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Remaining CO2 Quota for 66% Chance to Keep Below 20 C

Source: Peters et al 2015; Global Carbon Budget 2016 



Global Energy Consumption



Electric Energy Sector



Major Energy Transitions are Slow

I Coal: 5% to 50% in 60 years starting in 1840

I Oil: 5% to 40% in 60 years starting in 1915

I Natural gas: 5% to 25% in 60 years starting in 1930

I Modern renewables ≈ 5%

1.2 billion people lack access to electricity
2.8 billion people rely on biomass for cooking and heating



Toward 100% Renewable Future



Investment in Renewable Power

Source: Bloomberg New Energy Finance



PV and Wind Get Cheaper by the Year

Average US Power Purchase 
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Solar PV Growth



Solar PV Deployment



Wind Growth



Net Result: Record Low Prices



Storage



Li Ion Battery Prices



Grid Connected Battery Storage



Examples of Deep Penetration of Renewable Generation



California on May 13, 2017

Source: CAISO
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Negative Prices in California



Negative Prices in California



Projected Solar Curtailment

Source: Emerging Issues and Challenges in Integrating High Levels of Solar into the Electrical Generation and 
Transmission System, NREL



Impact of Curtailment on Cost of PV

Source: Emerging Issues and Challenges in Integrating High Levels of Solar into the Electrical Generation and 
Transmission System, NREL



Capacity Credit Declines with Increasing Penetration

Source: Emerging Issues and Challenges in Integrating High Levels of Solar into the Electrical Generation and 
Transmission System, NREL



Options for Flexibility

Source: Chochran et al, 2014



Key Enablers to Deep Renewable Integration

I New transmission infrastructure

I Larger geographic balancing areas

I Greater flexibility in all aspects of power system operations

I Cost-effective energy storage

I Grid management and control



Key Collaborative Research Directions

I Renewable producers in electricity markets

I Strip Packing for Peal Load Minimization

I Causation based Cost Allocation Principles and Algorithms

I Cybersecurity and smart grid

I Distributed control for integration of renewable sources

I Stochastic optimization for residential energy management



Renewable Generators in Electricity Markets

I Scenario: One or more wind or solar producers operating in a
wholesale electricity market

I What is the optimal bid by a renewable generator in a
two-settlement market?

I Is there a benefit from several renewable generators combining their
production?

I What are the strategies to keep the coalition stable?

I What is the optimal operating policy for a renewable generator with
local energy storage?

Collaboration with Baeynes, Bitar, Poolla, and Varaiya



Stochastic Optimization for Residential Energy
Management

I Scenario: one more more homes in a residential setting with local
renewable generation, storage, and elastic and inelastic loads

I What are stable policies for servicing the loads while optimizing the
total cost of operation?

I Approach: put the loads into a queue and use Lyapunov based
stochastic optimization techniques that guarantee queue stability,
storage limits, upper bounds on delays in serving the elastic loads,
and bound on deviation from optimal performance

I Similar approach for data center optimization with local renewable
generation and storage, virtual power plants, etc.

Collaboration with Guo, Fang, Pan, Gong and Geng



Strip Packing for Peak Load Minimization

I Scenario: constant interruptible and non-interruptible power flexible
loads with start and end times

I How can these loads be scheduled so that the resulting peak load is
as small as possible?

I NP hard problems

I Approach: strip packing algorithms from computer science literature

I Results: guaranteed bounds on deviation from optimality

Collaboration with Ranjan and Sahni



Causation based Cost Allocation Principles and Algorithms

I Variability of renewable generation imposes costs on the system

I How should these costs be allocated as tarrifs?

I Principle: allocate costs to those who “cause” them

I Approach: tools from cooperative game theory

I Results: algorithms for cost allocation

Collaboration with Chakraborty and Baeynes



Cybersecurity for Smart Grid

I Scenario: Adversary attacks data in energy management system

I How can false data injection attacks be detected?

I How can sensors help mitigate such attacks?

I Results: algorithms for detection and mitigation

Collaborations with Gianni, Poolla, Bitar, Garcia, McQueen, Bretas, Baeynes, Carvalho



System Scenario
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Demand Side Management

I Goal: exploit the inherent flexibility of electric loads

I Two approaches: incentive based and price based

I Centralized control of loads — ex: direct load control

I Distributed control
I The central authority sends the control signal, e.g., price, to the

consumers.
I The consumers optimize their consumption schedules accordingly.



Price-Anticipating Consumers

I Game theoretic modeling to capture the price anticipating behavior
under distributed control

I Key Question: What is the loss of efficiency in terms of social
objective by distributed control as compared with centralized
control?

I Price of Anarchy (PoA) : Worst-case ratio of the objective function
value of an equilibrium solution of the game to that of a centralized
optimal solution.



Nash Equilibrium

I The Nash equilibrium for the distributed control problem with price
anticipators is the set of expenditures {kGi : i ∈ N} such that

Ui (qi (k
G
i , k

G
−i ))− 1>kGi ≥ Ui (qi (ki , k

G
−i ))− 1>ki ,

ki ∈ Spai (kG−1), i ∈ N . (1)

Theorem (Existence of Nash equilibrium)
The non-cooperative game has a Nash equilibrium if the search space is
nonempty.



Price of Anarchy is Less Than 25%

Theorem
Let {qCi : i ∈ N} be a solution of the centralized problem (??) and
{qGi : i ∈ N} a Nash equilibrium for the distributed problem with price
anticipating consumers. Let PoA be defined by:

PoA :=

∑
i∈N Ui (qGi )∑
i∈N Ui (qCi )

.

then PoA ≥ 0.75.



Special Cases

Corollary
If all the consumers have same utility function, i.e., Ui = U, there is no
efficiency loss at Nash equilibrium solution, i.e. PoA is 1.

Corollary
Suppose qi = 0 for all i ∈ N belongs to the set of load operational
constraints, then the PoA approaches 1 as the number N of flexible
consumers goes to infinity.
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System Model

I Load serving entity (LSE)
I Supply cost function Φ: quadratic in aggregate demand in the

neighborhood

I Household i ∈ [1,N]
I Energy storage dynamics: Ei (t + 1) = Ei (t) + η+

i r
+
i (t) − r−i (t)/η−

I Inelastic loads: di,1(t)
I Elastic loads: Qi (t + 1) = [Qi (t) − yi (t) + di,2(t)]+

I Local renewable generation: si (t)
I Net grid energy demand: gi (t)
I Virtual queue to ensure worst-case delay for elastic loads:

Zi (t + 1) = [Zi (t) − yi (t) + εi1Qi (t)>0]+

I Goal: LSE coordinates the energy usage of households to minimize
the total cost of supplying electricity to the neighborhood

lim sup
T→∞

1

T

T−1∑
t=0

E
{

Φ
( N∑

i=1

gi (t)
)

︸ ︷︷ ︸
power supply cost

+
N∑
i=1

βi (r
+
i (t) + r−i (t))︸ ︷︷ ︸

storage operation cost

}



Analytical Performance Results

Theorem

I Storage energy level bound: Emin
i ≤ Ei (t) ≤ Emax

i ,∀t

I Worst-case elastic load delay guarantee: Delayi ≤
⌈

2VΦ′+dmax
2,i +εi

εi

⌉
I If random factors are i.i.d. over slots, and if εi ≤ E{di,2(t)}, then

C∗ ≤ Cost of Our Approach ≤ C∗ + B/V ,

where C∗ is the optimal average cost.



Numerical Results



Future Opportunities

I Joint control of storage, renewables, demand and grid

I Wide area stability and control under deep renewable penetration
scenarios

I Information and control architectures for future grid

I Negative carbon technologies



Conclusions

I Grid integration of renewable energy will be an increasingly
important and difficult challenge

I Many opportunities for the systems and control field

I Energy systems present a unique mix of science, engineering,
economics and social policy

I Decarbonization of the energy system remains a true grand
challenge for humanity
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