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Global Convergence

>

We have examined the connection between the rest points
of various dynamics and Nash equilibria of the underlying
game.

Now we shall study the limiting behavior of various
evolutionary dynamics when set in motion from arbitrary
initial conditions.

In particular, we shall derive conditions on games and
dynamics under which behavior converges to equilibrium
from all (or almost all) initial states.

Our focus will be on potential, stable and supermodular
games, though we will also touch upon dominance
solvable games.

Positive correlation (PC) will play some role in our
out-of-equilibrium analysis.
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Limit Sets

» Let us characterize the limiting behavior of deterministic
dynamics as follows.

» The w-limit of trajectory {x;}>0 is the set of all points that
the trajectory approaches arbitrarily closely
infinitely often:

w({x}) = {y € X : there exists {f;}72
with lim # = oo such that lim x; = y}.
k—o0 k—roc0
» If w({x:}) = x*, a singleton, then x* is a called an
absorbing state.

» Otherwise, w({x;}) is called a recurrence class or w-limit
set of the dynamic.



Limit Sets

» For dynamics that admit a unique forward solution
trajectory from each initial condition, w(¢) denotes the
w-limit set of the trajectory starting from state .

» The set of all w-limit points of all solution trajectories is:

Q(Ve) = J w(?).

zex

» The notion of recurrence (or the set of recurrence classes)
of deterministic dynamic is captured by Q(VE).
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Stability Concepts

v

Let A C X be a closed set, and call O C X a neighborhood
of A if it is open relative to X and contains A.

A is Lyapunov stable if for every neighborhood O of A,
there exists a neighborhood O’ of A such that every
solution {x;} that starts in O’ is contained in O, that is,
xp € O implies that x; € O for all t > 0.

Intuitively, this requires that all solutions that start near A,
stay near A at all points in time.

Any displacement from A does not lead the process to go
‘very far’ from A at any point in time.



Stability Concepts

» A is attracting if there is a neighborhood Y of A such that
every solution that starts in Y converges to A, that is,
xo € Yimplies w({x;}) C A.

» Ais globally attracting if it is attracting with Y = X.

» Intuitively, this requires that given any displacement from
A, the process returns to A in the limit.
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Stability Concepts

» Ais asymptotically stable if it is Lyapunov stable and
attracting.

» Ais globally asymptotically stable if it is Lyapunov stable
and globally attracting.

» Intuitively, this requires that given any displacement from
A, the process never travels ‘very far’ from A and returns
to A in the limit.



Lyapunov Functions
The most common method for proving global convergence in
dynamical systems is by constructing a strict Lyapunov
function:

» A scalar-valued function.

» The value of the function changes monotonically along every
solution trajectory.

» For many ODEs, the existence of a Lyapunov function is a
necessary and sufficient condition for stability.

» The Lyapunov function allows us to (partially) characterize the
evolution of play without requiring explicit solutions to the
differential equation (or inclusion).

Definition. The C! function L : X — R is a (decreasing) strict
Lyapunov function for the differential equation ¥ = Vp(x) if
L(x) = VL(x)'Vp(x) <0 for all x € X, with equality only at rest
points of V.
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Lyapunov Functions and Stability

Theorem 7.1. (Lyapunov Stability) Let A C X be closed and let
Y C X be aneighborhood of A. Let L : Y — R, be Lipschitz
continuous with L=1(0) = A. If each solution {x;} of Vr
satisfies L(x;) < 0 for almost all t > 0, then A is Lyapunov
stable under V.

Theorem 7.2. (Asymptotic Stability) Let A C X be closed and let
Y C X be a neighborhood of A. Let L : Y — R be C! with
L~1(0) = A. If each solution {x;} of V satisfies L(x;) < 0 for all
x € Y — A, then A is asymptotically stable under Vr. If in
addition, Y = X, then A is globally asymptotically stable under
VE.
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Potential Games

» Let us turn to global convergence in potential games.

» In potential games, the natural candidate for a strict
(increasing) Lyapunov function is the potential function.

» Recall that in a potential game F : X — IR", the potential
function f : X — R summarizes all information about
incentives:

Vf(x) = ®F(x) forall x € X.
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Lyapunov Function for Potential Games

Lemma 7.1. Let F be a potential game with potential function f.
Suppose the evolutionary dynamic ¥ = Vg (x) satisfies positive
correlation (PC). Then f is a strict Lyapunov function for V.

Proof. f(x) = Vf(x)'x = (®F(x))'Ve(x) = F(x)'VE(x).

The result then follows immediately from PC. [J
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Convergence in Potential Games

Theorem 7.3. Let F be a potential game, and let x = VE(x) be an
evolutionary dynamic for F that admits a unique forward
solution from each initial condition and that satisfies PC. Then
Q(VE) = RP(VE).

For example, if Vr is an imitative dynamic, then
Q(VE) = RE(F), the set of restricted equilibria of F.
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Convergence in Potential Games

» What about convergence of the best response dynamic?

» Recall that the best response dynamic is:

x € M(F(x)) — x, where M(71) = arg max 7c;.
1S

» To state the appropriate result one must account for the
fact that the dynamic is multivalued.
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Convergence in Potential Games

Theorem 7.4. Let F be a potential game with potential function
f,and let X € Vr(x) be the best response dynamic for F. Then:

%(x) = max]-egl?j(x) forall z € Vp(x), x € X.

Therefore, every solution trajectory {x;} of Vi satisfies
w({x:}) € NE(F). That is, the set of Nash equilibria of F is
globally asymptotically stable.
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Stable Games

» Recall that the population game F is stable if it satisfies:

(y—x)(F(y) —F(x)) <0  forallx,y € X.

» When F is C! this is equivalent to self-defeating externalities:

ZDF(x)z <0  forallz € TX,x € X.

» The set of Nash equilibria of a stable game is convex and
usually a singleton.

» Uniqueness itself does not guarantee convergence (as we
shall see later).
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Lyapunov Functions for Stable Games

» Once again, convergence proofs rely upon construction of
a Lyapunov function.

» But unlike potential games, there is no natural candidate
for a Lyapunov function; a distinct one must be
constructed for each dynamic.

» We shall now write the Lyapunov function as decreasing

over time.

Definition. A C! function L is a (decreasing) strict Lyapunov
function for the dynamic & = V¢(x) if L(x) < O forall x € X,
with equality only at rest points of Vr.
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Replicator Dynamics in Stable Games

» For convergence of the replicator dynamics, we need to
confine attention to strictly stable games.

» We also need to restrict attention to a subset of all initial
conditions ¢ € X, because if ¢ places no mass on a strategy
in the support of a Nash equilibrium x*, then the dynamic
cannot converge to x* from ¢.

» Let the support of xbe S(x) = {i € S: x; > 0}. Then
Xy = {x € X:5(y) C S(x)} is the set of states in X whose
supports contain the support of y.
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Replicator Dynamics in Stable Games

» The Lyapunov function (in the single-population case) is
hy, : X, — R where:

hy(x) =Y yilog%.
ieS(y) !

hy is known as the relative entropy of y given x.
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Replicator Dynamics in Stable Games

Theorem 7.5. Let F be a strictly stable game with unique Nash
equilibrium x*, and let X = V(x) be the replicator dynamic for
F.

Then h,+ is non-negative, 1.' (0) = {x*} and h,+(x) approaches
infinity whenever x approaches X — X,.

Moreover, i+ (x) < 0, with equality only when x = x*.
Therefore, x* is globally asymptotically stable with respect to
Xx* .

If F is simply a stable game, then x* is Lyapunov stable.
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Best Response Dynamics in Stable Games

» Recall that the best response dynamic is:

x e M(F(x)) —x,

where:

M(#) = ‘7,
(7) argmaxy

i.e. the set of maximizers of (excess) payoffs.
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Best Response Dynamics in Stable Games

Theorem 7.6. Let F be a C! stable game, and let ¥ € V¢(x) be
the best response dynamic for F. Define the Lipschitz
continuous function G : X — R, by:

G(x) = maxjesFi(x),

which is non-negative and satisfies G~!(0) = NE(F).

Moreover, if {x;}+>¢ is a solution to Vr then G(x;) < —G(x;) for
almost all t > 0, and so NE(F) is globally asymptotically stable
under V.
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