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Abstract—A neuro-cognitive inspired architecture based on the Hierarchical Temporal Memory (HTM) is proposed for anomaly
detection and simultaneous data prediction in real-time for smart grid µPMU data. The key technical idea is that the HTM learns a
sparse distributed temporal representation of sequential data that turns out to be very useful for anomaly detection and simultaneous data
prediction in real-time. Our results show that the proposed HTM can predict anomalies within 83% - 90% accuracy for three different
application profiles, namely Standard, Reward Few False Positive, Reward Few False Negative for two different datasets. We show that
the HTM is competitive to five state-of-the-art algorithms for anomaly detection. Moreover, for the multi-step prediction in the online
setting, the same HTM achieves a low 0.0001 normalized mean square error, a low negative log-likelihood score of 1.5 and is also
competitive to six state-of-the-art prediction algorithms. We demonstrate that the same HTM model can be used for both the tasks and
can learn online in one-pass, in an unsupervised fashion and adapt to changing statistics. The other state-of-the-art algorithms are
either less accurate or are limited to one of the tasks or cannot learn online in one-pass, and adapt to changing statistics.
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1 INTRODUCTION

SMart grids are cyber-physical systems (CPSs) that are
comprised of pervasive sensing, computation, and con-

trol in spatially distributed power networks. Such smart
grids generate large volumes of data in real-time. Thus,
the challenge and the opportunity lies in systems and algo-
rithms that can extract useful information from the various
data streams and make reliable decisions in (near) real-time.

Micro Phasor Measurement Units (µPMUs) are deployed
in distribution networks of smart grids to provide rich data
on voltage and current variations at a finer resolution. The
operators can monitor the distribution applications in real-
time, due to the high performance of µPMU technology in
distribution networks. They support a wide range of con-
trol and diagnostic applications, such as real-time anomaly
detection and data prediction. In this work, we consider the
specific problem of detecting anomalies and simultaneously
predicting future observations in smart grids from unla-
belled data that is generated by µPMUs. Anomaly detection
is an important problem because failing to detect anomalies
in a timely manner can affect the whole system and cause
massive power failures, and prediction can help in planning
and control.

The data provided by µPMUs have a few characteristics
that are relevant to the problem at hand. First, it provides
time-series data that can be observed only one at a time
in the sequential order they arrive. Hence, the data are
not naturally suitable for batch learning as a full dataset is
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not available. Second, the smart grid is inherently dynamic
and the statistics of the generated data can change over
time (i.e., concept drift). Third, the µPMU data has inherent
information of the smart grid dynamics which can be lever-
aged to predict future observations. Hence, the problems
of anomaly detection and prediction are challenging for
the following reasons: (i) the algorithm should be able to
learn online in one-pass, and in an unsupervised fashion
(i.e., without human intervention); (ii) should be able to
learn continuously, i.e., handle concept drifts in data, and
(iii) the same algorithm should be able to perform anomaly
detection and data prediction in real-time.

In this work, we introduce an architecture based on
Hierarchical Temporal Memory (HTM) [1] to address the
aforementioned challenges. To the best of our knowledge, this
is the first paper, which demonstrates that anomaly detection and
data prediction in smart grids can be performed using the same
algorithm with a competitive accuracy and simultaneously in real-
time, while learning from just one-pass and in an unsupervised
fashion.

2 RELATED WORKS AND CONTRIBUTIONS

2.1 Related works

Anomaly detection and data prediction have been studied
extensively but independently in the smart grid domain.
Moghaddass et al. [2] proposed a framework to detect
anomalies at the customer level based on smart meter data.
Zhou et al. [3] demonstrated the efficacy of Ensemble-based
algorithm for online and robust anomaly detection in PMU
data. G. Napier et al. [4] used a model-based approach to
detect anomalies in the SCADA network in the smart grid.
The main limitation of these approaches is that their applicability
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is limited to stationary conditions and they can not perform
simultaneous prediction.

Different data-driven techniques have also been pro-
posed for analyzing µPMU data of the smart grid. Super-
vised learning methods, such as decision trees [5], SVMs [6]
and unsupervised learning methods, such as clustering [7]
have already been proposed. Valenzuela et al. [8] used Prin-
cipal Component Analysis (PCA) to classify power flow into
regular and irregular sub-spaces to detect intrusion. Zhou
et al. [9] proposed a semi-supervised approach using kernel
Principal Component Analysis (kPCA) and partially-hidden-
structured SVM (pSVM) to detect abnormal events in smart
grids. The drawbacks of these approaches are that they are suit-
able for batch learning and can not be used for other tasks
such as prediction. Brahma et al. [10] propose a dynamic
real-time framework named as Shapelets that can accurately
and speedily classify PMU data. Auto-Regressive Moving
Average (ARMA) is widely used for anomaly detection and
short term prediction for load forecasting [11]. Gao et al. [12]
presented a dynamic state prediction method based on the
Auto-Regressive (AR) Model using PMU data. Sia et al. [13]
used the Hurst exponent to anticipate future voltage collapse
using PMU signals. The limitation of these approaches is that
these models can not handle concept drifts and can not predict
future observations simultaneously. Moreover, Yang et al. [14],
[15] proposed a deep PDS-ERT based learning method to
realize real-time anomaly detection; however, this method
requires batch learning and cannot learn in one-pass and
unsupervised fashion.

Hollingsworth et al. [16] investigated the combination
of Long-Short-Term-Memory (LSTM) and Auto-Regressive
Integrated Moving Average (ARIMA) to detect anomalies
and simultaneously forecast energy consumption. But this
method requires large datasets to train and it is not a real-
time, one-pass, and unsupervised learning method. Ahmad
et al. [17] demonstrated the efficacy of the HTM for real-time
anomaly detection for different applications. The fundamen-
tal difference between our work and [17] is that our work
demonstrates that the HTM model, which can detect real-
time anomalies, can also be reused to simultaneously predict
future observations. Finally, methods used by industries
like Netflix’s Robust Principle Component Analysis (RPCA)
[18] and Yahoo’s EGADS [19] also require batch training,
and so are not applicable for the online setting that we
consider. Most importantly, none of these approaches can be used
simultaneously for the prediction task.

2.2 Contributions

Our novel technical contributions are as follows:

• We introduce an architecture for anomaly detection
and simultaneous data prediction in smart grids that
is inspired by neuro-cognitive mechanisms of the hu-
man called Hierarchical Temporal Memory (HTM).
The HTM is a powerful framework developed by
Numenta for sequence learning. At the heart of the
HTM is a Cortical Learning Algorithm (CLA) that
is inspired by how the human neocortex functions
[1]. To the best of our knowledge, we are the first to
introduce this method for applications on smart grid
µPMU data.

• We demonstrate the effectiveness and applicability
of the HTM approach for addressing the challenges

of learning online from smart grid µPMU data for
anomaly detection and simultaneous data prediction.
It has been demonstrated that the HTM has the
capability for continuous and unsupervised learning
from streaming data and has been proven to work
well for real-time detection in other domains [17].
This justifies extending this approach to the same
problems in smart grids.

• To demonstrate the effectiveness of the proposed
approach, we compare the performance of the HTM
with five state-of-the-art real-time anomaly detection
algorithms, such as Random Cut Forest, Bayesian
Change Point, Windowed Gaussian, EXPoSE, and
Relative Entropy on µPMU data of the smart grid. We
have used the Numenta Anomaly Benchmark (NAB)
[20] to compare these anomaly detection algorithms.
To the best of our knowledge, this metric is the first
of its kind for smart grid data.

• For the prediction problem, we compare the perfor-
mance of the HTM with a total of six state-of-the-art
sequence learning and prediction algorithms for data
prediction, such as online LSTMs, online LSTMs with
6000 buffer points, online LSTMs with 3000 buffer
points, online LSTMs with 1000 buffer points, Time
Delayed Neural network (TDNN), and Adaptive Fil-
ter. This performance comparison among all these
models on µPMU data is also the first of its kind in
the smart grid domain, to the best of our knowledge1.

The remainder of this paper is organized as follows. Sec-
tion 3 introduces the HTM model and its learning algorithm
with an illustrative example of sequence learning. Section
4 demonstrates the application of the HTM based learning
model for anomaly detection in real-time in smart grid
µPMU data. This section also explains how the HTM based
method detects both temporal and spatial anomalies, learns
in a continuous-online fashion and provides the comparison
of the performance with five other state-of-the-art real-time
anomaly detection algorithms. Section 5 demonstrates that
the same HTM from the previous section can be reused for
multi-step prediction and compares the performance with
six other state-of-the-art sequence prediction algorithms.
Finally, limitations and conclusions are drawn in Section 6
and Section 7, respectively.

3 HTM ARCHITECTURE AND LEARNING ALGO-
RITHM

In this section, we briefly discuss the structure of an HTM
model. We then discuss the activation and the learning
algorithm and illustrate the temporal representations learnt
by an HTM through an example.

3.1 Hierarchical Temporal Memory (HTM)

3.1.1 Human neocortex and HTM neuron

The human brain (Fig.1(a)) has primarily three parts: neo-
cortex, limbic part, and reptilian part. The limbic part han-
dles the emotional feeling, the reptilian part supports sur-
vival instincts and the neocortex is responsible for human
learning, cognition, and perception. The pyramidal neuron

1. The source code of this paper is available in the follow-
ing link: https://github.com/unknown-commits/HTM upmudata
anomaly detection prediction

https://github.com/unknown-commits/HTM_upmudata_anomaly_detection_prediction
https://github.com/unknown-commits/HTM_upmudata_anomaly_detection_prediction
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Fig. 1: Neocortical architecture of the Hierarchical Temporal Memory.

cell (Fig.1(b)) is the unit element of the neocortex and all the
neurons in the neocortex are similar [21]. The functionality
of this biological neuron is replicated in the HTM neuron
cell [1]. This paper uses cell/neuron/HTM neuron inter-
changeably from this point onwards. The neuron model of
the HTM is depicted in Fig. 1(c). A neuron is connected
to three types of dendrite segments, namely (i) proximal
dendrite segment which receives inputs from the neurons of
the lower layer, (ii) distal dendrite segment which comprises
of synaptic connections with the other neurons in the layer
above, and (iii) distal dendrite segment which comprises of
the lateral connections with other cells in the same layer.
The neurons are stacked one above the other to form a
mini-column and a row of mini-columns form a single layer
of the HTM. In our case, we include only a single layer
of the HTM (Fig.1(d)). Therefore, the feedback connections
from the layer above do not exist in the neuron model of
ours. The lateral connections of the distal dendrites enable
the HTM to learn the temporal relations in the data stream.
This is the most critical aspect of the HTM that we leverage
for detection and prediction. Each HTM neuron can be in
three possible states similar to biological neuron, namely
(i) inactive, (ii) predictive state, and (iii) active state. The
default state of a neuron is inactive.

3.1.2 Encoder

We denote the sequence of incoming data by (X1, X2....XT ),
where Xi ∈ R

m, i ∈ {1, 2, ..., T}, i denotes the time index
and m is the dimension of the signal. The encoder converts
the signal at each time instant i into a sparse distributed
representation (SDR), which is a high dimensional binary
representation of size n (Fig. 1). SDRs are sparse represen-
tations where only a few bits are active for any input. In
HTM this is typically set to 2% of the total size of the SDR
that gives a good accuracy with a sparse representation
of the incoming data. As a result, only fewer active bits
overlap across different inputs. This is in contrast to dense
representations, where many active bits can overlap.

3.1.3 Spatial Pooler

The next step is the spatial pooler. The spatial pooler com-
putes a second SDR, which is the activation state of the
mini-columns, of the same size as the input SDR. Each mini-
column of an HTM is connected to a subset of the bits of the
input SDR through synaptic connections collectively called
as proximal dendrite segment. Typically, each neuron of the
mini-columns is connected to a large fraction of the bits of
the input SDR (50%). Initially, the bits are randomly selected
and could be fixed for the rest of the time. All the neurons

in a single mini-column share the same proximal synapses.
Each synapse has a permanence value, which determines
whether a connection is existent or not. This value can be
incremented or decremented to create new synaptic connec-
tions or remove existing synaptic connections. A synaptic
connection is said to be active if the input to the connection
is one. The mini-columns are rank-ordered based on the
number of active connections. The mini-columns that are
activated are a certain number of columns from the top of
this ordered list. The activation state of the mini-columns is
the output of the spatial pooler, and thus the output of the
spatial pooler is also an SDR.

3.1.4 Temporal Pooler

The output SDRs from the spatial pooler are given as in-
puts to the temporal pooler. The temporal pooler consists
of multiple mini-columns, and each mini-column has a
fixed number of HTM neurons stacked upon one another.
Multiple mini-columns are stacked side by side to form a
cortical column (Fig. 1). Each neuron of the mini-columns
can comprise a minimum of two and sometimes up to a
dozen distal dendrite segments. Each distal dendrite seg-
ment has synaptic connections that originate from multiple
cells of the neighboring mini-columns in the same layer.
The synaptic connections capture the temporal relations and
constitute the temporal memory of an HTM. If there is an
active synaptic connection between two cells of different
mini-columns in the same layer, then a temporal relation
exists between those cells. An active synaptic connection
means that the cell from where the synaptic connection is
originated is active. If the sum of the active synapses in any
of the dendrite segments exceeds a certain threshold, then
the cell enters the predictive state. The predictive state of
a cell also provides the temporal context for the activation
decision in the next time step.

The synaptic connections that present among different
cells of the nearby mini-columns have weights. While learn-
ing, the weights of the inter-column synaptic connections
are adjusted depending on the activation state of the cells in
the predictive state in the next time step. If the predictive
state in the current time step and the activation state in
the next time step overlap, then it is taken to indicate that
the temporal relation represented by the active synapses in
the previous time step is correct. In such a case, weights of
the active synaptic connections that correctly identified the
predictive state are strengthened, and those that incorrectly
identified or failed to identify are weakened. This is a Heb-
bian type learning and allows the HTM to learn a higher-
order temporal representation of the sequential data, which
can be used for prediction and detect anomalies.
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3.2 Activation and Learning

3.2.1 Activation

Let’s denote the current activation state of cells in a par-
ticular layer at time t by At (a M × N matrix where M is
the number of cells per mini-column and N is the number of
mini-columns in the layer), where ati,j is the i, jth element of
At and denotes the activation state of cell i in column j. Let’s
denote a distal dendrite segment by d. Let the weight of the
synapses of the dth segment of the ith cell of jth column be
Dd

i,j . We note that only the weights of the synapses which
are above a certain threshold are considered to be valid as a
synaptic connection. The matrix of the established connec-
tion weights is denoted by D̃d

i,j . The entries corresponding

to the weights below the threshold are set to be zero in D̃d
i,j .

Denote the predictive state of a neuron (i, j) by πi,j . The
neuron (i, j) is in a predictive state provided the sum of
active synapses of at least one of the distal segments exceeds
a certain threshold of θd. Thus, πi,j is given by,

πt
i,j =

{

1; if ∃d ||D̃d
i,j ◦A

t||1 > θd,

0; otherwise.
(1)

where ◦ denotes the element-wise multiplication opera-
tion. Finally, only the cells of the mini-columns that were
in the predictive states at time t − 1 are activated. The
activated cell is the cell of the active mini-column that was
in the predictive state. The other cells in the mini-column
are inhibited. This inhibition accounts for the specific tem-
poral context as determined by the predictive states of the
neurons in the mini-column. If none of the cells of an active
mini-column are in a predictive state, then all the cells are
activated. Let’s denote the set of activated columns by the
spatial pooler by Ct

a. Then the activation of a neuron (i, j)
is given by,

ati,j =







1; j ∈ Ct
a and πt−1

i,j = 1,

1; j ∈ Ct
a and

∑

i π
t−1
i,j = 0,

0; otherwise.

(2)

3.2.2 Learning

The learning is a Hebbian type learning [22]. The learning
algorithm only updates the weights of the synaptic con-
nections of the cells that were in the predictive state or
became active. If the predictive state of a neuron at the
previous time step overlaps the activation state of a neuron
at the current time step, then it is taken to indicate that the
temporal relations captured by the synaptic connections are
correct. The learning algorithm reinforces the temporal re-
lations represented by the active synaptic connections. This
results in the correct prediction. The learning algorithm also
reduces the strength of the temporal relation represented
by the inactive synaptic connections that failed to predict.
Hence, the weights of the active synaptic connections and
the weights of the inactive synaptic connections of a cell are
increased and decreased respectively. Formally, the weights
Dd

i,j of the distal segment d of cell (i, j) that became active
at time t are changed by the adaptation rule given by,

∆Dd
i,j = r+D̂d

i,j ◦A
t−1 − r−D̂d

i,j ◦ (1−At−1) (3)

where r+ and r− are the increase and decrease rates
of the permanence values of the synaptic connections. The

synaptic permanence increment and decrement rates (i.e.,

r+ and r− ) are set to 0.1. The matrix D̂d
i,j is the matrix of

weights with positive entries,

D̂d
i,j =

{

1; if Dd
i,j > 0,

0; otherwise.
(4)

If a column becomes active and no neuron in the column
was predicted to become active in the previous time step,
then the neuron with the most activated segments is picked
and updated as above.

If the neuron that was in the predictive state does not
become active, then it indicates that the active lateral con-
nections that resulted in the predictive state represent an
incorrect temporal relation. So the active lateral segments of
the cells that were in the predictive state but remained inac-
tive are decreased at a rate of r−f . The synaptic permanence

decrement for predicted inactive segments, r−f is set to 0.01

such that r−f ≪ r−. Formally, the weights of these active
segments are decreased by the adaptation rule given by,

∆Dd
i,j = −r−f D̂

d
i,j where ati,j = 0 and ||D̃d ◦At−1||1 > θd

(5)
In summary, the learning algorithm described here

learns a temporal representation of the sequential data by
adjusting the weights of the lateral connections between
the cells. The adjustments of the weights are based on
the correctness of the temporal relation represented by the
synaptic connections.

3.2.3 Time complexity of the HTM

Here we discuss the time complexity of the three operations:
encoder, spatial pooler, and temporal pooler.

The encoder converts the input data into a sparse vector.
The encoder used in our model is a scalar encoder (refer
to Table 1). A bit is turned on in a scalar encoder if the
value of the input falls within the window of the values
the bit is associated with. Essentially, this operation entails
checking which window the input value falls within. This
requires time complexity of O(W ), where W is the number
of windows the range of values are represented by. The
maximum number of windows is limited by the size of
the encoder. Therefore, the overall time complexity of the
encoder is O(n) where n is the size of the encoder.

The spatial pooler converts the sparse vector computed
by the encoder into a second sparse vector as outlined ear-
lier. Each bit of the output of the spatial pooler is connected
to as many as 50% of the bits of the input sparse vector. Let’s
denote the size of the sparsity by w (i.e., w < 2%), which
denotes the number of bits that will be active among the n
bits of a vector and is typically a small number. First, the
spatial pooler computes the number of proximal synaptic
connections that are active for each bit in the output of the
spatial pooler. For each bit, this is an O(w) operation be-
cause the pooler only needs to check which of the active bits
of the input SDR are connected to this particular bit in the
output of the pooler. Therefore, the operation of computing
the number of active connections for each of the n bits is
in total O(nw). Next, the spatial pooler orders the bits in
descending order of the number of active connections and
the top k bits are chosen. This is an O(n log n) operation.
Therefore, the overall time complexity of the spatial pooler
is O(n log n) + O(nw) ≈ O(n log n) (since w ≪ n). Also,
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the final activation step described by Eqn. 2 is just O(wM),
because this step is the computation to decide which of the
M neurons of each of the w active mini-columns are to be
activated.

The temporal pooler computes the predictive state of the
neuron cells in the mini-columns as given by Eqn. 1. This
operation computes D̃d

i,j ◦ A
t for each of the d segments of

a neuron cell. For each segment the computation D̃d
i,j ◦ At

is an O(w) operation. Therefore, when repeated for the d
segments, it is an O(dw) ≈ O(w) operation. The predictive
state is set based on this computation as described in Eqn.
1. This is repeated for every neuron; therefore, the time
complexity of the temporal pooler is O(nMw) ≈ O(n).

3.3 An illustrative example

In this section, we discuss an example that illustrates how
the HTM learns to represent multiple temporal sequences
even if there are overlaps between the sequences. The exam-
ple is shown in Fig. 2. An HTM response for two sequences
‘PQR’ and ‘XQR’ is shown in Fig. 2. Time advances from left
to right in all the rows. Each ◦ in Fig. 2 represents an HTM
cell and these cells (in this case 4 cells) are stacked one on
top of another to form a mini-column. Each region of the
HTM contains 18 mini-columns, called as cortical column.
The top two rows depict the cell firings before learning the
temporal relations, and the bottom two rows depict the cell
firings after learning the weights of the lateral connections.

The response of the HTM before learning is shown in
the top two rows. Before learning (the top two rows), the
lateral synaptic connections between the neighboring cells
(i.e., green connection in Fig. 2) have not been learned yet,
and so none of the cells are driven to be in the predictive
state. As a result, all the cells (i.e., blue circles for activation
in Fig. 2) in an active mini-column are activated. We also
note that only a very small fraction of the mini-columns are
activated for every input.

After the lateral weights are learned (the bottom two
rows), we observe that the same mini-column is invoked
for the same letter but only one cell is activated in a mini-
column this time. Though the cells activated are of the same
mini-columns, the positions of the cells active in the same
mini-columns are different. For example, the positions of
the activations in the mini-columns that correspond to ‘Q’,
shown in row-3, is completely different from the positions
of the activations in row-4 for ‘Q’. This is because the
temporal context is different for the two scenarios depicted

in row-3 and row-4 where in row-3 ‘Q’ follows ‘P’ and in
row-4 ‘Q’ follows ‘X’. For the same reason, the positions
of the activations for ‘R’ are different in row-3 and row-
4. Though ‘R’ follows ‘Q’ in both cases, the starting letters
in the sequence are different (‘P’ and ‘X’) in the two cases.
Therefore, the sparse encoding of ‘R’ not only depends on
‘Q’ but also on ‘P’ or ‘X’. This clearly shows that the HTM
learns higher-order overlapping temporal sequences.

It follows that if a temporal sequence is different but
contains a letter that overlaps with another sequence, then
a different cell of the mini-column corresponding to the
common letter is activated for the two sequences. Thus, the
different lateral connections responsible for activation for
the different cells are strengthened over time. This allows
the HTM to learn different temporal sequences even when
there are overlaps between the sequences. We emphasize that
the column structure with multiple cells is the key structural
aspect that allows the HTM to learn multiple temporal sequences.

3.4 Source of µPMU dataset

To demonstrate anomaly detection and simultaneous multi-
step prediction, we use two open-source, and real-time cur-
rent magnitude datasets collected from the µPMU sensors
installed at the Lawrence Berkeley National Laboratory’s
(LBNL) distribution grid [23]. This is the first µPMU net-
work installed on a real electrical grid for research purposes,
and the datasets collected from this network are the only
available open-source datasets on real-time µPMU data, to
the best of our knowledge [24]. We randomly pick two
different datasets from the available LBNL’s datasets to test
the HTM. The first dataset (i.e., dataset 1) is collected from
the a6 bus 1 located in a 7.2 kV grid, and the second dataset
(i.e., dataset 2) is collected from the low side of a 1500
kVA delta/wye transformer with a 480V/208V rating. The
part name of the µPMU used to collect the two datasets
is PQube3, which can output at 120 Hz frequency. Since
data is collected in millisecond resolution and almost all
practical events happen at a larger time scale [9], the raw
data is resampled at 1-sec interval for 12 days and 13 hours
(1 Million+ data points). In the next section, we use the two
datasets to show real-time anomaly detection in smart grids.

4 DEMONSTRATION OF ANOMALY DETECTION

The anomalies in a smart grid can be classified into two
main categories: voltage or current magnitude variation
and frequency variation. A voltage sag (a short term low
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voltage), a voltage or current spike (a short term high
voltage or current above 110% normal value), a brownout
(reduced voltage for an extended period), an overvoltage or
overcurrent (an extended period of high voltage or current),
etc., can be categorized as voltage or current magnitude
anomalies. Frequency deviation from the normal limit can
be categorized as a frequency variation. As noted earlier,
µPMU sensors capture voltage or current magnitude and
frequency information at ms timescales. In this section, we
demonstrate that the HTM can be used to detect anomalies
in µPMU data in real-time, while learning from just one-
pass, and in an unsupervised fashion. We also demonstrate
that learning is continuous, and by doing so, we show that
the HTM model can potentially adapt to concept drifts.

4.1 HTM implementation for anomaly detection

The architecture of the HTM model for real-time anomaly
detection and simultaneous data prediction is presented in
Fig. 3. In this section, we only focus on the HTM implemen-
tation for anomaly detection, which has the following set
of blocks. The first block is the scalar encoder that converts
the data xt−1 at time step t − 1 into a sparse distributed
representation denoted by SDR(xt−1) [25]. The second block
is the spatial pooler [26] that transforms each SDR(xt−1)
matrix into a sparse binary vector representation, SP(xt−1)
[1] (see Section 3.1). The final block is the temporal pooler,
which generates P(xt−1). The term P(xt−1) is the prediction
of SP(xt) based on SP(xt−1) at t− 1, as described in Section
3.1. The final block computes the error between the actual
value, SP(xt) and the predicted value, P(xt−1) (computed at
the previous time step) as given by [17],

Et = 1−
SP (xt) ◦ P (xt−1)

|SP (xt)|
(6)

where Et is known as the prediction error at time-step t
and ◦ is the dot product. |SP (xt)| is the modulus of the
binary vector SP (xt). To assess how large the deviation
Et is, we compute a distribution of the deviations over a
local window of time ∆t. To compute this distribution, we
compute the mean and standard deviation of the variables

Et
′ (t

′

≤ t) over the window of time ∆t that ends at the
current time t. Denote the mean and standard deviation of
Et

′ over this window ∆t by µt and σt. Then µt and σt are
given by,

µt =

∑∆t−1

i=0 Et−i

∆t
, (7)

σ2
t =

∑∆t−1

i=0 (Et−i − µt)
2

∆t− 1
. (8)

Then the anomaly score Kt is calculated using the Q
function [27] that is given by,

Kt = 1−Q

(

µ
p
t − µt

σt

)

, (9)

where µ
p
t =

∑p−1

i=0 Et−i

p
. (10)

Here the term µ
p
t is the calculated mean over a shorter time

window, p. The value Kt is large if the value Q for µ
p
t is

small, i.e., if the probability that a deviation is greater than
µ
p
t is small. Hence, if Kt is greater than a certain threshold,

the algorithm concludes that the probability of occurrence
of an anomalous event is high and declares the current state
to be anomalous.

Table 1 shows the parameter values set for the HTM in
the anomaly detection problem for both datasets. The same
values are reused for the prediction problem in Section 5 of
the paper. We choose this parameter setting because it was
shown to work well for a wide range of datasets in other
applications [17].

4.2 Capturing temporal and spatial anomalies

In smart grids, the current magnitude data from µPMU
may have a significant amount of spatial and temporal
fluctuations. The spatial fluctuations in voltage or current
arise in real-time from sudden or unpredictable switching
of large loads, sudden power outage in the same or nearby
locality, or any sudden grid line faults. Temporal or con-
textual fluctuations are variations that occur due to peak
or off-peak hours of a day, day or night cycle, weekend
or weekdays cycle, seasonal variations (temperature, hu-
midity, etc.), etc. The two fluctuation types are of different
nature. Spatial fluctuations are independent of any temporal
context, whereas temporal fluctuations are dependent on
specific contexts that are temporally extended. This makes
the problem of detecting temporal anomalies challenging
because learning higher-order sequences are harder.

In the experiments for both datasets, we feed data into
the HTM one at a time, and a small initial amount of data (i.e.,
first 1 hour 23 minutes or first 5000 data points of 1 million+
data points) is used for initial training of the temporal pooler
of the HTM (the initial gray region in Fig. 4). In this period,
only the training is switched on and anomaly detection is
switched off.

We demonstrate the effectiveness of the HTM in detect-
ing spatial as well as subtle temporal anomalies present
in the current magnitude of the µPMU data by using the
dataset 1 in Fig. 4. In Fig. 4, we find that the HTM identifies
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TABLE 1: Parameter setting

Time of day Day of week Current magnitude Spatial Pooler Temporal Pooler
Encoder type: Scalar Encoder type: Scalar Encoder type: Scalar Column count, N: 2048 Column count, N: 2048
Maximum value: 60 Maximum value: 7 Maximum value: 40 Global inhibition: 1 Cells/Column: 16
Minimum value: 0 Minimum value: 0 Minimum value: 0 Seed: 1956 Max. synapses/segment: 32
Total bits, n: 600 Total bits, n: 100 Total bits, n: 109 Synaptic perm. con.: 0.5 New synapse count: 32
Total active bits, w: 29 Total active bits, w: 29 Total active bits, w: 29 Synaptic perm. act.: 0.0001 Synaptic perm. inc./dec.: 0.1
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Fig. 4: Demonstration of capturing temporal and spatial anomalies by the HTM in an unsupervised fashion.

six instances on Thursday night as anomalies (indicated by
red bars). The HTM does so because the variations on
Thursday night are being observed for the first time. The
HTM learns this pattern after the first observation because
we find that the HTM does not label most of the instances
on the next occurrence of a similar pattern, which is on
Friday night, as anomalous. Next, we observe that the HTM
identifies two instances on Saturday night as anomalous.
This is again because the pattern on Saturday night is a new
pattern that has not been observed on the previous days,
i.e., on Thursday and Friday. This pattern is a temporal
anomaly because it is a pattern that is typically observed
on the weekends and not due to any spatial fluctuation.
This suggests that the HTM identifies temporal anomalies.
We also find that the HTM correctly identifies anomalies on
Monday night. These are spatial anomalies because the pat-
tern observed on Monday night shown here is a deviation
from the pattern on the previous Thursday and Friday night
and possibly is the result of a spatial fluctuation. Overall,
the last two observations are suggestive that the HTM can
identify both temporal and spatial anomalies.

4.3 Continuous online unsupervised learning

The challenge for the HTM is to learn the temporal patterns
that are repetitious so that they are not wrongly identified as
anomalies. It is clear that the weekends and the weekdays
have different current magnitude patterns. In Fig. 5, we
demonstrate that the HTM does not identify any instance
of the temporal pattern of the weekends on the second
occurrence of the weekend as anomalous. We use the dataset
1 for this demonstration. This demonstration suggests that
the HTM has learned the higher order temporal patterns
that occur on the weekends on the first observation itself.
This indicates that the HTM can learn in a continuous-online
fashion, which in turn is suggestive that it can account for
concept drift. We also emphasize that the learning in HTM
is without any human intervention and manual parameter
tweaking, i.e., in an unsupervised fashion.

4.4 Comparison with other anomaly detection algo-
rithms

Anomaly detection algorithms can be either supervised or
unsupervised. Supervised algorithms require labeled data

and periodic retraining with changing conditions. The data
presented here is unlabelled and so supervised learning
approaches are not considered for comparison. Unsuper-
vised algorithms can be of different types, such as simple
or dynamic thresholding, complex statistical models, distant
based methods, etc.

This paper considers five state-of-the-art real-time, un-
supervised algorithms, namely Windowed Gaussian (i.e.,
dynamic thresholding), Random Cut Forest (i.e., distance-
based models), Bayesian Changepoint, EXPoSE, Relative
Entropy (i.e., all three are complex statistical models) to
compare with the HTM, and several of their properties are
shown in Table 2. This table indicates that the HTM can
learn in one-pass and unsupervised fashion, detect spatial
and temporal anomalies, and predict future observations
in real-time. Moreover, the table also indicates that the
HTM has a slightly higher time complexity compared to the
other algorithms (except Random Cut Forest). The reason
behind this is that the HTM learns long-term different
temporal sequences even when there are overlaps between
the sequences in its sparse sequential memory. The learning
happens by adjusting the weights of the lateral connections
between the cells. The slightly higher time complexity of
the HTM does not hamper its real-time anomaly detection
capability in smart grids that is discussed in Section 4.4.2.

4.4.1 Numenta Anomaly Benchmark (NAB)

We use the Numenta Anomaly Benchmark (NAB) [20] to
compare the five algorithms with the HTM. Regular scoring
methods, such as precision and recall cannot be used for
scoring as they are not suitable for real-time problems. The
NAB scoring mechanism has been designed based on what
a good real-time detection algorithm should be able to do:
detect all anomalies in a streaming data, in real-time, with less
false alarms, and in an automated fashion.

The scoring mechanism contains three components:
anomaly windows, application scoring profiles, and a scor-
ing function. Anomaly windows are ranges of data points
that surround each anomalous instances. The NAB score
accounts for the differences in the importance of false pos-
itives and false negatives in applications by considering
three different application dependent scoring profiles: (a)
Standard, (b) Reward few false positives, and (c) Reward
few false negatives.
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TABLE 2: Comparison among state-of-the-art real-time anomaly detection algorithms

Algorithms Unsup-
ervised

Noise im-
munity

Spatial
anomaly

Temporal
anomaly

Online
learning

Non para-
metric2

Multi-step
prediction

Time complexity4

HTM [28] Yes Yes Yes Yes Yes Yes Yes O(n log n)

Random Cut Forest [29] Yes No Yes No Yes No No O(D log
|n|

L1(u, v)
)

Bayesian Changepoint [30] Yes Yes Yes No Yes No No O(n)
Windowed Gaussian [31] Yes No Yes No No No No O(nw2)
EXPoSE [32] Yes Yes Yes Yes Yes Yes No 3 O(n)
Relative Entropy [33] Yes Yes Yes Yes Yes Yes No 3 O(nα), α < 3
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Fig. 5: Demonstration of continuous online unsupervised learning by the HTM.

The scoring function is such that an anomaly detected
within the anomaly window is considered as true positive
and given a positive score (e.g., Point 1 is given a score of
+0.98 in Fig. 6). An anomaly detected outside the anomaly

Point 1: 
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window,

score: +0.98
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Fig. 6: NAB window and scoring process.

window is considered as false positive and given a negative
score, which is also scaled depending on the position rela-
tive to the window. (e.g., Point 2 is given -0.95, and Point 3
is given -0.8 in Fig. 6). The final scores for a detection d is
calculated using the sigmoidal scoring function given by,

SA(d) = (ATP −AFP )

(

1

1 + e5yd

)

− 1, (11)

where A is the application profile under consideration (A
⊂ {Standard, Reward few false positives, Reward few false
negatives}), yd is the relative position within the anomaly
window, and ATP , AFP are weights which depend on the
application profile A. Missing to detect any anomaly is
considered as a false negative and is assigned a score of
AFN . The total score, TSA over a dataset is calculated as,

TSA =

(

D
∑

d=1

SA(d)

)

+AFN ×Nf , (12)

2. Non-parametric refers to no requirement of application specific
hyper-parametric tuning.

3. Relative entropy based methods have been used for forecasting in
economics [34], and methods like ExPoSE have been used for one-step
prediction.

4. Notation: n = point set; w = sparsity; D = dimension; L1 =
Manhattan distance; (u, v) ⊂ n.

where Nf is the total number of false negatives, and D is
the total number of detected anomalies in the dataset.

4.4.2 Calculation of NAB score with latency time

Calculation of NAB score requires the ground truth inform-
tion. A total of 15000 unbiased anomaly points have been
identified and labelled as anomalies for both datasets. The
calculated NAB scores for both datasets and the detection
latency times for all the methods are shown in Table 3.

TABLE 3: NAB score board for both µPMU datasets

Algorithms Lat- Standard Reward few Reward few
ency
(ms)

false positive false negative

set 1 set 2 set 1 set 2 set 1 set 2
HTM 7.8 87% 89% 83% 86% 89% 90%

Random
Cut Forest

19 15% 18% 12% 16% 34% 38%

Bayesian
Change-
point

2.8 74% 72% 72% 70% 77% 80%

Windowed
Gaussian

3.6 65% 69% 61% 65% 69% 71%

EXPoSE 2.1 67% 69% 63% 66% 71% 73%
Relative
Entropy

0.5 20% 24% 21% 26% 20% 26%

Table 3 shows that the HTM achieves a far-better score
than other real-time anomaly detection algorithms in terms
of detection accuracy for both datasets. However, the HTM
has slightly higher detection latency (i.e., 7.8 ms) compared
to other algorithms (except Random Cut Forest). The reason
behind this is that the HTM has a slightly higher time
complexity (see Table 2) than others because of its sequence
learning capability in the complex sequential memory. The
detection latency times in Table 3 are calculated in a 4.4
GHz Intel Core i9 processor with 16 cores and 32 GB of
RAM. As the available voltage/current frequency in the
smart grid is 50/60 Hz (i.e., period 20/16 ms), we want
to emphasize that the detection latency of the HTM (i.e.,
7.8 ms) is low enough to detect anomalies in smart grids in
real-time. More precisely, the HTM is capable of detecting
anomalies in less than half cycle time (full cycle = 20/16
ms, half cycle = 10/8 ms) in smart grids with good accuracy
compared to other real-time anomaly detection algorithms.
Moreover, the HTM model can be used for simultaneous



TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

multi-step prediction (Table 2). Hence, we conclude that the
HTM is competitive and has more capability than the other
methods. This is primarily because the HTM learns a general
representation that can be used for multiple tasks (in our case,
prediction). We demonstrate this in the next section.

5 DEMONSTRATION OF MULTI-STEP PREDICTION

The smart grid is stochastic and dynamic in nature and
predicting system behavior in real-time is critical from the
point of system control. Though load forecasting [35] is
a widely studied problem, in this section we focus on a
specific prediction problem, namely short-term prediction
(say 5 minutes ahead prediction). The real-time prediction
is important from the point of view of control and planning
of the grid operation. For example, it may be beneficial
to predict a sudden change in power in the smart grid in
real-time. This prediction can be used to respond early to
compensate for this sudden change by regulating power
flow to the affected part of the smart-grid. A common
regulation method is to dynamically adjust the governor set
point [36] of the generators. The set point adjustment can be
made more reliable by taking into account the predictions of
the transitions of the state of the grid. Here, we demonstrate
that the same HTM that was trained for anomaly detection
can be reused for predicting future observations in real-time.

5.1 HTM implementation for multi-step prediction

We have argued and shown that the temporal pooler of
the HTM learns higher-order temporal sequences of the
observed data in one-pass fashion. Therefore, the same HTM
model can be used for multi-step prediction in real-time by
adding a softmax classifier at the output of the temporal
pooler. The softmax classifier outputs the class of the pre-
dicted state by the temporal pooler. The architecture for
multi-step prediction is shown in Fig. 3. For classification,
the full range of the possible current magnitude values is
divided into 22 disjoint classes (k). The classifier block is
a single layer of a fully connected feed-forward network
with the number of output neurons same as the number
of classes. If the jth output neuron of the feed-forward
network is given by aj and the ith output of the temporal
pooler is given by P (xt)i, then aj is given by,

aj =
n
∑

i=1

θijP (xt)i, (13)

where θij is the weight of the connection from the ith neuron
of the temporal pooler, P (xt)i, to the jth neuron of the feed-
forward network, aj , and n is the dimension of P (xt)i. The
probability yk of the predicted data falling into class k is
calculated by the softmax function as follows:

yk =
eak

∑k
i=1 e

a
i

. (14)

The weights θij are updated by the descent along the
gradient of the least-squares error of the prediction. If the
update of each weight θij is denoted by ∆θij , the term ∆θij
can be expressed as follows:

∆θij = −λ(yj − zj)P (xt)i, ∀i, j, (15)

where zj is the observation and λ is the learning rate.
As P (xt)i is highly sparse, only a small portion of the

weights are updated at any time and this results in faster
prediction. The parameter settings of the HTM for the multi-
step prediction is already listed in Table 1.

5.2 Multi-step prediction on µPMU data using the HTM

Fig. 7 demonstrates 5 min. ahead prediction on µPMU data
for dataset 1. In this demonstration, the probabilities of
all predicted data-classes are calculated using Eqn. 14. The
value having the highest probability is chosen as the final
predicted value. We note that the prediction is in real-time.
The ‘red’ colored curve is the predicted curve and is shifted
5 time-steps to increase the visibility of the comparison
between the actual and the predicted points. In all the
circled regions of Fig. 7, the predicted spikes (“red”) follow
an actual spike (“black”) indicating that the HTM is able
to predict the fluctuations or glitches. The predicted “red”
curve may not exactly match the “black” curve point by
point but we observe that the prediction by the HTM is
able to capture the variations observed in the data. To
prove this claim, in the next section, we quantify the HTM’s
performance using two Key Performance Indicators (KPIs)
and compare it with other sequence prediction algorithms.
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Fig. 7: Current magnitude prediction 5 min. ahead.

5.3 Comparison with other multi-step prediction algo-
rithms

This section compares six state-of-the-art sequence predic-
tion models, namely Adaptive Filter, Time Delayed Neural
Network (TDNN) and four versions of LSTM with the HTM.

Adaptive Filter [37] is a self-learning predictive model
that can adapt quickly in real-time. This model is imple-
mented by using the LMS algorithm with a filter size of
10. TDNN [38] and LSTMs are widely used state-of-the-art
predictive models that require batches/mini-batches of data for
training. Here, these models are made adaptive and par-
tially online by retraining them at different time-steps using
different ranges of past data points. TDNN is implemented
with 100 input units, 1 hidden layer with 200 units, 1 output
unit and retrained after every 336 time-steps using the last
3000 data points.

Here, we consider four versions of the LSTMs, namely
LSTM-Online, LSTM-1000, LSTM-3000, and LSTM-6000.
They are implemented with 3 input units, 20 LSTM units,
and 1 output unit. LSTM-Online is retrained at every time-
step using the last 100 data points, whereas LSTM-1000,
LSTM-3000, and LSTM-6000 are retrained at every 1000th
time-step using the last 1000, 3000, and 6000 data points,
respectively. For retraining, different time intervals and dif-
ferent ranges of data points have been selected to illustrate
the effectiveness of the HTM as a one-pass learner. Though
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the performance of LSTM is observed to improve with the
increase in the data points for retraining, we emphasize
that the HTM is able to achieve the same or even better
performance just by learning from one-pass over the data.

The qualitative comparisons of the algorithms are given
in Table 4. The comparison is clearly suggestive that the
HTM is effective in capturing long term dependency while
learning from just one-pass over the data. Moreover, the
HTM can quickly adapt to concept drifts without much
parameter tuning compared to other methods.

TABLE 4: Comparison among state-of-the-art sequence pre-
diction algorithms.

Algorithms One-Pass
Learning

Time
to
Adapt

Long Term
Depen-
dency

Non
Para-
metric

HTM [39] Yes Short Yes Yes

Adaptive Filter [40] Yes Short Limited No
TDNN [41] No Long Limited No
LSTM-Online [42] Yes Long Yes No
LSTM-1000 [42] No Long Yes No
LSTM-3000 [42] No Long Yes No
LSTM-6000 [42] No Long Yes No

To quantitatively illustrate the multi-step prediction ac-
curacy of the HTM, we compare the HTM with other
algorithms using two KPIs, namely Normalized Root Mean
Square Error (NRMSE) and Negative Log-likelihood (NLL),
on both datasets. NRMSE is sensitive to outliers and low
NRMSE value indicates an almost pointwise perfect fit
between the true and the predicted values. The NRMSE is
calculated as follows:

NRMSE =

√

∑Nd

t=1(Predt − Truet)
2

σ
(16)

where σ is the standard deviation of the actual data, Nd is
the total number of data points, and Predt is the predicted
value of a true value Truet at time t.

The NRMSE score only considers the point-wise pre-
diction error. To measure the accuracy of prediction of a
sequence we consider an alternate measure, the Negative
Log-likelihood (NLL). The NLL score is computed using the
probability function P (yt|y1.......yt−1). This function cap-
tures the dependency of the prediction yt on the predicted
values at the previous time-steps, which are y1, ......yt−1.
The NLL score is simply the negative of the log of this
probability:

NLL = −
1

Nd

Nd
∑

t=1

log(P (yt|y1.....yt−1)), (17)

where Nd is the total number of data points. Here, the lesser
NLL score indicates more accurate sequence prediction.

Fig. 8(a) shows that HTM, TDNN, Adaptive Filter,
and LSTM-Online have a similar and a lower NRMSE
than LSTM-1000, LSTM-3000, LSTM-6000 models for both
datasets. We attribute this to the presence of frequent out-
liers in the predicted data points of the LSTM-1000, LSTM-
3000, LSTM-6000 models. This suggests that HTM, TDNN,
LSTM-Online, and adaptive filters are more accurate. Fig.
8(b) shows the NLL score for all the predicted data points.
Adaptive filter and TDNN are not considered for the com-
parison because they have limited capability in capturing
long term dependency (Table 4). The NLL score of the HTM

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0002

0.0000

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.25

0.00

N
R

M
SE N
LL

(a) (b)

Dataset 1 Dataset 2

Fig. 8: Comparison of NRMSE and NLL values.

is better than the LSTM-Online, LSTM-1000 models and
is similar to LSTM-3000. The NLL score of LSTM-6000 is
slightly better than the HTM. We attribute this to multiple
retraining with a larger set of previous data points, which is
6000 in this case. However, the HTM is more effective because
it achieves a similar score by learning from just one-pass, whereas
LSTMs require multiple retraining over the same set of data
points.
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Fig. 9: Comparison of NLL value over last 1000 data points.

Fig. 9 shows the plot of NLL value computed over the
last 1000 data points for dataset 1. It is clear from Fig. 9 that
HTM, LSTM-3000, and LSTM-6000 show a variation of NLL
that over time is lower than the LSTM-Online and LSTM-
1000 models. Though the HTM has the same NLL score as
LSTM-3000 (Fig. 8(b)), it is observed to exhibit less NLL variation
than LSTM-3000 overall (Fig. 9).
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1000 data points.

Fig. 10 shows the variation of average square deviation
error where each value is the average over the last 1000
data points. It is clear from Fig. 10 that the HTM initially
quickly learns the sequential pattern and exhibits lower
square deviation error than the LSTM-Online, Adaptive
Filter, and TDNN. Later on, we observe that the HTM
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consistently exhibits similar or lower square deviation error
compared to the other methods. This proves that the HTM
learns faster than the LSTM-Online, Adaptive Filter, and
TDNN. As LSTM-1000, LSTM-3000, and LSTM-6000 require
retraining, they learn much slowly compared to the HTM;
therefore, they are not considered here for comparisons.

We observe that the NLL in Fig. 9 and the square devi-
ation error in Fig. 10 have higher values on Thursday and
Friday (i.e., weekdays) compared to Saturday and Sunday
(i.e, weekends). The reason behind this is that the current
magnitude is more stochastic on the weekdays compared
to the weekends because the variation of loads on the
weekdays is higher than the weekends. In other words, the
loads on the weekends are more deterministic than the loads
on the weekdays. We also observe that loads on Sunday are
more stochastic than the loads on Saturday. Therefore, the
NLL and the square deviation error on Sunday have slightly
higher values than Saturday in Fig. 9 and Fig. 10.

6 LIMITATIONS AND FUTURE WORK

The compelling feature of the proposed HTM is that it can
detect anomalies and simultaneously predict future obser-
vations in real-time. Moreover, the HTM can learn in just
one-pass and in an unsupervised fashion and can handle
concept drifts efficiently. But the limitation is that the current
implementation can not classify the anomalies based on the
cause of the anomaly (e.g., a grid-line fault or a sudden load
transient). Our future work is to extend the HTM model
for real-time anomaly classification and simultaneous data
prediction not only in smart grids but also in other CPSs
applications [43], [44].

7 CONCLUSION

µPMU sensors sample the grid voltage/current waveform
in an ultra-precise and synchronized fashion. Therefore,
they can support many diagnostic applications, such as
anomaly detection and simultaneous data prediction in real-
time. In this paper, we introduced a neuro-inspired architec-
ture called the HTM and discussed its structure and cortical
learning algorithm. The HTM learns a general temporal
sparse representation that can be leveraged for multiple
tasks. The HTM can also be trained continuously, in one-
pass and in an unsupervised fashion. This makes them suit-
able for real-time applications. In this work, we demonstrate
how the HTM can be used for anomaly detection and simul-
taneous multi-step prediction in real-time. To demonstrate
the effectiveness of the HTM, it is compared with five state-
of-the-art real-time anomaly detection algorithms and six
other state-of-the-art prediction algorithms. We showed that
the HTM achieves competitive scores on both these tasks,
while the other state of the art algorithms are either less
accurate or can be used for one of the tasks only. Moreover,
the HTM achieves this performance by learning in just one-pass,
and in an unsupervised fashion. We strongly believe that this work
will serve as a motivation for research on neuro-inspired machine
learning algorithms in the smart grid by demonstrating that such
algorithms are more effective for real-time applications.
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