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Global Convergence
I We have examined the connection between the rest points

of various dynamics and Nash equilibria of the underlying
game.

I Now we shall study the limiting behavior of various
evolutionary dynamics when set in motion from arbitrary
initial conditions.

I In particular, we shall derive conditions on games and
dynamics under which behavior converges to equilibrium
from all (or almost all) initial states.

I Our focus will be on potential, stable and supermodular
games, though we will also touch upon dominance
solvable games.

I Positive correlation (PC) will play some role in our
out-of-equilibrium analysis.
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Limit Sets
I Let us characterize the limiting behavior of deterministic

dynamics as follows.

I The ω-limit of trajectory {xt}t≥0 is the set of all points that
the trajectory approaches arbitrarily closely
infinitely often:

ω({xt}) =
{

y ∈ X : there exists {tk}∞
k=1

with lim
k→∞

tk = ∞ such that lim
k→∞

xtk = y
}
.

I If ω({xt}) = x∗, a singleton, then x∗ is a called an
absorbing state.

I Otherwise, ω({xt}) is called a recurrence class or ω-limit
set of the dynamic.
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Limit Sets

I For dynamics that admit a unique forward solution
trajectory from each initial condition, ω(ξ) denotes the
ω-limit set of the trajectory starting from state ξ.

I The set of all ω-limit points of all solution trajectories is:

Ω(VF) =
⋃

ξ∈X

ω(ξ).

I The notion of recurrence (or the set of recurrence classes)
of deterministic dynamic is captured by Ω(VF).
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Stability Concepts

I Let A ⊆ X be a closed set, and call O ⊆ X a neighborhood
of A if it is open relative to X and contains A.

I A is Lyapunov stable if for every neighborhood O of A,
there exists a neighborhood O′ of A such that every
solution {xt} that starts in O′ is contained in O, that is,
x0 ∈ O′ implies that xt ∈ O for all t ≥ 0.

I Intuitively, this requires that all solutions that start near A,
stay near A at all points in time.

I Any displacement from A does not lead the process to go
‘very far’ from A at any point in time.
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Stability Concepts

I A is attracting if there is a neighborhood Y of A such that
every solution that starts in Y converges to A, that is,
x0 ∈ Y implies ω({xt}) ⊆ A.

I A is globally attracting if it is attracting with Y = X.

I Intuitively, this requires that given any displacement from
A, the process returns to A in the limit.
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Stability Concepts

I A is asymptotically stable if it is Lyapunov stable and
attracting.

I A is globally asymptotically stable if it is Lyapunov stable
and globally attracting.

I Intuitively, this requires that given any displacement from
A, the process never travels ‘very far’ from A and returns
to A in the limit.
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Lyapunov Functions
The most common method for proving global convergence in
dynamical systems is by constructing a strict Lyapunov
function:

I A scalar-valued function.

I The value of the function changes monotonically along every
solution trajectory.

I For many ODEs, the existence of a Lyapunov function is a
necessary and sufficient condition for stability.

I The Lyapunov function allows us to (partially) characterize the
evolution of play without requiring explicit solutions to the
differential equation (or inclusion).

Definition. The C1 function L : X→ R is a (decreasing) strict
Lyapunov function for the differential equation ẋ = VF(x) if
L̇(x) = ∇L(x)′VF(x) ≤ 0 for all x ∈ X, with equality only at rest
points of VF.
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Lyapunov Functions and Stability

Theorem 7.1. (Lyapunov Stability) Let A ⊆ X be closed and let
Y ⊆ X be a neighborhood of A. Let L : Y→ R+ be Lipschitz
continuous with L−1(0) = A. If each solution {xt} of VF
satisfies L̇(xt) ≤ 0 for almost all t ≥ 0, then A is Lyapunov
stable under VF.

Theorem 7.2. (Asymptotic Stability) Let A ⊆ X be closed and let
Y ⊆ X be a neighborhood of A. Let L : Y→ R+ be C1 with
L−1(0) = A. If each solution {xt} of VF satisfies L̇(xt) < 0 for all
x ∈ Y−A, then A is asymptotically stable under VF. If in
addition, Y = X, then A is globally asymptotically stable under
VF.
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Potential Games

I Let us turn to global convergence in potential games.

I In potential games, the natural candidate for a strict
(increasing) Lyapunov function is the potential function.

I Recall that in a potential game F : X→ Rn, the potential
function f : X→ R summarizes all information about
incentives:

∇f (x) = ΦF(x) for all x ∈ X.

10 / 21



Lyapunov Function for Potential Games

Lemma 7.1. Let F be a potential game with potential function f .
Suppose the evolutionary dynamic ẋ = VF(x) satisfies positive
correlation (PC). Then f is a strict Lyapunov function for VF.

Proof. ḟ (x) = ∇f (x)′ẋ = (ΦF(x))′VF(x) = F(x)′VF(x).

The result then follows immediately from PC. �
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Convergence in Potential Games

Theorem 7.3. Let F be a potential game, and let ẋ = VF(x) be an
evolutionary dynamic for F that admits a unique forward
solution from each initial condition and that satisfies PC. Then
Ω(VF) = RP(VF).

For example, if VF is an imitative dynamic, then
Ω(VF) = RE(F), the set of restricted equilibria of F.
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Convergence in Potential Games

I What about convergence of the best response dynamic?

I Recall that the best response dynamic is:

ẋ ∈ M
(
F(x)

)
− x,where M(π) = arg max

i∈S
πi.

I To state the appropriate result one must account for the
fact that the dynamic is multivalued.
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Convergence in Potential Games

Theorem 7.4. Let F be a potential game with potential function
f , and let ẋ ∈ VF(x) be the best response dynamic for F. Then:

∂f
∂z

(x) = maxj∈SF̂j(x) for all z ∈ VF(x), x ∈ X.

Therefore, every solution trajectory {xt} of VF satisfies
ω({xt}) ⊆ NE(F). That is, the set of Nash equilibria of F is
globally asymptotically stable.
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Stable Games
I Recall that the population game F is stable if it satisfies:

(y− x)′
(
F(y)− F(x)

)
≤ 0 for all x, y ∈ X.

I When F is C1 this is equivalent to self-defeating externalities:

z′DF(x)z ≤ 0 for all z ∈ TX, x ∈ X.

I The set of Nash equilibria of a stable game is convex and
usually a singleton.

I Uniqueness itself does not guarantee convergence (as we
shall see later).
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Lyapunov Functions for Stable Games

I Once again, convergence proofs rely upon construction of
a Lyapunov function.

I But unlike potential games, there is no natural candidate
for a Lyapunov function; a distinct one must be
constructed for each dynamic.

I We shall now write the Lyapunov function as decreasing
over time.

Definition. A C1 function L is a (decreasing) strict Lyapunov
function for the dynamic ẋ = VF(x) if L̇(x) ≤ 0 for all x ∈ X,
with equality only at rest points of VF.
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Replicator Dynamics in Stable Games

I For convergence of the replicator dynamics, we need to
confine attention to strictly stable games.

I We also need to restrict attention to a subset of all initial
conditions ξ ∈ X, because if ξ places no mass on a strategy
in the support of a Nash equilibrium x∗, then the dynamic
cannot converge to x∗ from ξ.

I Let the support of x be S(x) = {i ∈ S : xi > 0}. Then
Xy = {x ∈ X : S(y) ⊆ S(x)} is the set of states in X whose
supports contain the support of y.
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Replicator Dynamics in Stable Games

I The Lyapunov function (in the single-population case) is
hy : Xy → R where:

hy(x) = ∑
i∈S(y)

yi log
yi

xi
.

hy is known as the relative entropy of y given x.
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Replicator Dynamics in Stable Games

Theorem 7.5. Let F be a strictly stable game with unique Nash
equilibrium x∗, and let ẋ = VF(x) be the replicator dynamic for
F.

Then hx∗ is non-negative, h−1
x∗ (0) = {x∗} and hx∗(x) approaches

infinity whenever x approaches X−Xx∗ .

Moreover, ḣx∗(x) ≤ 0, with equality only when x = x∗.
Therefore, x∗ is globally asymptotically stable with respect to
Xx∗ .

If F is simply a stable game, then x∗ is Lyapunov stable.

19 / 21



Best Response Dynamics in Stable Games

I Recall that the best response dynamic is:

ẋ ∈ M
(
F̂(x)

)
− x,

where:

M(π̂) = arg max
y∈X

y′π̂,

i.e. the set of maximizers of (excess) payoffs.
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Best Response Dynamics in Stable Games

Theorem 7.6. Let F be a C1 stable game, and let ẋ ∈ VF(x) be
the best response dynamic for F. Define the Lipschitz
continuous function G : X→ R+ by:

G(x) = maxi∈SF̂i(x),

which is non-negative and satisfies G−1(0) = NE(F).

Moreover, if {xt}t≥0 is a solution to VF then Ġ(xt) ≤ −G(xt) for
almost all t ≥ 0, and so NE(F) is globally asymptotically stable
under VF.
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