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Cumulative Net CO, Increase

Data: CDIAC/NOAA-ESRL/GCP/Joos et al 2013/Khatiwala et al 2013
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CO, Emissions and Temperature Change

Data: CDIAG/GCP/IPCC/Fuss et al 2014
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Remaining CO, Quota for 66% Chance to Keep Below 2°

Data: IPCC/CDIAC/GCP/Peters et al. 2015
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Global Energy Consumption

Estimated Renewable Energy Share of Total Final Energy Consumption, 2015
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Electric Energy Sector

Estimated Renewable Energy Share of Global Electricity Production, End-2016
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Major Energy Transitions are Slow

Coal: 5% to 50% in 60 years starting in 1840

Qil: 5% to 40% in 60 years starting in 1915

Natural gas: 5% to 25% in 60 years starting in 1930
Modern renewables = 5%

vV v v v

1.2 billion people lack access to electricity
2.8 billion people rely on biomass for cooking and heating



Toward 100% Renewable Future

o 5 = = E DA



Investment in Renewable Power

Global Investment in Power Capacity, by Type (Renewable, Fossil Fuel and
Nuclear Power), 2012-2016
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PV and Wind Get Cheaper by the Year

Average US Power Purchase ":'5";"
Agreements Prices
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Solar PV Growth

Solar PV Global Capacity and Annual Additions, 2006-2016
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Solar PV Deployment

Solar PV Global Additions, Shares of Grid-Connected and Off-Grid Installations,
2006-2016
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Wind Growth

Wind Power Global Capacity and Annual Additions, 2006-2016
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Net Result: Record Low Prices

Solar PV Onshore wind Offshore wind

-

i

Country: Mexico Country: Morocco Country: Germany
Bidder: FRV Bidder: Enel Green Power  Bidder: DONG/EnBW
Signed: September 2016 Signed: January 2016 Signed: April 2017
Construction: 2019 Construction: 2018 Construction: 2024

Price: US$ 2.69 c/kWh Price: US$ 3.0 c/lkWh Merchant Price: US$ 4.9 c/kWh

Note: The offshore wind merchant price is estimated based on project LCOE in real 2016 terms Source: Bloomberg New Energy Finance; ImagesSiemens; Wikimedia Commons



Storage
Global Grid-Connected Energy Storage Capacity, by Technology, 2016
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Li lon Battery Prices

BNEF 2016 battery pack price survey results
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Grid Connected Battery Storage

Global Grid-Connected Stationary Battery Storage Capacity, by Country, 2006-2016

Megawatts
1800
1,719

1,600 Rest of World

M Chile =
1400 o italy y h

Germany

1200 W Japan | B | | L 147 |

B Republic of Korea
1,000 y

W United States
7o -

620
” 503 T e
345 ol ]
400 312 Al o
245 246 290
= .
1111111111 BB
2006 2007 2008 2009 2010 20m 2012 2013 2014 2015 2016

REN21 Renewables 2017 Global Status Report

Grid-connected

BATTERY
STORAGE

grew by

+50%

in 2016.




13 February 2017
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California grid sets record, with 67% of
kil

California on May 13, 2017 power from rene

By Dorini Facasaa Updated 510, Thursday May 16,2017

Hourly Average Breakdown of Renewable
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28 thousand megawats

California on May 13, 2017 e N
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Megawatts

California on May 13, 2017

Hourly Average Bi of Total Pr
30,000

By Resource Type

25,000

20,000

15,000 Thermal
Nuclear
10,000
5,000

Source: CAISO




California on May 13, 2017

24-Hour Renewables Production

Renewable ProZiiI:ion Peak Production Daily Production
Resources Time (MW) (MWh)
Solar Thermal 12:15 494 5,032
Solar 14:45 8,669 86,902
Wind 20:27 4,576 87,068
Small Hydro 20:37 605 12,643
Biogas 19:24 154 3,575
9:52 244 5,754
it 6:46 978 23,282
;Ztna;wables 224,256

Total 24-Hour System Demand (MWh): 534,956

Source: CAISO




Negative Prices in California

California Independent System Operator net generation, March 11, 2017
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Negative Prices in California

First Quarter Second Quarter Third Quarter Fourth Quarter

California Independent System Operator average hourly real-time price
dollars per megawatthour
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Projected Solar Curtailment
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Figure 6. Annual marginal and total solar curtailment due to overgeneration under increasing
penetration of PV in California in a system with limited grid flexibility

Source: Emerging Issues and Challenges in Integrating High Levels of Solar into the Electrical Generation and
Transmission System, NREL
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Impact of Curtailment on Cost of PV
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Figure 7. Marginal and average PV LCOE (based on SunShot goals) due to overgeneration under
increasing penetration of PV in California in a system with limited grid flexibility

Source: Emerging Issues and Challenges in Integrating High Levels of Solar into the Electrical Generation and
Transmission System, NREL o =l =




Capacity Credit Declines with Increasing Penetration

80 ===NV Power: Perez et al (2008)

===CA Case Study: Mills and Wiser (20128)
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Figure 10. Summary of PV capacity credit estimates
Source: Mills and Wiser 2012b

Source: Emerging Issues and Challenges in Integrating High Levels of Solar into the Electrical Generation and
Transmission System, NREL



Options for Flexibility

RELATIVE ECONOMICS OF INTEGRATION QPTIONS
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Key Enablers to Deep Renewable Integration

New transmission infrastructure
Larger geographic balancing areas
Greater flexibility in all aspects of power system operations

Cost-effective energy storage

vV V. v v Y

Grid management and control



Key Collaborative Research Directions

Renewable producers in electricity markets

Strip Packing for Peal Load Minimization

Causation based Cost Allocation Principles and Algorithms
Cybersecurity and smart grid

Distributed control for integration of renewable sources

vV v v v v .Y

Stochastic optimization for residential energy management



Renewable Generators in Electricity Markets

» Scenario: One or more wind or solar producers operating in a
wholesale electricity market

» What is the optimal bid by a renewable generator in a
two-settlement market?

> Is there a benefit from several renewable generators combining their
production?

> What are the strategies to keep the coalition stable?

» What is the optimal operating policy for a renewable generator with
local energy storage?

Collaboration with Baeynes, Bitar, Poolla, and Varaiya



Stochastic Optimization for Residential Energy
Management

» Scenario: one more more homes in a residential setting with local
renewable generation, storage, and elastic and inelastic loads

» What are stable policies for servicing the loads while optimizing the
total cost of operation?

» Approach: put the loads into a queue and use Lyapunov based
stochastic optimization techniques that guarantee queue stability,
storage limits, upper bounds on delays in serving the elastic loads,
and bound on deviation from optimal performance

» Similar approach for data center optimization with local renewable
generation and storage, virtual power plants, etc.

Collaboration with Guo, Fang, Pan, Gong and Geng



Strip Packing for Peak Load Minimization

» Scenario: constant interruptible and non-interruptible power flexible
loads with start and end times

» How can these loads be scheduled so that the resulting peak load is
as small as possible?

» NP hard problems
» Approach: strip packing algorithms from computer science literature
> Results: guaranteed bounds on deviation from optimality

Collaboration with Ranjan and Sahni



Causation based Cost Allocation Principles and Algorithms

Variability of renewable generation imposes costs on the system

How should these costs be allocated as tarrifs?

>
>
» Principle: allocate costs to those who “cause” them
» Approach: tools from cooperative game theory

>

Results: algorithms for cost allocation

Collaboration with Chakraborty and Baeynes



Cybersecurity for Smart Grid

» Scenario: Adversary attacks data in energy management system
» How can false data injection attacks be detected?

» How can sensors help mitigate such attacks?
>

Results: algorithms for detection and mitigation

Collaborations with Gianni, Poolla, Bitar, Garcia, McQueen, Bretas, Baeynes, Carvalho



System Scenario

Thermal Wind Plant
Power plant
\\\\A
Central Control
Authority
A Demand

Demand - ~.

Schedule " Schedule
/// . 4 Demand pri ~_
- Frice Price ‘\ Schedule rice

Flexible Consumer 3

Flexible Consumer 1 Flexible Consumer 2

Figure: System Model



Demand Side Management

Goal: exploit the inherent flexibility of electric loads
Two approaches: incentive based and price based

Centralized control of loads — ex: direct load control

vV Yy Vv Yy

Distributed control
> The central authority sends the control signal, e.g., price, to the
consumers.
> The consumers optimize their consumption schedules accordingly.



Price-Anticipating Consumers

» Game theoretic modeling to capture the price anticipating behavior
under distributed control

» Key Question: What is the loss of efficiency in terms of social
objective by distributed control as compared with centralized
control?

» Price of Anarchy (PoA) : Worst-case ratio of the objective function
value of an equilibrium solution of the game to that of a centralized
optimal solution.



Nash Equilibrium

» The Nash equilibrium for the distributed control problem with price
anticipators is the set of expenditures {k® : i € N’} such that
Ui(ai(k?,kS)) — 17Tk > Ui(ai(k;, kE;)) — 17k;,
ki € SP(k®,), i € N. (1)

Theorem (Existence of Nash equilibrium)

The non-cooperative game has a Nash equilibrium if the search space is
nonempty.



Price of Anarchy is Less Than 25%

Theorem

Let {qF : i € N'} be a solution of the centralized problem (??) and
{q,-G i € N'} a Nash equilibrium for the distributed problem with price
anticipating consumers. Let PoA be defined by:

(€
POA — ZiEN U’(qlc)
Zie/\/ Ui(ay)

then PoA > 0.75.



Special Cases

Corollary

If all the consumers have same utility function, i.e., U; = U, there is no
efficiency loss at Nash equilibrium solution, i.e. PoA is 1.

Corollary

Suppose q; = 0 for all i € N belongs to the set of load operational
constraints, then the PoA approaches 1 as the number N of flexible
consumers goes to infinity.



Smart Neighborhood!

——— Power Flow

- — — — Information Flow

Electric
Utility

1Y. Guo, M. Pan, Y. Fang, and P. P. Khargonekar, “Decentralized Coordination of
Energy Utilization for Residential Households in the Smart Grid,” IEEE Transactions
on Smart Grid, Vol. 4, No. 3, pp. 1341-1350, September 2013.



System Model

> Load serving entity (LSE)
> Supply cost function ®: quadratic in aggregate demand in the
neighborhood
» Household i € [1, N]
> Energy storage dynamics: Ei(t+ 1) = Ei(t) +ni i (t) — r7 (t)/n
Inelastic loads: d; 1(t)
Elastic loads: Qi(t+ 1) = [Qi(t) — yi(t) + di2(t)]"
Local renewable generation: s;(t)
Net grid energy demand: gi(t)
Virtual queue to ensure worst-case delay for elastic loads:
Zi(t+1) = [Z(t) - yi(t) + eilg o]
» Goal: LSE coordinates the energy usage of households to minimize
the total cost of supplying electricity to the neighborhood

vVvyVvVVvyvy

T

-1 N N
lim sup 1 Z E{ CD(Zg;(f)) +Zﬂi(ri+(t) +r (1) }
0 i=1 i=1

T—o0 T —

power supply cost storage operation cost



Analytical Performance Results

Theorem

» Storage energy level bound: E,-min < Ei(t) < EM, Vit
2V¢’+d2"j,a.*+e;"

€j

» Worst-case elastic load delay guarantee: Delay; < [

> If random factors are i.i.d. over slots, and if ¢; < E{d;2(t)}, then
C* < Cost of Our Approach < C* 4+ B/V,

where C* is the optimal average cost.



Numerical Results
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Future Opportunities

v

Joint control of storage, renewables, demand and grid

v

Wide area stability and control under deep renewable penetration
scenarios

v

Information and control architectures for future grid

v

Negative carbon technologies



Conclusions

» Grid integration of renewable energy will be an increasingly
important and difficult challenge

» Many opportunities for the systems and control field
» Energy systems present a unique mix of science, engineering,
economics and social policy

> Decarbonization of the energy system remains a true grand
challenge for humanity



	Drivers for Renewable Electric Energy
	Toward 100% Renewable Future
	Key Collaborative Research Directions
	Distributed Control and Price of Anarchy
	Stochastic Optimization for Smart Homes and Neighborhoods

	Conclusions



