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Kalman Filtering: Linear System + Gaussian Noise

r((k+ 1)T) = A(k)x(kT) + B(k)u(kT) + w(kT),x(0) = xq
y(kT) = C(k)x(kKT) + D(k)u(kT) + v(kT)
Dynamic System Model E(xoxg) _ P(O)

E(w(kT)w" (kT)) = Q(k)
E(w(kT)v! (kT)) = R(k)

« Linear time-varying discrete time system, T sampling period
« State variable x

* Known input u (=0 for this talk)

* Process noise w

* Measurement noise v
« We will simplify by assuming that the known input is O



Kalman Filter

Optimal estimate of the state consists of time-update
and measurement update:

#((k + 1)T|k) = A(k)E(ET|k)
T(kT|k) = 2(kT|(k — 1)) + L(k)(y(kT) — C(k)2(kT|(k —1)))

Kalman gain L and estimation error covariances evolve according to:

P YE|k) = P 1 (k|(k—1)) + CT ()R (k)C (k)
L(k) = P(k|k)CT (k)R (k)
P((k +1)|k) = A(k)P(k|k)A" (k) + Q(k)




Rich Heritage from Kalman

« The most important and impactful result from control theory and one of the most
important from engineering

« Equivalent to Bayes theorem (under the specified conditions)

« Extensions to continuous-time, nonlinear, non-Gaussian, distributed, networked, ...
» Real-time, on-line, recursive algorithms and implementations

« Computationally efficient implementations

» Applications in many fields of engineering and sciences (including machine vision)

* Huge literature



Multi-Sensor Data Fusion

 Combine data from multiple, disparate sensors to arrive at a unified estimate of the
unknown system/signal

« Wide variety of techniques to address disparate challenges related to the system,
the sensors, and the data characteristics: probabilistic, Dempster-Schafer, fuzzy, ...

» Many application domains:

Aerospace, naval, and defense applications

Sensor networks, 10T

Digital twins, manufacturing, monitoring, ...

Robotics

Medical

Physical sciences: weather, environment, air, water, ...
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Kalman Filtering and Multi-Sensor Data Fusion

“Nonetheless, the Kalman filter is one of the most popular fusion
methods mainly due to its simplicity, ease of implementation, and
optimality in a mean-squared error sense. It is a very well-established
data fusion method whose properties are deeply studied and examined
both theoretically and in practical applications. On the other hand,
similar to other least-square estimators, the Kalman filter is very
sensitive to data corrupted with outliers. Furthermore, the Kalman filter
IS inappropriate for applications whose error characteristics are
not readily parameterized.”

Khaleghi et al., Multisensor Data Fusion, Information Fusion (2011)



Related Techniques and Extensions

« Extended Kalman filter (EKF)
» Unscented Kalman filter (UKF)
» Particle filters (Monte-Carlo algorithms)

* Other related methods



Multi-Rate Kalman Filtering

Setting: Multiple sensors operating at different sampling rates

Sensor 1 sampling time T, = NT

Sensor 2 sampling time T, = MT

Sensor N sampling time ...

Kalman filter equations generalize to this case quite easily although the notation
can get quite complicated



Lifting Approach

Start with a discrete-time sequence z(0), z(1), ... z(N), ...

( Z(O) ) ( Z(N) )
z(1) Z2(N +1)
ZN = 7ZN(0) = ¢ . > ZN (1) = 4 . S
(N - 1) 2N 1),

A multi-rate system can be rewritten as a standard discrete-system using lifted
representation for various signals

Many papers in the control systems literature on this lifting-based approaches



Contents lists available at ScienceDirect

INFORMATION FUSION

Information Fusion -

journal homepage: www.elsevier.com/locate/inffus

Full Length Article

An overview of multirate multisensor systems: Modelling and estimation n)

Check for

Honglei Lin, Shuli Sun* | updates. |

School of Electronics Engineering, Heilongjiang University, Harbin 150080, China
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Fig. 3. Illustration of nonuniform sampling scheme with data blocks.



Distributed/Decentralized Kalman Filtering

Decentralized Structures for Parallel Kalman Filtering KALMAN FILTER ALGORITHMS FOR A MULTI-SENSOR SYSTEM*

HAMID R. HASHEMIPOUR, SUMIT ROY, aND ALAN J. LAUB Passachusetts Tnstituce of Teshnology
Lincoln Laboratory

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 33, NO. 1, JANUARY 1988 Lexingtonf.Mgésgzﬁuzztts 02173

1976 IEEE Conference on Decision and Control
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Fig. 2. Time sequential measurements for dispersed : Fig. 3. Two-tier Kalman filter structure.
Fig. 1. Collocated sensors.



Distributed Kalman Filtering and Sensor Fusion

Distributed Kalman Filtering and Sensor
Fusion in Sensor Networks

Reza Olfati-Saber

Dartmouth College, Thayer School of Engineering, Hanover, NH 03755.
olfati@darmouth.edu

T
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Panos J. Antsaklis
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Key Ideas

Suppose we have J different sensors described by:

ys(KT) = Cy(k)z(kT) + v, (KT)

Centralized optimal solution: combine these measurements and solve the resulting KF problem:

y1(kT) v1(KT)
y(k1) = |2 o(kT) =

.y (KT) v, (KT)




Local Kalman Filters and Fusion of Results

« Create a Kalman Filter at each sensor and generate state estimates and
covariance matrices

« Variety of algorithms for exchanging information between sensors with or
without a central processor

* Analytical results on the performance of the resulting estimates and
convergence to the centralized estimator

 Voluminous literature on these themes



Example: Fusion without Feedback

J
P~ (klk) = P71 (k|(k — 1)) + > (P (k[k) — B (k|(k — 1)k))

1=1

P~ (k|k)Z(ET|k) = P~ (k|(k — 1)2(kT|(k — 1))
J
+ > [P (k|k) s (KT k) — Pt (k|(k — 1)k): (KT (k — 1))]

1=1

Hashemipour et al, 1988



Combining Estimates in a Sensor Network

using Consensus Algorithms
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Fig. 2. Node and network architecture for distributed Kalman filtering: (a) archi-
tecture of consensus filters and pKF of a node and (b) communication patterns
between low-pass /band-pass consensus filters of neighboring nodes.

Olfati-Saber, 2005



FORUM

HISTORY: The Use of the Kalman Filter for
Human Motion Tracking in Virtual Reality

Gregory F. Welch
The University of North Carolina at Chapel Hill
Department of Computer Science

“The first published account of the use of a Kalman filter in the context of VR
appears to be Rebo’s master’s thesis (Rebo, 1988).”

“Information and associated databases will be organized by physical location and time,

allowing users to both store and retrieve past, present, and future information in the

context of physical locality and direction of gaze. The Kalman filter will undoubtedly
play a role in this vision, no matter what the underlying sources of signals.”



Control theory (Kalman Filtering) is heavily based on
mathematical models of the dynamics and observation
processes

Newer machine learning avoid such models and rely on data
and learning algorithms

How can we combine model-based approaches with machine
learning approaches?



Recent Example

2016 IEEE International Symposium on Mixed and Augmented Reality

Learning to Fuse: A Deep Learning Approach to Visual-lnertial Camera
Pose Estimation

Jason R. Rambach*
German Research Center for Artificial Intelligence(DFKI)
Augmented Vision Department, Kaiserslautern, Germany.

Aditya Tewari'
German Research Center for Atrtificial Intelligence(DFKI)
Augmented Vision Department, Kaiserslautern, Germany.
IEE S.A., Contern, Luxembourg.

Alain Paganit Didier Stricker?
German Research Center for Artificial Intelligence(DFKI) German Research Center for Artificial Intelligence(DFKI)
Augmented Vision Department, Kaiserslautern, Germany. Augmented Vision Department, Kaiserslautern, Germany.

TU Kaiserslautern, Germany.



S , ,
Inertial R Trained Error Kalman >
Sensor Inertial LSTM Detection Filter

— e Final Pose
Data
Visual
>
Camera Tracker
Images

Figure 1: Proposed Fusion System Architecture.

Rambach et al, 2016



Results

Table 2: Tracking accuracy comparison between a pure visual ap-
proach and our proposed visual-inertial tracking system. Overlap
corresponds to the average overlap between a quadrangle drawn
around the 2D tracking target (poster) and a quadrangle drawn based
on the ground truth (Figure 4). Failed Frames correpsonds to the
number of frames where the system could not provide a pose esti-

mate at all.

Overlap % | Failed Frames #
sequence 1(slow) visual | 86.3% 249/3389  7.3%
sequence 1(slow) fusion | 90.8% 0/3389 0%
sequence 2(fast) visual 77.1% 487/3106 15.7%
sequence 2(fast) fusion 85.6% 0/3106 0%

Rambach et al, 2016



Eye Tracking Issues

Eye movements
> Fixations
» Saccades

» Dynamic Stimuli: Smooth Pursuits

Pupil detection

Tracker calibration

Slippage or calibration drift

Santini et al 2019 Symposium on Eye Tracking
Research and Applications



Use of KF in eye tracking goes
back to Sauter et al, 1991

EYE MOVEMENT ANALYSIS & PREDICTION

Kalman Filtering in the Design of Eye-Gaze-Guided

WITH THE KALMAN FILTER
Computer Interfaces

Thomas Grindinger
Oleg V. Komogortsev and Javed 1. Khan

07 12, 2006
Perceptual Engineering Laboratory, Department of Computer Science, Kent State University,
Kent, OH, USA 44242

Advisor: Dr. Andrew Duchowski okomogor@cs.kent.edu, javed@kent.edu



A Few Publications in the Control Theory Literature

Proceedings of the American Control Conference
Anchorage, AK May 8-10, 2002

A Non-intrusive Kalman Filter-Based Tracker for Pursuit Eye Movement

Wael Abd-Almageed M. Sami Fadali George Bebis
Electrical and Computer Eng. Dept. Electrical Engineering Dept. Computer Science Dept.
University of New Mexico University of Nevada University of Nevada

Albuquerque, NM 87131 Reno, NV 89557 Reno, NV 89557

wamageed @eece.unm.edu Fadali@ee.unr.edu bebis @cs.unr.edu



Simulation of the Measured Signal

Table 1: Experimental Results

.. - Noise . Nonse-to-Slgnal “Estimati
) 'Va_riancei;f : i e % .
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Figure 4.a: Experiment 1: Test Sequence
Simulating Measured Eye Position

Figure 4.b: Experiment 1: Filtering Results
Superimposed on True Eye Position



Control Theory has Potential to Provide Useful Tools

“« maj or remaini ng Challenge hinderi ng a Get a Grip: Slippage-Rob.ust and Glint-Free Gaze Estir'nation for
. . .. . Real-Time Pervasive Head-Mounted Eye Tracking
wider adoption of ubiquitous eye-tracking | N o | |
. . 5 g Thlg%o ?zilrnt)lm ) cli)éederlgf g N1e29rs£e§ ; Lllir_lkelgt]dafligipem
See m S to be d eV] Ce S l] p pa ge * Perceptiofl Engineerging Departmeflt of Psychology Perceptiofl Engineerging
Tibingen Lund Tibingen
thiago.santini@uni-tuebingen.de diederick_c.niehorster@humlab.lu.se  enkelejda.kasneci@uni-tuebingen.de

ETRA ’19, June 25-28, 2019, Denver , CO, USA

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 3, MARCH 1999 509

A Class of Nonlinear Filtering Problems
Arising from Drifting Sensor Gains

Tyrone L. Vincent, Member, IEEE, and Pramod P. Khargonekar, Fellow, IEEE

Main |Idea: Incorporate sensor drift via a state variable in the system dynamics model
and use variants of KF for estimation



Conclusions

* Rich body of literature on Kalman filtering and myriad extensions
» Rich boy of literature on multirate, multisensory fusion leveraging KF
« Combination with newer ML techniques to leverage their strengths

» Potential for application to eye and gaze tracking problems



Thank you!

pramod.khargonekar@uci.edu

http://faculty.sites.uci.edu/khargonekar/
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