Evolutionary Stable States (ESS)

Maynard Smith and Price (1973) defined the notion of an *evolutionary stable strategy* as immune to invasion by mutants:

- Their focus was on monomorphic populations: every member plays the same strategy, which can be a mixed strategy.

- We are concerned with a polymorphic population of agents each programmed with a pure strategy.

- We have seen the equivalence of these two problems.

Hence we can adapt the concept of an evolutionary stable strategy to a population setting:

- The term we shall use is *evolutionary stable state* (ESS).
Invasion

Let the state be \(x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \).

Consider a game \(F \), where \(F(x) = \begin{pmatrix} F_1(x) \\ F_2(x) \\ \vdots \\ F_n(x) \end{pmatrix} \).

Consider an invasion of mutants who make up a fraction \(\epsilon \) of the post-entry population.

The shares of each strategy in the mutant population are represented by \(y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \).
Invasion

Therefore, the post-entry population state is:

\[x_\epsilon = (1 - \epsilon)x + \epsilon y = \begin{pmatrix} (1 - \epsilon)x_1 + \epsilon y_1 \\ (1 - \epsilon)x_2 + \epsilon y_2 \\ \vdots \\ (1 - \epsilon)x_n + \epsilon y_n \end{pmatrix}. \]

The average payoff in the incumbent population in the post-entry state is \(x'F((1 - \epsilon)x + \epsilon y) \).

The average payoff in the mutant population in the post-entry state is \(y'F((1 - \epsilon)x + \epsilon y) \).
Uniform Invasion Barrier

The average payoff in the incumbent population is higher if:

\[(y - x)'F((1 - \varepsilon)x + \varepsilon y) < 0.\]

(1)

State \(x\) is said to admit a **uniform invasion barrier** if there exists an \(\bar{\varepsilon} > 0\) such that (1) holds for all \(y \in X - \{x\}\) and \(\varepsilon \in (0, \bar{\varepsilon})\).

That is, for all possible mutations \(y\), as long as the mutant population is less than fraction \(\bar{\varepsilon}\) of the postentry population, the incumbent population receives a higher average payoff.
Definition. State \(x \in X \) is an **evolutionary stable state (ESS)** of \(F \) if there exists a neighborhood \(O \) of \(x \) such that:

\[
(y - x)'F(y) < 0 \quad \text{for all } y \in O - \{x\}.
\]

(2)

In other words, if \(x \) is an ESS, then for any state \(y \) sufficiently close to \(x \), a population playing \(x \) will receive a larger average payoff in state \(y \) than a population playing \(y \) (i.e. \(x \) is a better reply to \(y \) than \(y \) is to itself).

Note that this considers invasions of other states \(y \) by \(x \) rather than invasions of \(x \) by other states. Hence it is not clear, at present, why this should be a stability condition.
ESS and Invasion Barriers

Theorem 7.1. State $x \in X$ is an *evolutionary stable state* (ESS) if and only if it admits a uniform invasion barrier.

Thus if x is stable in the face of an arbitrarily large population of entrants who mutate to a nearby state, then it is stable in the face of a sufficiently small population of entrants who mutate to an arbitrary state.
What is the relationship between ESS and NE?

Definition. Suppose that $x \in X$ is a NE. Then $(y - x)'F(x) \leq 0$ for all $y \in X$.

In addition, suppose there exists a neighborhood of x that does not contain any other NE.

Then x is an **isolated NE**.

Proposition 7.2. Every ESS is an isolated NE.
Proof

Let x be an ESS of F, O be the nhd posited in (2) and $y \in X - \{x\}$ (not necessarily in O).

Then for all $\varepsilon > 0$ sufficiently small, the postentry state $x_\varepsilon = \varepsilon y + (1 - \varepsilon)x$ is in O.

Given x is an ESS, this implies that:

$$(x_\varepsilon - x)'F(x_\varepsilon) < 0$$
$$(\varepsilon y + (1 - \varepsilon)x - x)'F(x_\varepsilon) < 0$$
$$\varepsilon(y - x)'F(x_\varepsilon) < 0$$
$$(y - x)'F(x_\varepsilon) < 0.$$

(3)
Proof

Taking $\varepsilon \to 0$ yields:

$$(y - x)'F(x) \leq 0,$$

by the continuity of F. That is, x is a NE.

To establish that x is isolated, note that if $w \in O - \{x\}$ were a NE then $(w - x)'F(w) \geq 0$, contradicting the supposition that x is an ESS [by (2)]. □

The converse of Proposition 7.2 is not true.

- The mixed equilibrium of a two-strategy coordination game is a counterexample.
More on ESS and Nash

Therefore, *ESS is stronger than NE*.

In particular, an ESS satisfies the additional property:

Suppose there exists a state y which is an alternative best reply to x, i.e. $(y - x)'F(x) = 0$.
—Then $(y - x)'F(y) < 0$, i.e. x is a better reply to y than y is to itself.

Therefore:

- A strict NE is an ESS.
- A polymorphic population state (equivalent to a mixed NE) cannot be strict and hence must satisfy the additional property.
More on ESS and Nash

In the case in which agents are matched uniformly at random to play a normal form game (the case we have been focussing on), then it is easy to see why the additional property is required.

Suppose \((y - x)'F(x) = 0\), i.e. \(y\) is an alternative best reply to \(x\).

Then:

\[
(y - x)'F(\varepsilon y + (1 - \varepsilon)x) = \varepsilon(y - x)'F(y) + (1 - \varepsilon)(y - x)'F(x)
\]

\[
= \varepsilon(y - x)'F(y).
\]

(4)

Therefore, \((y - x)'F(y)\) must be negative for (1) to hold and hence, by Theorem 7.1, for \(x\) to be an ESS.
Example: Hawk Dove

<table>
<thead>
<tr>
<th></th>
<th>Hawk</th>
<th>Dove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawk</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>Dove</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

ESS: $x = \left(\frac{2}{3}, \frac{1}{3} \right)$. ESS payoff = 0.
Example: Hawk Dove

Consider a mutation y such that $y_1 > x_1 = \frac{2}{3}$.

Check that $(y - x)'F((1 - \varepsilon)x + \varepsilon y) < 0$ for all such y:

$$(y_1 - x_1)[-2((1 - \varepsilon)x_1 + \varepsilon y_1) + 4((1 - \varepsilon)(1 - x_1) + \varepsilon(1 - y_1))].$$

This equals:

$$(y_1 - x_1)\varepsilon[-2y_1 + 4(1 - y_1)]$$

because $-2 \times \frac{2}{3} + 4 \times (1 - \frac{2}{3}) = 0$. This in turn equals:

$$(y_1 - x_1)\varepsilon[4 - 6y_1]$$

which is negative because $y_1 > \frac{2}{3}$ by hypothesis.

A similar argument can be applied to the case $y_1 < x_1$. Hence x is an ESS.
The Prisoners' Dilemma

\[
\begin{array}{c|cc}
&C & D \\
\hline
C & 3 & 5 \\
3 & 0 & 1 \\
D & 5 & 1 \\
\end{array}
\]

\textbf{NE/ESS: } x = (0, 1).

Therefore, an ESS is not necessarily efficient.
Not Every Game has an ESS

\[
x = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right)
\] is the unique NE and therefore the only possible ESS.
Not Every Game has an ESS

Note that x is a polymorphic population state (equivalent to a mixed strategy), so any basis vector (pure strategy) is an alternative best reply to x.

Check that the additional property holds: $(e_1 - x)'F(e_1) < 0$, where $e_1 = (1, 0, 0)$, i.e. the pure-strategy A.

This is not the case: $x'F(e_1) = e_1'F(e_1) = 1$.
The Iterated Prisoners’ Dilemma

- Two players engage in a series of PD games.

- The engagement ends after the current round with probability $\delta < \frac{1}{2}$. We call this the stopping probability.

- Consider a population in which three strategies are present:
 - C—always cooperate,
 - D—always defect,
 - T—tit-for-tat, i.e. start by cooperating, thenceforth cooperate in period t if partner cooperated in $t - 1$.
Expected Payoffs

Within each pairing:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>$\frac{3}{\delta}$</td>
<td>0</td>
<td>$\frac{3}{\delta}$</td>
</tr>
<tr>
<td>D</td>
<td>$\frac{5}{\delta}$</td>
<td>$\frac{1}{\delta}$</td>
<td>$4 + \frac{1}{\delta}$</td>
</tr>
<tr>
<td>T</td>
<td>$\frac{3}{\delta}$</td>
<td>$\frac{1}{\delta} - 1$</td>
<td>$\frac{3}{\delta}$</td>
</tr>
</tbody>
</table>

Over all pairings:

\[
F_C(x) = (x_C + x_T) \frac{3}{\delta}
\]
\[
F_D(x) = x_C \frac{5}{\delta} + x_D \frac{1}{\delta} + x_T \left(4 + \frac{1}{\delta}\right)
\]
\[
F_T(x) = (x_C + x_T) \frac{3}{\delta} + x_D \left(\frac{1}{\delta} - 1\right)
\]
All-\(T\) is not an ESS

Let \(x = (x_D, x_C, x_T) = (0, 0, 1)\).

Consider any alternative state \(y\) such that \(y_D = 0\).

\[
(y - x)'F(y) = (0 ~ y_C ~ y_T - 1) \begin{pmatrix} F_D(y) \\ F_C(y) \\ F_T(y) \end{pmatrix}
\]

\[
= y_C F_C(y) + (y_T - 1) F_T(y)
\]

\[
= [y_C + (y_T - 1)] \frac{3}{\delta} \quad \text{(recall that } y_D = 0)
\]

\[
= [y_C + (1 - y_C - 1)] \frac{3}{\delta} \quad \text{(because } y_T = 1 - y_C)
\]

\[
= 0.
\]

This violates (2). Hence all-\(T\) is not an ESS.

This is a case of evolutionary drift.
Vector Field