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Wiener, Cybernetics, and Macy Conferences
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How would the pioneers of cybernetics and Al envision the future of CPS?


http://www.infoamerica.org/documentos_word/shannon-wiener.htm
http://www.asc-cybernetics.org/foundations/history/MacySummary.htm

Cyber-Physical Systems
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Application Domains

Transportation

« Improved use of airspace androadways
- Energy efficiency

»Manned and un-manned

Energy and Industrial
Automation

+Homes and offices that are moreenergy
efficient and cheaper to operate
«Distributed micro-generation forthe grid

Healthcare and Biomedical

« Increased use of effective in-home care
+ More capable devices for diagnosis
- New internal and external prosthetics

Critical Infrastructure

+More reliable powergrid
«Highways that allow denser trafficwith
increased safety

- Faster and safer vehicles (airplanes, cars, etc)

Source: NSF



Aspirational and Emerging Applications: Examples

» Smart-X
1. Smart manufacturing
2. Smart grid
3. Smart transportation
4. Smart cities
5. Smart health

» Autonomous systems

1. Unmanned air vehicles
2. Self-driving cars
3. Autonomous robots

Human individual and group behavior are central in many of these applications:

Smart Cyber-Physical-Human Systems (CPHS).



Smart-X: Conceptual View

Sensors

Communications
Internet-of-things
Automation
Data analytics
Machine learning/Al
Control/Decisions
Software Architectures
Cybersecurity
Cloud/Edge Computing



Cognitive Cyber-Physical Systems



Marr's 3 Levels of Analysis and Cognitive Science

Goal/Function (Computational)

Algorithm and Architecture

Implementation

Marr's 3 Levels of Analysis and Cognitive Science, Peebles and Cooper (2015)


https://onlinelibrary.wiley.com/doi/full/10.1111/tops.12137
https://onlinelibrary.wiley.com/doi/full/10.1111/tops.12137

Cognition - Definitions and Characteristics

» “All processes by which the sensory input is transformed, reduced, elaborated,
stored, recovered, and used.” — Neisser, Cognitive Psychology, 1967.

» Important role of in-built capacity in the brain from genetics and evolution, e. g.,
symmetry, intuitive physics.

» Key Cognitive Functions

1.
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Perception

Attention

Memory

Reasoning

Problem solving
Knowledge representation

Cognitive Psychology, Neisser (1967)

Mind as Machine: A History of Cognitive Science, Boden (2006)


https://www.amazon.com/dp/B00Y3046AI/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1
https://www.amazon.com/gp/product/B00Q8U46WY/ref=dbs_a_def_rwt_hsch_vapi_tkin_p1_i0
https://www.amazon.com/dp/B00Y3046AI/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1

Cognitive CPS - Key Principles

Working Definition: CPS that have cognitive functions and capabilities.
CPS can be explicitly designed and/or can learn to possess cognitive functions.

Need for specific cognitive functions and capabilities will depend on the problem.
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Cognitive CPS’s may learn from each other, from humans, and also form
collaborative networks.

v

Hypothesis: Cognitive CPS will be better able to augment humans and lead to
human flourishing.

Cognitive CPS concept offers the most expansive and ambitious program for
integrating ML/AI with CPHS for realizing Smart-X Systems.



Cognitive Models and Biological Fidelity

Cognitive'models

Cognitive fidelity
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model Model complexity

Biological fidelity

Cognitive Computational Neuroscience, Kriegeskorte and Douglas (2018)


https://www.nature.com/articles/s41593-018-0210-5

Symbolic vs. Neural Connectionist Approaches

» Historical and ongoing debate on the nature of human cognition and the structure
of the brain.

» Key topic in cognitive science: neuroscience, ML/Al, psychology, linguistics.

» Three major components:

» Computational logic systems
» Connectionist neural network models
» Models and tools for uncertainty

» Pragmatic approach: combine connectionist, logic and probabilistic approaches to
achieve desired system goals and objectives.

Neural-Symbolic Learning and Reasoning: A Survey and Interpretation, Besold et al. (2017)


https://arxiv.org/pdf/1711.03902.pdf

Cognitive Models

» Production systems (Newell and Simon):
1. If-then rules, logic, symbols

2. Goals and subgoals, conflict resolution mechanisms
3. Example: ACT-R, SOAR
» Reinforcement learning based models
1. Actions, states, rewards
2. Perception and motor modules
3. Value and policy based approaches
4. Three modes: Model-free, model-based, and episodic
5. Brain combines all three of these modes but it is not known how this is done.

» Bayesian probabilistic models


https://www.amazon.com/dp/1635617928/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1
https://www.tandfonline.com/doi/abs/10.1207/s15327051hci1204_5
https://www.sciencedirect.com/science/article/abs/pii/0004370287900506
https://www.annualreviews.org/doi/abs/10.1146/annurev-psych-010416-044216
https://www.sciencedirect.com/science/article/abs/pii/S1364661310001129

Free Energy Principle

v

A most ambitious principle for brain function due to K. Friston
Brain seeks to minimize surprise

Bayesian brain hypothesis: brain has an internal model that allows for
computation of state estimate from sensory observations using Bayes rule

Agent chooses action policy to maximize “information gain” (KL divergence or
relative entropy)

Free energy principle: minimize expected free energy under future observations
and future states

Connections to statistical mechanics, predictive coding, risk sensitive control, ...

The free-energy principle: a unified brain theory?, Friston (2010)


https://www.nature.com/articles/nrn2787
https://www.nature.com/articles/nrn2787

Perception in ML

» Deep learning is revolutionizing perception
» Compositionality is built-in
» Examples of very impressive progress in:
» Computer vision
» Speech recognition and processing
» Language translation
» Architectures:

» Convolutional neural networks
» Long Short Term Memory (LSTM) recurrent neural networks



Perception in CPS

CPS with multiple, distributed sources of sensed information
Immediately possible to leverage DL advances

Prior knowledge plays a very large role in cognitive theories of perception

vvyyypy

Neural network techniques could be combined with relational prior knowledge for
improved context awareness in sensor rich CPS

v

Potential tools and techniques for relational priors:

1. Neural networks with symbolic front ends with priors to learn the symbolic front end
2. Graph networks


https://papers.nips.cc/paper/7381-neural-symbolic-vqa-disentangling-reasoning-from-vision-and-language-understanding.pdf
https://arxiv.org/pdf/1806.01261.pdf

Computational Models of Attention

» Vision (human, robot, driving) has been a major focus for modeling of attention

» Feature integration theory, guided search model, CODE theory of visual attention,
signal detection theory, ...
» Computational models:

1. Itti's model: color, intensity, orientation
Bayesian models of attention

Decision theoretic models

Information theoretic models

Graphical models

Spectrum analysis models

ok wN


http://web.mit.edu/bcs/nklab/media/pdfs/TreismanKanwisherCurrOpBio98.pdf
https://link.springer.com/article/10.3758/BF03200774
http://www.psy.vanderbilt.edu/faculty/logan/1996LoganPR.pdf
https://www.sciencedirect.com/science/article/pii/S0896627301003920
https://ieeexplore.ieee.org/abstract/document/6180177?casa_token=NrspwhlUA4kAAAAA:UNIupvLPa5RMGwfy3op2PuQI94GGnO55VGmQIqKxDvcBglqUu2VT93roPVRfXTaRTdsJ1dRVFsg

Attention in ML

» Attention is the key to focusing on the most
relevant information from multiple distributed
sources of information

» Examples:

>

>

Recurrent Models of Visual Attention, Mnih et al.
(2014)

Effective Approaches to Attention-based Neural
Machine Translation, Luong et al. (2015)

Show, Attend and Tell: Neural Image Caption
Generation with Visual Attention, Xu et al. (2015)
Self-attention Generative Adversarial Networks
(GANSs), Zhang et al (2019)

Attention based Machine Translator


http://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf
http://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
http://proceedings.mlr.press/v37/xuc15.pdf
http://proceedings.mlr.press/v37/xuc15.pdf
https://arxiv.org/pdf/1805.08318.pdf
https://arxiv.org/pdf/1805.08318.pdf

Possible Routes to Attention in CPS

» Two levels of attention:

» First level - selection and focus on a particular task
» Second level - top-down search for relevant information

Attention for detecting changing conditions and contexts.
Attention for fault detection and/or resilience.

Attention models that are hierarchical and programmable will be required for CPS

vvyyy

Examples of programmable attention:
1. Self-attention models of deep learning
2. Non-local neural networks for image recognition
3. Attentive meta learners


https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1711.07971.pdf
https://arxiv.org/pdf/1707.03141.pdf

Memory

> Memory is central to intelligent behavior.
» Multiple memory mechanisms in human cognition:

» short-term
> long-term
> episodic (content-addressable)
» semantic

LSTM - excellent example of use of memory in machine learning
Experience replay - a key innovation in Deep RL breakthroughs

Differentiable neural computer by Graves et al. (2016)

vvyyypy

Sparse distributed representations. Examples: hierarchical temporal memory,
sparsey


https://www.amazon.com/Memory-Alan-Baddeley/dp/1138326097/ref=dp_ob_title_bk
https://ieeexplore.ieee.org/abstract/document/7508408
https://www.nature.com/articles/nature14236?wm=book_wap_0005
https://www.nature.com/articles/nature20101
https://arxiv.org/abs/1503.07469
https://www.frontiersin.org/articles/10.3389/fncom.2014.00160/full

Differentiable Neural Computer

d Memory usage
a Controller b Read and write heads € Memory and temporal links

)

Hybrid computing using a neural network with dynamic external memory, Graves et al. (2016)


https://www.nature.com/articles/nature20101

Memory, Attention, and Composition Cell Architecture
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Figure 3: The MAC cell architecture. The MAC recurrent cell consists of a control unit, read unit, and
write unit, that operate over dual control and memory hidden states. The control unit successively attends to
different parts of the task description (question), updating the control state to represent at each timestep the
reasoning operation the cell intends to perform. The read unit extracts information out of a knowledge base
(here, image), guided by the control state. The write unit intcgrates the retricved information into the memory
state, yiclding the new intermediate result that follows from applying the current reasoning operation.

Compositional Attention Networks for machine Reasoning, Hudson and Manning (2018)


https://arxiv.org/pdf/1803.03067.pdf

Example of Memory in CPS: Episodic Control

Episodic control - re-enact successful episodes from memory storage.
Episodic control has potential relevance to “small data” learning and control.

Example: Model-free episodic control, Blundell et al. (2016)

vvyyypy

Model-free episodic control — recorded experiences are used as value function
estimators.

v

Neural episodic control — combining deep learning model and lookup tables of
action values.

» Hierarchical episodic control — episodes as options.


https://arxiv.org/abs/1606.04460
https://arxiv.org/pdf/1703.01988.pdf

Selected Methodological Challenges

There are numerous major challenges:

Approaches for combining model-based and model-free techniques.

>

>

» Approaches to combine hierarchical and distributed architectures and algorithms.
» Reducing the need for large amounts of data: few-shot learning, one-shot learning
>

Bringing meta learning paradigm for achieving autonomy: “learning to learn”.



Combining Model-based and Model-free Approaches

» Model free ML based approaches for sensing, perception, memory and
model-based for planning, safety and closing the loop

» Model predictive control and reinforcement learning — compute action sequence
based on the model via MPC (model based), update the model via reinforcement
learning and supervised learning

» Guided policy search — robust local policies are derived from local models; local
policies used to guide a global policy


http://papers.nips.cc/paper/5444-learning-neural-network-policies-with-guided-policy-search-under-unknown-dynamics.pdf

Hierarchical Control

» Hierarchical structures appropriate and necessary for control and management of
Smart-X

» Optimal behavioral hierarchy, Solway et al. (2014)

» Hierarchical control for sparse reward settings: meta controller sets the
intermediate goal/sub-tasks and a lower level controller achieves the goal
Example: Hierarchical DQN

» Hierarchical control provides scalable methods for large state-action spaces.
Examples:

» Options framework — temporally extended sequence of actions to simplify the
learning process

» Feudal RL — Higher level task is divided into a hierarchy of tasks

> MAXQ framework: extension of the Q learning framework for the hierarchical setting


https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003779&type=printable
https://arxiv.org/pdf/1604.06057.pdf
http://www-anw.cs.umass.edu/~barto/courses/cs687/Sutton-Precup-Singh-AIJ99.pdf
http://www.cs.toronto.edu/~fritz/absps/dh93.pdf
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume13/dietterich00a.pdf

Our Recent Work

External memory architectures and algorithms for adaptive control
Regret guarantees for online learning for control

>
>
> Reinforcement learning for matching markets with applications to smart grids
» Meta learning

>

Smart-X applications:

» Anomaly detection in smart grids and manufacturing
P Graph network techniques for decision making in autonomous vehicles



Meta Learning Paradigm

» Meta Learning as a paradigm for dealing with new environments by “learning to
learn” approaches

» Learning from task properties, transfer learning from prior models, ...

> Meta learning principles and approaches could be leveraged for autonomy and
control under uncertainty

> Central question: can the experience from learning in one setting to improve
learning in another?

» Meta-learning is relevant in scenarios where the environment is different in each
learning or control episode.

» Our Goals:

» To provide a framework for meta-learning in a control setting
» To provide a benchmark for finite episode meta-learning guarantees


https://arxiv.org/abs/1810.03548

Problem Setting

» N episodes of length T
» The environment draws an arbitrary § = [A, B] € © in each episode
» System dynamics within each episode:
Xer+1 = Axe + Buy, v+ = Xt + €, X1 = Xs, €: IS noise.
» Control input constraints: u; € U, ¥V t, U = {u|F,u < b,} = a bounded polytope

» Control cost function: c¢;(x¢, ut).

v

Information:
’ Known \ Observable ‘
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Meta-Learning Architecture

superscript i: episode, subscript k: time index within an episode

t—1
i Control Policy P
X _ o O
System 0y = RHC(t, 0}, X{)
ui = ﬁi + dur
Outer Learner, As
s e
(z)l ) 9*7I
Meta-Update Meta-Loss, L'fl
\ \
'd 'd i
i ming, L (6
Loss, L;( 0 ,k(A )
+Re(0", &)
A .

Inner Learner, A¢

Figure: Online Model-based Meta-learning Control Architecture



Online Control Algorithm

Estimates: Update 6y — 6; Update 0) _, — 0],
63, %I Update s Update %[,
2+ 2+ 2+
1 1 1
t=+1 'ts it t,
Interval 1 Interval 2 )| ... ..., Interval k
T T T
1 1 1 |
1 1 1
1 t1 1 to 1 ty
1 1 1
v v v

af = RHC(t,05, %)) ai = RHC(t,0}, %))

up = dy 4+ du up = dy + dut

Length of interval k: t, —t; +1= 2k=1H.

al = RHC(t, 0|, %))

up = dy 4+ du



Inner Learner As

» Loss Eﬁ(,
2

ZW b= i = 0p ™ )

2

> Least-squares estimate:
0] i = argmin £} (0) + Re(B, &),
’ 0

Re(0, $1) W@_&i




Control Policy: RHC(t, 05, 1)

» Input: Horizon M, {ck}t<k<t+m—_1, Output: ai

» RHC(t,0i,%i): (Optimizes the cost-to-go for the estimated dynamics)
1. U* = argminy ZkM:_Ol Crt (K, wi)
s.t. Xey1 = A)?k + BWk7 é; = [AA7 é], wg EU, Xp =X

2. 0f = w§ (current RHC control input)



Perturbation

» The RHC approach requires persistence of excitation for parameter estimation.
This requires perturbation along certain directions. One of the key contributions
of this work: balancing exploration and exploitation in online RHC.

» Perturbation may violate control input constraints. The control is designed so
that while balancing exploration and exploitation constraint violation is bounded.



Perturbation du;

» Perturbation by du; guarantees that

ty
Z { )LZ } {XJ.T’ uJT} > O(\/tx) (persistent excitation)
j=1

(The specific rate of growth balances exploration and exploitation!)



Outer Learner Af

» Quter learner update

~ ~ 1 ~ A ~
Vi1 = 0i =iV (9i), ni = N IP(o) = ‘ 0" — ¢HF7
6*" = best inner learner estimate in episode |

$i+1 = Projo(¥i+1)



Regret for Cost
> Regret
. . . T . .
Ri = [CI(H) — C™*], where C(H) = Z[Cj(XJ{’ o)),
Jj=1
C'* cost with complete knowledge of system and state

> Average regret across N episodes:

_ ]_ ;
R:NZRT



Performance for Constraint Violation

» Constraint violation in episode i/,

T
V’ = Z (Z{Fuué - bu}s,+> 5 U:IL:T = {Ui, Ué, ceey U’T}

t=1 s

where {.}, denotes the /-th component of a vector. The subscript {.}; is a
shorthand notation for max{.,0}

> Average constraint violation across N episodes:

1M
V:N;V(.)



Key Results

> Per episode regret and constraint violation: Under suitable technical conditions,
for § arbitrarily small, with probability greater than 1 — O(9):

Ry <O (T3/4) V<O <T3/4> .

» Early result: Under the same technical conditions, N > T, for § arbitrarily small,
with probability greater than 1 — O(9)

reo((ve ). 7=0(( ) ).



Contributions

» Key contribution: Comparison with respect to receding horizon controller with
complete knowledge of system and state. Prior online control works analyse regret
w.r.t linear feedback controllers.

» Novel approach to balance exploration and exploitation in online RHC

» First finite time regret guarantee for online RHC

» First finite-time guarantee for meta-learning in a control setting
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https://ieeexplore.ieee.org/abstract/document/9136778
https://ieeexplore.ieee.org/abstract/document/9253615
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email: pramod.khargonekar@uci.edu
website: https://faculty.sites.uci.edu/khargonekar/
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