Food-Energy-Water Nexus: Convergence Framing for Research and Innovation

Pramod P. Khargonekar
University of California, Irvine
Outline

Context

Food-Energy-Water Nexus – NSF INFEWS Initiative

Convergence Model for Research

Research to Innovation

Conclusions
Overall Context

Climate change and global warming

Interactions and feedback between natural systems and man-made systems

Socio-economic-technological, heterogenous, distributed, man-made system

Multiple players and institutions interacting with each other
Global demographic shifts will drive the coming decades.

Figure 1. Number of persons aged 60 years or over by development group, from 1980 to 2050

Figure 2. Population of the world: estimates, 1950-2015, and medium-variant projection with 95 per cent prediction intervals, 2015-2100

Figure 3. Population by region: estimates, 1950-2015, and medium-variant projection, 2015-2100

Table 1. Population of the World and Regions, 2017, 2030, 2050 and 2100, according to the medium-variant projection

<table>
<thead>
<tr>
<th>Region</th>
<th>Population (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2017</td>
</tr>
<tr>
<td>World</td>
<td>7 550</td>
</tr>
<tr>
<td>Africa</td>
<td>1 256</td>
</tr>
<tr>
<td>Asia</td>
<td>4 504</td>
</tr>
<tr>
<td>Europe</td>
<td>742</td>
</tr>
<tr>
<td>Latin America and the Caribbean</td>
<td>646</td>
</tr>
<tr>
<td>Northern America</td>
<td>361</td>
</tr>
<tr>
<td>Oceania</td>
<td>41</td>
</tr>
</tbody>
</table>

Urbanization is the dominant trend

Less developed regions
Africa, Asia (excluding Japan), Latin America and the Caribbean, Melanesia, Micronesia and Polynesia.

More developed regions
Europe, Northern America, Australia, New Zealand and Japan.
Dramatic economic growth
Dramatic increase in global middle class but great increase in inequality within nations.
Additional Drivers

Trade – local, national, regional, global

Markets, prices, business competition

Changes in diets

Governance

Cultures
Resource Implications

60% more food will be needed by 2050

80% more energy consumption by 2050

50% more water withdrawals in the developing nations by 2025

18% more water withdrawals in the developed nations by 2025
“The “water-for-energy” issue is an important piece of the Energy-Water nexus. The goal of this collaboration is to leverage the complementary missions of ... (EPRI) and ... (NSF) to foster ... research and technology development that will lead to significant reductions or elimination of the use of water for cooling power plants.”
ARPA-E ARID Program

“ARPA-E's Advanced Research In Dry cooling (ARID) program comprises projects that are aimed at maintaining the efficiency of U.S. electric power generation, which otherwise could suffer due to regional water shortages.”
Food-Energy-Water in FY15 at NSF

17 workshop grants

- Designed to facilitate partnerships among researchers
- Integrate scientific communities, including those at other federal agencies; enhance communication
- Define fundamental science and engineering research needs/questions in FEW Systems

Press Release 15-090

New grants foster research on food, energy and water: a linked system

Amid population growth, drought and increased urbanization, understanding food, energy and water availability is increasingly important

Conserving Water - Producing Energy - Sustaining Food

NSF Awards: Interactions of Food Systems with Water and Energy Systems

How food, water and energy systems interact: a photo gallery.
Credit and Larger Version

August 14, 2015

In a world where a growing number of people lack food, water and sources of energy, providing these resources has become a challenge.

To find new answers, the National Science Foundation (NSF) has funded 17 grants, totaling $1.2 million, to support workshops on the interactions of food, energy and water, or FEW. Additionally,
“Innovations at the Nexus of Food, Energy and Water Systems (INFEWS), $75 million, is an NSF-wide investment that aims to understand, design, and model the interconnected food, energy, and water system through an interdisciplinary research effort that incorporates all areas of science and engineering and addresses the natural, social, and human-built factors involved.”

NSF INFEWS Initiative – Four Pillars

Advance understanding of the FEW system through quantitative and computational modeling

Develop real-time, cyber-enabled interfaces that improve understanding of the behavior of FEW systems and increase decision support capability

Enable research that will lead to innovative solutions to critical FEW problems

Grow the scientific workforce capable of studying and managing the FEW systems
A Systems Theorist view of Food-Energy-Water Nexus
Opportunities using the Nexus Framing

Increased productivity from resources through technological innovation

Waste as a resource in multi-use systems

Economic incentives and avoidance of sunk costs through nexus thinking

Governance, institutions, policy coherence

H. Hoff, 2011
H. Hoff, 2011
Water for Energy

Power plant cooling

Fossil fuel extraction and processing, e.g, fracking, oil sands

Water for biofuel production

Hydropower
Table 1. Water productivity in electricity production.

<table>
<thead>
<tr>
<th></th>
<th>Photovoltaics</th>
<th>Concentrating solar power</th>
<th>Gas</th>
<th>Coal/oil/nuclear</th>
<th>Hydropower</th>
<th>Biofuels</th>
</tr>
</thead>
<tbody>
<tr>
<td>m^3 / MWh</td>
<td>~0</td>
<td>~2</td>
<td>~1</td>
<td>~2</td>
<td>~60 (variable)</td>
<td>~180 (variable)</td>
</tr>
</tbody>
</table>

Note that the extraction and processing of fossil fuels adds between 0.05–1 m^3 / MWh to these figures.)
Energy for Water

Pumping of water
Transportation of water
Distribution of water
Treatment of water
Desalination
Food and Water System Interactions

Precipitation patterns leading to increasing variability in water and soil moisture

Rising demand for water for agricultural production

Water demand from different agricultural sectors:

- Crops
- Fisheries
- Livestock
- Aquaculture
Crop Production and Processing

Key imperative: increase water use efficiency in crop production

Optimal use of rain water and ground water

Possible approach through data, sensing and control

Negative impact of agriculture water run-off on water quality
Livestock Production and Processing

Water and land impacts of livestock production and processing

Drinking, feed production, servicing of animals

Manure, nutrients, pathogens, drug residues impact on water quality and land degradation

Possible approach: treatment of polluted water at point-source
Table 2. Ranges of water productivity of different crops in kcal per m³ and USD per m³ of water

<table>
<thead>
<tr>
<th></th>
<th>Wheat (kcal per m³)</th>
<th>Potato (USD per m³)</th>
<th>Tomato (kcal per m³)</th>
<th>Apple (USD per m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kcal per m³</td>
<td>660–4000</td>
<td>3000–7000</td>
<td>1000–4000</td>
<td>520–2600</td>
</tr>
<tr>
<td>USD per m³</td>
<td>0.04–1.2</td>
<td>0.3–0.7</td>
<td>0.75–3.0</td>
<td>0.8–4.0</td>
</tr>
</tbody>
</table>

Table 3. Global average water productivity (in kcal per m³), and consumptive water-use from grazing (in per cent), of selected livestock products

<table>
<thead>
<tr>
<th></th>
<th>Meat from beef cattle</th>
<th>Meat from sheep and goats</th>
<th>Milk from dairy cattle</th>
<th>Meat from pigs</th>
<th>Meat from poultry</th>
<th>Eggs from poultry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global average water productivity in kcal / m³</td>
<td>34</td>
<td>30</td>
<td>332</td>
<td>666</td>
<td>371</td>
<td>578</td>
</tr>
<tr>
<td>Water-use from grazing in %</td>
<td>84</td>
<td>75</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 4. The water-food (and land) link: water-constrained potential for food self-sufficiency in % at country level

Water scarcity defined as the percentage ratio between green-blue water availability and the water requirements for producing a daily diet of 3,000 kcal with 20% animal products.

Source: Gerten et al., 2011
“Advanced irrigation technologies that increase IE may even increase on-farm water consumption, groundwater extractions ..., and water consumption per hectare ...”

“A key constraint to better decision-making is inadequate estimates of water inflows and outflows at watershed and basin scales. This analysis of water accounts is essential to demonstrate when IE policies are or are not in the public interest.”
Agriculture impact on Water

- Fertilizer run-offs and water degradation
- Groundwater recharge
- Land and soil degradation
Energy for Food

Food supply chain accounts for about 30% of total energy demand

Fertilizer production

Food processing and transportation

Oil prices are highly correlated with food prices

For some foods, energy productivity < 1
Fig. 2. Transportation and GHG offsets from bioelectricity and ethanol, based on a range of vehicle classes, agriculture systems, and energy conversion technologies. The net output accounts for co-products as well as for input in the fuel cycle and vehicle cycle. Results are not plotted for cases when a further distance could be traveled with input energy than with gross output energy (24).
The water-energy-food nexus: Is the increasing attention warranted, from either a research or policy perspective?

Dennis Wichelns*

Stockholm Environment Institute, Asia Centre, Bangkok, Thailand
“The increasing interest in the nexus discourse likely has been motivated also by the increasing awareness among scholars and public officials that processes influencing the sustainability of natural resources are dynamic, complex, and uncertain.”

“Yet the increasing interest, alone, might not be sufficient to overcome the challenges that have thwarted earlier efforts to implement integrative policy programs, such as those prescribed by INRM and IWRM.”

Wichelns, 2017
How might Convergence Research Paradigm Advance Food-Energy-Water Nexus Solutions?
“Convergence as applied to health … integrates expertise from life sciences with physical, mathematical, and computational sciences, as well as engineering, to form comprehensive frameworks … “

“… convergence goes beyond collaboration … involves integration of historically distinct disciplines and technologies into a unified whole … integration … offers potentially revolutionary change for biomedical sciences.”

Sharp et al 2016, Science, Capitalizing on convergence for health care
NRC Report on Convergence

Convergence is an approach to problem solving ... integrates knowledge, tools, and ways of thinking .. a comprehensive synthetic framework for tackling scientific and societal challenges ...

Two closely related but distinct properties:

- convergence of expertise
- formation of the web of partnerships.

Source: Convergence: Facilitating Transdisciplinary Integration of Life Sciences, Physical Sciences, Engineering, and Beyond, NRC, 2014
What is Convergence?

Source: Hall, 2014
Disciplines and Multidisciplinary

Discipline: particular branch of learning or body of knowledge

Multidisciplinarity: juxtaposition of two or more disciplines on a question, problem, topic, or theme.

- **Juxtaposition** of disciplines that remain separate
- Individuals **work separately**, results typically published separately or compiled, but **not synthesized**.

Source: Hall, 2014
Interdisciplinary

Interdisciplinary: integration of information, data, methods, tools, concepts, and/or theories from two or more disciplines

- Key defining concept: **integration**
- Individuals may work alone, but increasingly research is **team-based**.
- Collaboration introduces **social integration**, project management and communication.

Source: Hall, 2014
Transdisciplinary

Transdisciplinary: transcend disciplinary approaches through comprehensive frameworks and paradigms

- **Problem-oriented** research that crosses the boundaries of both academic and public and private spheres.
- **Mutual learning**, joint work, and knowledge integration are key to solving “real-world” problems.
- Beyond interdisciplinary combinations to foster **new worldviews** or domains.

Source: Hall, 2014
Convergence is an approach to **problem solving** ... integrates knowledge, tools, and ways of thinking ... a **comprehensive synthetic framework** for tackling scientific and societal challenges ...

Two closely related but distinct properties:

- convergence of expertise
- formation of the web of partnerships.

Source: Convergence: Facilitating Transdisciplinary Integration of Life Sciences, Physical Sciences, Engineering, and Beyond, NRC, 2014
Convergence and Pressing Societal Needs = Grand Challenges?
UN Sustainable Development Goals

1. NO POVERTY
2. NO HUNGER
3. GOOD HEALTH
4. QUALITY EDUCATION
5. GENDER EQUALITY
6. CLEAN WATER AND SANITATION
7. RENEWABLE ENERGY
8. GOOD JOBS AND ECONOMIC GROWTH
9. INNOVATION AND INFRASTRUCTURE
10. REDUCED INEQUALITIES
11. SUSTAINABLE CITIES AND COMMUNITIES
12. RESPONSIBLE CONSUMPTION
13. CLIMATE ACTION
14. LIFE BELOW WATER
15. LIFE ON LAND
16. PEACE AND JUSTICE
17. PARTNERSHIPS FOR THE GOALS
Grand Challenges are often Wicked Problems

Wicked problems ... there is no clear stopping rule ... working on it more ... better solution ... no single right answer ... every attempt can matter because it affects the things people depend upon.

Horst and Rittel, 1973
Characteristics of Wicked Problems

- No definite formulation of a wicked problem.
- No stopping rules.
- Solutions are not true-or-false, but better or worse.
- No immediate and no ultimate test of a solution to a wicked problem.
- Do not have an enumerable (or an exhaustively describable) set of potential solutions.
- Every wicked problem is essentially unique.
- Causes can be explained in numerous ways.
Are Food-Energy-Water Nexus Problems Wicked?
Research will not Suffice – We Need Innovations
Research to Innovation

- New knowledge leads to societally useful innovations
- Tremendous acceleration after the industrial revolution
- Rise of science and engineering research ecosystem after the 2nd WW

Science offers a largely unexplored hinterland for the pioneer who has the tools for his task. The rewards of such exploration both for the Nation and the individual are great. Scientific progress is one essential key to our security as a nation, to our better health, to more jobs, to a higher standard of living, and to our cultural progress.
It is Getting Harder to Innovate

Figure 1: Aggregate Data on Growth and Research Effort

Note: Research productivity is the ratio of idea output, measured as TFP growth, to research effort. See notes to Figure 1 and the online data appendix. Both research productivity and research effort are normalized to the value of 1 in the 1930s.

Source: Are Ideas Getting Harder to Come by, Bloom et al, 2017

Figure 2: Aggregate Evidence on Research Productivity
Case of Agriculture Crops

Source: Are Ideas Getting Harder to Come by, Bloom et al, 2017
Next Green Revolution

We Need a New Green Revolution

By Phillip A. Sharp and Alan Leshner
Jan. 4, 2016

...one that goes beyond advancing production to focus on reducing exorbitant rates of food loss

Zia Khan
Rockafeller Foundation

Small-scale farmers still feed a majority of the world and must therefore be at the center of any future agricultural research agenda.

R. Offenheiser
President, Oxfam America