly-forged commitments to their early-game successful decisions. However, the
subjects typically abandon their previously successful signal or act strategy if it fails even
just a few times in a row regardless of the earlier history of success. One might model
this by opting for a form of reinforcement learning with high rewards for success but
some significant punishment or forgetting to help erase the triumphs of the past in the
face of recent failures. In short, one can go a significant way in simulating the observed
behavior of the subjects by supplementing basic SR learning with a variety of mechanisms
designed to explain why recent plays have a much greater effect on the current behaviour
of subjects than the results of earlier plays.15

15Blume et al.’s (2002) observed their subjects to exhibit this sort of recency bias as well, and the au-
thors attributed it to forgetting. See Barrett and Zollman (2009) for an account of forms of reinforcement
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That said, a close examination of the data from the present experiment suggests a more
straightforward learning model: win-stay/lose shift with inertia (WSLSwI). WSLSwI is
a variant of win-stay/lose shift (WSLS), a very simple learning rule that works just as
it sounds.16 Each sender (receiver) has a mapping from states (signals) to signals (acts).
On each play, every agent obeys her mapping for the given stimulus. If she succeeds, her
mapping does not change (win-stay). On failure, she maps the stimulus she just observed
to a randomly selected new signal (act) (lose-shift).

While the dispositions of agents using SR are determined by their full history of
success and failure, WSLS is very forgetful. On WSLS the agents’ current strategy for
each state and signal type are determined by what happened the last time they saw the
state and signal type. This makes WSLS learners flexible and quick. While SR learners
slowly converge to optimal signaling behavior on the 2×2×2 game and may not converge
to optimal signaling at all on an n×n×n game, under WSLS, agents often achieve perfect
signaling on a finite number of plays. In the case of the 2× 2× 2 game, it may only take
a handful of plays.

There already exists some evidence that various sorts of inertia can improve WSLS’s
performance and successfully model human decision making. Worthy and Maddox (2014)
build on Estes’ (1950) learning equations to develop WSLSLearning, a variant of WSLS in
which players do not immediately abandon their current behavior upon failure nor remain
committed to it upon success. Instead, players update their probability of staying on a
success and switching on a failure over the course of many trials. Longer strings of
success on one action make agents more committed to those actions and less likely to
leave them on failure. In the same paper, Worthy and Maddox present a hybrid learning
dynamics in which the probability of taking some action is a weighted average of its
likelihood under SR and WSLSLearning. These novel dynamics yielded a closer fit to
human behavior in the decision making experiments they considered than the baseline
WSLS model. While these dynamics do not utilize exactly the same sort of inertia used in
WSLSwI, they are both modifications of WSLS which prevent agents from immediately
abandoning strategies upon one failure. Similarly, in a simulation setting, Barrett et al.
(2017) investigate “WSLS with reinforcement” on signaling games, a dynamics in which
agents shift (upon failure) to acts which have reaped more benefits in the past. WSLSwI
then is yet another dynamics with a mechanism that dampens the often erratic behavior
of WSLS. In this case, the suggestion is that human agents may stick to a strategy even
after a loss simply because they tend to abandon a previously successful action only if it
repeatedly fails.

As on WSLS, but not basic SR, our subjects were seldom observed to change signals
(acts) for a given stimulus after a success. But contrary to WSLS, they do not always
change after just one failure. Sometimes it takes several, sequential, unsuccessful applica-
tions of the same signal (act) before they switch. That is, players display different levels
of inertia in their willingness to switch to a different signal (act): hence, WSLSwI. This
sort of resistance to changing one’s ways seems behaviourally plausible, especially if the
current mapping has been in place a long time or has wrought many successes.

learning that features varieties of forgetting.
16WSLS was initially proposed and applied to bandit-problems (a class of decision theory problems)

by Robbins (1952). WSLS was later introduced in a game theoretic context by Nowak and Sigmund
(1993). Barrett and Zollman (2009) show that win-stay/lose randomize (WSLR), a similar but somewhat
stronger rule, will guide agents to a signaling system in a Lewis-Skyrms signaling game with probability
1.
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WSLSwI is slightly less forgetful than WSLS. On WSLSwI players are equipped with
an an inertia level i at any given time. Each player’s i may be distinct and may change
throughout the game, perhaps as a function of play history. When an agent witnesses
state (signal) v and selects the signal (act) w associated with v for a failure, their failure
count for that stimulus increases by 1. On a success, the failure count is reset to 0. When
a player’s failure count reaches i, she changes her mapping so that v maps to a signal
(act) other than w.

One of the virtues of WSLSwI is that it provides a natural role for higher-order
reasoning in the case of more sophisticated agents. In particular, an agent might help
direct exploration of the strategy space by implementing deterministic or probabilistic
constraints on the choice of a new signal (act) when switching on failure. On the basic
WSLSwI dynamics, the choice of a new strategy on failure is entirely unconstrained
reflecting no higher-order considerations. The human subjects in the present experiment,
however, typically choose the new signal (act) in a way that is not uniformly random. For
instance, in the 2× 3× 2 and 2× 6× 2 treatments, a sender tends to choose a new signal
that she is not already using. That is, senders tend to keep their mappings injective when
they switch. Similarly for receivers in the 3×2×3 treatment. They tend to choose in such
a way that different signals map to different acts. Along similar lines, in the 2 × 2 × 2
and 3 × 2 × 3 treatments, senders would sometimes perform a signal “swap”: state v
now maps to a new signal, and another state now maps to w if no others do. That is,
senders switched in such a way that their resulting mappings were surjective; otherwise,
the sender would be mapping all states to the same signal. Similar for receivers in the
2× 2× 2, 2× 3× 2, and 2× 6× 2 treatments. In other words, subjects tended to shift
in such a way as to not preclude optimal signaling.17

WSLSwI has at least two highly desirable properties that WSLS lacks. Although often
very fast in establishing signaling conventions, WSLS is unstable. When a convention
is reached, if either player makes a mistake, this leads to failure, which leads to a shift,
which likely leads to further failures, unraveling the players’ hard-won convention (Barrett
and Zollman, 2009).18 WSLSwI is much more stable than WSLS at equilibrium. Once
a convention is reached, if a mistake and resulting failure occurs on a single play (or
more with a high enough inertia), a WSLSwI player will resist changing her mapping,
preserving the equilibrium. In short, inertia provides a mechanism whereby players might
tolerate random mistakes and maintain coordination.

Another weakness of WSLS is that on the simple 2× 2× 2 signaling game it may not
converge to a signaling system due to a “revolving door” problem where WSLS players get
caught in an infinite loop where they shift simultaneously and continually miscoordinate.
WSLSwI players, especially when they have different inertias, however, will typically not
encounter this problem.19

WSLSwI also has several advantages over simple reinforcement learning. While not
as flexible and quick as WSLS, WSLSwI is much faster than SR. In particular, it is

17Of course, one would expect lower cognition species not to implement such sophisticated constraints.
Indeed, in many cases, even the human subjects we observed seemed to shift strategies randomly with
no manifest constraints.

18Evolved dispositions under WSLS are fragile, unlike those of simple reinforcement learners. Barrett
et al. (2017) discuss the competing virtues of speed and stability in the WSLS class of dynamics and give
results on a hybrid learning dynamics win-stay/lose shift with reinforcement. This dynamics addresses
the stability issue but is substantially more complicated and memory-demanding than WSLSwI. See also
Cochran and Barrett (2020).

19See Cochran and Barrett (2020) for an investigation of the formal properties of WSLSwI.
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fast enough to explain the rapid convergence of human subjects to signaling conventions
observed in the present experiment.20 Also, WSLSwI typically converges to a pure con-
vention in a finite time while the strategies of SR agents are always mixed at finite times.
This also helps to explain the behavior of human subjects who exhibit near optimal be-
havior after a relatively short time, particularly in the simpler games. Finally, unlike SR,
WSLSwI is not prone to get stuck in suboptimal pooling equilibria in signaling games
with more than two state-act pairs.21 The present experiments would have to be extended
to more complicated games to determine the degree to which this accords with human
behavior.

Returning to the results of the present experiments, Figure 11 displays the success
rates of players in a 2 × 2 × 2 population game with six senders and six receivers. The
blue line depicts the average success rates of our converging human subject runs every 10
plays. The red and yellow lines represent the progress of simulated WSLSwI learners (with
inertia 2) and SR learners, respectively. Measuring the mean absolute deviation between
our subjects’ performance and those of the simulated agents reveals that WSLSwI is a
better than eight times closer fit than SR on this measure. Variants of SR with higher
reinforcement rates and/or punishment may better match human subject performance
than basic SR as such tunings inevitably inherent some properties of WSLSwI—namely,
quick convergence to success and flexible abandonment of failing strategies. Given this,
the claim is just that WSLSwI better represents human leaning in this context than
gradual SR learning.

Figure 11: Success rates measured over 10 round periods for the converging 2 × 2 × 2
human subject treatments, simulated WSLSwI learners with inertia 2, and simulated
simple reinforcement learners.

The most direct way to estimate a subject’s inertia is simply to count how many
consecutive failures we observe before she switches to another signal (act). We call this
the subject’s observed inertia at that moment. For example, suppose that Figure 12 (left)
represents six consecutive rounds for a WSLSwI sender in a 2 × 2 × 2 game with states

20See Cochran and Barrett (2020).
21See Barrett (2006). Hofbauer and Huttegger (2008) and Cochran and Barrett (2020).
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{Blue,Green} and signals {1, 2}. In the first round, the sender acts on her mapping
which sends state Blue to signal 1. This results in success. The next two times she sees
Blue, though, she sends signal 1 but does not succeed. Finally, on the fourth time she sees
Blue she chooses 2, revealing that she has changed her mapping so that Blue maps to 2
now. Since it took two failures for this change to happen, this is an observed inertia of 2.
Note that the round in which the state was Green does not count towards the inertia for
Blue. We might (and should) similarly count the inertia for Green. Figure 13 (left) gives
a frequency histogram of observed inertia across all subjects and for all states (signals)
they might witness. Note that most subjects will switch signals as a result of failures
more than once; these subjects have more than one recorded instance of observed inertia
and their observed inertia may be different each time (even within the same treatment).
The graph on the left was recorded by plotting each of these instances for all players.

Blue
Blue
Green
Blue
Blue

1
1
2
1
2

Blue
Green
Green
Green
Green

State Signal Act
Blue
Blue
Green
Blue
Blue

1
1
2
1
1

Blue
Green
Green
Green
Blue

State Signal Act

Figure 12: Observed (left) and minimum (right) inertia example.

Figure 13 (left) gives the impression that most subjects have an inertia of 1; that is,
they are playing regular WSLS. But this is not the whole story. Suppose that a sender
has inertia 5 for a certain state at some point. In order for us to actually observe this
inertia of 5, we would need this sender to witness the appropriate state five times and
to fail each time sequentially before switching. If five failures do not happen, we cannot
witness their observed inertia, meaning Figure 13 (left) is biased towards lower inertias.

To provide a more complete picture, we also record the minimum inertia for each
player. Suppose a sender experiences the sequence of plays depicted in Figure 12 (right).
She starts by sending signal 1 when the state is Blue. The next two times she sees Blue,
she sends 1 and fails. On the 4th occasion that she sees Blue, she still sends 1 and
succeeds. While we cannot directly ascertain what this sender’s inertia was at this point,
we know that it was at least 3. If her inertia had been, say 2, she would have switched
to signal 2 in the last round that she saw Blue. We therefore say that this sender has a
minimum inertia of 3 here. Figure 13 (right) gives the distribution of minimum inertia.

While minimum inertia helps fill in some of the gaps left by observed inertia, the
information it does provide is not very precise because it is simply a lower bound for
actual inertia. If a receiver exhibits a minimum inertia of 3 at some point, this means
that her actual inertia could be 3, 4, 5, 6, or higher. This information is not worthless,
though. Inspecting both graphs in Figure 13 together reveals that, if subjects were using
WSLSwI, the majority of them had inertia higher than 1. As a reminder, there are not
actually two different kinds of inertia, observed and minimum. Rather, there is only
standard inertia; observed and minimum inertia are just tools we use to estimate it.
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Figure 13: Frequency for observed inertia (left) and for minimum inertia (right) for all
subjects.

We also considered how subjects’ inertias might depend on their roles, the game they
are playing, and how long they have been playing it. We found a statistically significant
(p < 0.01) difference between senders’ and receivers’ average observed inertia levels:
senders have a slightly higher observed inertia than receivers. Figure 14 displays relative
frequencies22 for observed inertia levels of senders (dark) and receivers (light) on the left;
on the right are the minimum inertia levels for the two roles. Though the difference is
subtle, we see that senders on average have higher observed and minimum inertia (though
remember, this last one is noisy). This may have to do with broader human behavior.
Since players are rewarded for the receiver’s choice, not the sender’s, receivers may feel
guiltier about round failures than senders and feel more pressured to switch if incorrect.
Additionally, since they move first, senders may feel more empowered to set and enforce
conventions i.e. if a mistake is made then the receivers should change, not them. Indeed,
in the post experiment survey one sender confessed that this (choose a mapping and let
the receivers learn it) was her strategy, and three senders were observed to never deviate
from their signal choices at the beginning of the game. No receivers did this with their
initially chosen acts.

Table 2 provides descriptive statistics for observed inertia across all treatments. While
the means for all four groups are close, there is a statistically significant difference between
treatment 2×6×2 and the other two treatments featuring two states of nature (p < 0.01).
2 gives the relative frequency distributions for 2 × 6 × 2 against 2 × 2 × 2; the former
treatment has lower inertia. Again, we can only speculate as to why this might be. It is
possible that players in the 2 × 6 × 2 treatment somehow feel more pressure to explore
their wealth of signal options when they start failing. The grass is always greener on the
other signals.

We also found that subjects typically exhibit different levels of inertia within the same
treatment. A significant parameter here is the length of time they have been playing the
game. Figure 16 plots average observed inertia for all players in the 2× 3× 2 treatment
against round number. In brief, subjects tend to have higher observed inertia in later
rounds. This may be because they tend to be succeeding more in later rounds and are

22We use relative frequencies here instead of raw frequencies because the number of sender and receiver
data points within each graph is not the same, making the two groups hard to compare at a glance in
a raw frequency histogram. By relative frequency of, say, observed inertia, we mean that, given a
sender/receiver’s inertia is observed, what is the probability that it is a 1, 2, 3, etc.
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Figure 14: A relative frequency comparison of senders’ and receivers’ observed inertia
(left) and minimum inertia (right).

Table 2: Descriptive statistics for observed inertia across all treatments.

harder to dislodge from their mappings. Another possibility is that over time subjects
tire of the cognitive work involved in shifting their mappings.

5 Discussion

Win-stay/lose-shift with inertia (WSLSwI) explains a number of the behaviors of the
human subjects in the present experiment. In general, it captures subjects’ tendency
to count their most recent experience more than earlier experience. More specifically, it
explains why subjects tend to stick with a strategy that led to success until that strategy
fails. And it explains why subjects will readily give up a strategy after a sequence of
failures even in cases where it has delivered significant past success.

Just as important, WSLSwI explains how human subject are able to reach stable
conventions orders of magnitude faster than one would expect from gradual reinforcement.
While gradual reinforcement has virtues for investigating stable features of the world,
WSLSwI is better-suited to investigating more transient features of the world since it
can glom onto patterns quickly, then quickly shift when those patterns no longer hold.
This makes it in many ways ideal for forging conventions in the context of the shifting
behaviors of other agents.

The speed of WSLSwI, however, comes at a cost. Inasmuch as there are no strategies
that deliver uniform success in the context of the 3 × 2 × 3 game, there are no stable
strategies for it to glom onto. So WSLSwI also explains why subjects find this game
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Figure 15: Comparison of observed inertia relative frequencies for treatments featuring 2
states with 2 signals versus with 6 signals.

so difficult—as the dynamics predicts, they often end up shifting between strategies
randomly with no sustained success.23

We also found that when subjects had more signals than they needed to represent
states, they were still usually able to approach a signaling convention, albeit slower than
they would have with exactly enough signals. WSLSwI explains this too. The extra
signals provide more options for agents to try and still miscoordinate while the delays
produced by inertia slow the process of finding a successful convention.

In addition, WSLSwI provides a degree of freedom for explaining some of the rel-
atively sophisticated strategies that subject sometimes exhibited. In particular, when
they shifted on failure, subjects sometimes constrained their choice to always allow for
the possibility of the result representing an optimal signaling system given their current
experience. Senders employ this sort of higher-order rationality when they avoid signals
that they are using for other states in choosing a new signal for the current state, and
receivers employ it when they avoid mapping different signals to the same act. That it
allows agents to impose higher-order constraints on the exploration of potential strate-
gies makes WSLSwI a flexible tool for modeling trial-and-error learning. It also makes
it a very powerful learning dynamics as implemented by subjects—one that is supremely
well-suited to establishing conventions in the context of population-based Lewis-Skyrms
signaling games where there are enough terms to represent the state-act pairs.

WSLSwI provides yet another degree of freedom in that it allows for subjects to
apply higher-order considerations: namely, they may tune their level of inertia over time
to reflect their pragmatic aims. Once one finds an optimal convention or sense that one
is close, one may wish to maintain the progress one has made and hence might increase
the level of inertia to provide additional stability while still allowing for the possibility
that one will want to evolve new dispositions if the community changes how it behaves.

23On the other hand, outside of the laboratory, where agents are often able to invent new signal types
when needed, one might expect this feature of WSLSwI to be unproblematic.
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Figure 16: Scatter plot of mean observed inertia as predicted by round number for 2×3×2
subjects.

And, again, subjects tended to exhibit this sort of behavior.
In short, WSLSwI provides a strong low-rationality learning model that explains how

human subjects are able to establish conventions in a broad assortment of Lewis-Skyrms
signaling games, and it explains why they sometimes don’t. And, along the way, it meshes
well with the details of the subjects’ observed behavior.

The present experiment suggests a number of directions for future research. To begin,
we do not know how convergence speed for human subjects scales with a signaling game’s
complexity in, say, n×n×n, games where n > 2 nor do we know whether and the extent
to which subjects encounter the sort of sub-optimal partial pooling predicted by simple
reinforcement learning. If they do not encounter significant partial pooling or if they are
still able to establish conventions more quickly than predicted by SR in complex games,
this might provide additional evidence against SR and in favor of something with the
speed and flexibility of WSLSwI. One should also want to investigate whether agents
utilize WSLSwI when repeatedly paired with the same partner (as opposed to a random
member of a larger community) as it may well be that agents exhibit less (or no) inertia
when the uncertainty about their partner is removed. .

Another direction for research would involve focusing on the variety of ways that hu-
man subjects learn in signaling games. WSLSwI describes the behavior of some subjects
well and captures the coarse-grained behavior of the subjects in aggregate, but for all of
its virtues, it fails to describe the behavior of all of the human subjects in the present ex-
periment. Some subjects never deviated from their initial strategies. At least one subject
seemed to be utilizing a form of probe and adjust learning. And others used strategies
that we have been unable to clearly identify. Further, within subjects whose behavior
was compatible with WSLSwI there was notable heterogeneity in the details. Some had
virtually no inertia while others demonstrated a great deal. And for some the level of
inertia evolved significantly over the course of a game treatment. In light of this, further
experimental work might classify subjects based on the sort of learning dynamics they
exhibit.
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One of the morals here is that experiments on subjects playing various Lewis-Skyrms
signaling games can be especially relevant to our understanding of learning. Learning
a convention in the context of shifting behaviors of others in the community poses a
compelling problem. And there is an epistemic purity to the problem—the lack of focal
points and the complete symmetry among equilibria in such games mean that learning
from past experience is the only path players have to reach a successful convention.

Bibliography

Argiento, Raffaele, Robin Pemantle, Brian Skyrms, and Stanislav Volkov (2009). “Learn-
ing to Signal: Analysis of a Micro-level Reinforcement Model.” Social Dynamics,
225–249.

Barrett, Jeffrey (2006). “Numerical Simulations of the Lewis Signaling Game: Learning
Strategies, Pooling Equilibria, and the Evolution of Grammar.” UC Irvine: Institute
for Mathematical Behavioral Sciences Technical Report.

Barrett, Jeffrey and Kevin Zollman (2009). “The role of forgetting in the evolution and
learning of language.” Journal of Experimental and Theoretical Artificial Intelligence,
293–309.

Barrett, Jeffrey A., Calvin T. Cochran, Simon Huttegger, and Naoki Fujiwara (2017).
“Hybrid learning in signalling games.” Journal of Experimental and Theoretical Arti-
ficial Intelligence, 29 (5), 1119–1127.

Blume, Andreas, Douglas DeJong, Yong-Gwan Kim, and Geoffrey Sprinkle (1998). “Ex-
perimental Evidence on the Evolution of Meaning of Messages in Sender-Receiver
Games.” The American Economic Review, 88 (5), 1323–1340.

Blume, Andreas, Douglas V. Dejong, Yong-Gwan Kim, and Geoffrey B. Sprinkle (2001).
“Evolution of Communication with Partial Common Interest.” Games and Economic
Behavior, 37 (1), 79–120.

Blume, Andreas, Douglas V. Dejong, George R. Neumann, and N. E. Savin (2002).
“Learning and communication in sender-receiver games: an econometric investigation.”
Journal of Applied Econometrics, 17 (3), 225–247.

Bruner, Justin, Cailin O’Connor, Hannah Rubin, and Simon M. Huttegger (2018). “David
Lewis in the lab: experimental results on the emergence of meaning.” Synthese, 195 (2),
603–621.

Chen, Daniel L., Martin Schonger, and Chris Wickens (2016). “oTree - An Open-Source
Platform for Laboratory, Online, and Field Experiments.” SSRN Electronic Journal.

Cochran, Calvin T. and Jeffrey A. Barrett (2020). “The efficacy of human learning in
Lewis-Skyrms signaling games.” manuscript.
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