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Wiener, Cybernetics, and Macy Conferences

How would the pioneers of cybernetics and AI envision the future of CPS?

https://slate.com/technology/2019/02/norbert-wiener-cybernetics-human-use-artificial-intelligence.html
https://uberty.org/wp-content/uploads/2015/07/Norbert_Wiener_Cybernetics.pdf
http://www.asc-cybernetics.org/foundations/history/MacySummary.htm
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CPS Properties

I Pervasive computation, sensing, and control

I Networked at multiple scales

I Dynamically reorganizing/reconfiguring

I High degrees of automation

I Dependable operation with potential requirements for high assurance of reliability,
safety, security and usability

I With or without human interaction/supervision

I Conventional and unconventional substrates/platforms

I Range from the very small to the large to the very large

Source: NSF



Aspirational and Emerging Applications

I Smart-X

1. Smart manufacturing
2. Smart grid
3. Smart transportation
4. Smart cities
5. Smart health

I Autonomous systems

1. Unmanned air vehicles
2. Self-driving cars
3. Autonomous robots

Human individual and group behavior and their interactions
with technological systems are central in many of these applications:

Smart Cyber-Physical-Human Systems (CPHS)



Smart-X: Conceptual View



Cognitive Cyber-Physical Systems



Marr’s 3 Levels of Analysis and Cognitive Science

Marr’s 3 Levels of Analysis and Cognitive Science, Peebles and Cooper (2015)

https://onlinelibrary.wiley.com/doi/full/10.1111/tops.12137
https://onlinelibrary.wiley.com/doi/full/10.1111/tops.12137


Cognition - Definitions and Characteristics

I “All processes by which the sensory input is transformed, reduced, elaborated,
stored, recovered, and used.” — Neisser, Cognitive Psychology, 1967.

I Important role of evolutionary processes in cognition: genomes, brains, minds,
cultures, . . .

I Salient cognitive functions:

1. Perception
2. Attention
3. Memory
4. Reasoning
5. Problem solving
6. Knowledge representation

Cognitive Psychology, Neisser (1967)

Mind as Machine: A History of Cognitive Science, Boden (2006)

https://www.amazon.com/dp/B00Y3046AI/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1
https://onlinelibrary.wiley.com/doi/full/10.1111/tops.12449
https://www.amazon.com/gp/product/B00Q8U46WY/ref=dbs_a_def_rwt_hsch_vapi_tkin_p1_i0
https://www.amazon.com/dp/B00Y3046AI/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1


Cognitive CPS - Key Principles

I Working Definition: CPS that have cognitive functions and capabilities.

I CPS can be explicitly designed and/or can learn (or evolve) to possess cognitive
functions.

I Need for specific cognitive functions and capabilities will depend on the problem.

I Cognitive CPS’s may learn from each other, from humans, and also form
collaborative networks.

I Cognitive CPS may be better able to augment humans and lead to human
flourishing.

Hypothesis: Cognitive CPS concept offers the most expansive and ambitious
program for integrating ML/AI with CPHS for realizing Smart-X Systems.



Computational Intelligence: Pattern Recognition or Model Building

I Two fundamentally different perspectives on learning from data:

I Statistical pattern recognition from data for prediction and control.
I Use prior knowledge and data to build causal models to understand, predict and

control.

I It is possible to combine these two approaches.

I Causality a critical issue in learning from data.

https://arxiv.org/pdf/1911.10500.pdf


Cognitive Fidelity, Biological Fidelity, and Model Complexity

Cognitive Computational Neuroscience, Kriegeskorte and Douglas (2018)

https://www.nature.com/articles/s41593-018-0210-5


Symbolic vs. Neural Connectionist Approaches

I Historical and ongoing debate on the nature of human cognition and the structure
of the brain.

I Key topic in cognitive science: neuroscience, ML/AI, psychology, linguistics.
I Three major components:

I Computational logic systems
I Connectionist neural network models
I Models and tools for uncertainty

I Pragmatic approach: combine connectionist, logic and probabilistic approaches to
achieve desired system goals and objectives.

Neural-Symbolic Learning and Reasoning: A Survey and Interpretation, Besold et al. (2017)

https://arxiv.org/pdf/1711.03902.pdf


Cognitive Models

I Production systems (Newell and Simon):

1. If-then rules, logic, symbols
2. Goals and subgoals, conflict resolution mechanisms
3. Example: ACT-R, SOAR

I Reinforcement learning based models

1. Actions, states, rewards
2. Perception and motor modules
3. Value and policy based approaches
4. Three modes: Model-free, model-based, and episodic
5. Brain combines all three of these modes but it is not known how this is done.

I Bayesian probabilistic models

https://www.amazon.com/dp/1635617928/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1
https://www.tandfonline.com/doi/abs/10.1207/s15327051hci1204_5
https://www.sciencedirect.com/science/article/abs/pii/0004370287900506
https://www.annualreviews.org/doi/abs/10.1146/annurev-psych-010416-044216
https://www.sciencedirect.com/science/article/abs/pii/S1364661310001129


Free Energy Principle

I Overarching unifying principle for brain function due to K. Friston.

I Brain seeks to minimize surprise.

I Bayesian brain hypothesis: brain has an internal model that allows for
computation of state estimate from sensory observations using Bayes rule.

I Agent chooses action policy to maximize “information gain” (KL divergence or
relative entropy).

I Free energy principle: minimize expected free energy under future observations
and future states.

I Connections to statistical mechanics, predictive coding, risk sensitive control, . . .

The Free-Energy Principle: A Unified Brain Theory?, Friston (2010)

https://www.nature.com/articles/nrn2787
https://www.nature.com/articles/nrn2787


Perception in ML

I Deep learning is revolutionizing perception.

I Compositionality is built-in.
I Examples of very impressive progress in:

I Computer vision
I Speech recognition and processing
I Language translation

I Architectures:
I Convolutional neural networks
I Long Short Term Memory (LSTM) recurrent neural networks
I Transformers



Perception in CPS

I CPS with multiple, distributed sources of sensed information.

I Immediately possible to leverage DL advances.

I Prior knowledge plays a very large role in cognitive theories of perception.

I Neural network techniques could be combined with relational prior knowledge for
improved context awareness in sensor rich CPS.

I Potential tools and techniques for relational priors:

1. Neural networks with symbolic front ends.
2. Inductive biases, deep learning, and graph networks.
3. Explicitly relational neural networks.

https://papers.nips.cc/paper/7381-neural-symbolic-vqa-disentangling-reasoning-from-vision-and-language-understanding.pdf
https://arxiv.org/pdf/1806.01261.pdf
http://proceedings.mlr.press/v119/shanahan20a/shanahan20a.pdf


Computational Models of Attention

I Vision (human, robot, driving) has been a major focus for modeling of attention.

I Feature integration theory, guided search model, CODE theory of visual attention,
signal detection theory, . . .

I Computational models:

1. Itti’s model: color, intensity, orientation
2. Bayesian models of attention
3. Decision theoretic models
4. Information theoretic models
5. Graphical models
6. Spectrum analysis models

https://www.sciencedirect.com/science/article/pii/0010028580900055
https://link.springer.com/article/10.3758/BF03200774
http://www.psy.vanderbilt.edu/faculty/logan/1996LoganPR.pdf
https://www.sciencedirect.com/science/article/pii/S0896627301003920
https://ieeexplore.ieee.org/abstract/document/6180177?casa_token=NrspwhlUA4kAAAAA:UNIupvLPa5RMGwfy3op2PuQI94GGnO55VGmQIqKxDvcBglqUu2VT93roPVRfXTaRTdsJ1dRVFsg


Attention in ML

I Attention is the key to focusing on the most
relevant information from multiple distributed
sources of information.

I Examples:
I Recurrent Models of Visual Attention, Mnih et al.

(2014).
I Effective Approaches to Attention-based Neural

Machine Translation, Luong et al. (2015).
I Show, Attend and Tell: Neural Image Caption

Generation with Visual Attention, Xu et al.
(2015).

I Attention is all you need, Vaswani et al (2017).
I Self-attention Generative Adversarial Networks

(GANs), Zhang et al (2019).

http://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf
http://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
http://proceedings.mlr.press/v37/xuc15.pdf
http://proceedings.mlr.press/v37/xuc15.pdf
http://proceedings.mlr.press/v37/xuc15.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1805.08318.pdf
https://arxiv.org/pdf/1805.08318.pdf


Role of Attention in CPS

I Two levels of attention:
I First level - selection and focus on a particular task.
I Second level - top-down search for relevant information.

I Attention for detecting changing conditions and contexts.

I Attention for fault detection and/or resilience.

I Attention models that are hierarchical and programmable will be required for CPS.
I Examples of programmable attention:

1. Attention is all you need (Transformer).
2. Non-local neural networks for image recognition.

https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1711.07971.pdf


Memory

I Memory is central to learning and intelligent behavior.
I Multiple memory mechanisms in human cognition:

I short-term
I long-term
I episodic (content-addressable)
I semantic

I LSTM - excellent example of use of memory in machine learning.

I Experience replay - a key innovation in Deep RL breakthroughs.

I Differentiable neural computer by Graves et al. (2016).

I Sparse distributed representations. Examples: hierarchical temporal memory,
sparsey.

https://www.amazon.com/Memory-Alan-Baddeley/dp/1138326097/ref=dp_ob_title_bk
https://ieeexplore.ieee.org/abstract/document/7508408
https://www.nature.com/articles/nature14236?wm=book_wap_0005
https://www.nature.com/articles/nature20101
https://arxiv.org/abs/1503.07469
https://www.frontiersin.org/articles/10.3389/fncom.2014.00160/full


Differentiable Neural Computer

Hybrid computing using a neural network with dynamic external memory, Graves et al. (2016)

https://www.nature.com/articles/nature20101


Memory, Attention, and Composition Cell Architecture

Compositional Attention Networks for machine Reasoning, Hudson and Manning (2018)

https://arxiv.org/pdf/1803.03067.pdf


Example of Memory in CPS: Episodic Control

I Episodic control - re-enact successful episodes from memory storage.

I Episodic control has potential relevance to “small data” learning and control.

I Example: Model-free episodic control, Blundell et al. (2016).

I Model-free episodic control – recorded experiences are used as value function
estimators.

I Neural episodic control – combining deep learning model and lookup tables of
action values.

I Hierarchical episodic control – episodes as options.

https://arxiv.org/abs/1606.04460
https://arxiv.org/pdf/1703.01988.pdf


Selected Methodological Challenges

There are numerous major technical challenges:

I Approaches for combining model-based and model-free techniques.

I Approaches to combine hierarchical and distributed architectures and algorithms.

I Reducing the need for large amounts of data: few-shot learning, one-shot learning.

I Bringing meta learning paradigm into cognitive CPS: “learning to learn”.



Combining Model-based and Model-free Approaches

I Model free ML based approaches for sensing, perception, memory and
model-based for planning, safety and closing the loop.

I Model predictive control and reinforcement learning – compute action sequence
based on the model via MPC (model based), update the model via reinforcement
learning and supervised learning.

I Guided policy search – robust local policies are derived from local linear models;
these local policies used to efficiently guide a global policy.

http://papers.nips.cc/paper/5444-learning-neural-network-policies-with-guided-policy-search-under-unknown-dynamics.pdf


Hierarchical Control

I Hierarchical structures appropriate and necessary for control and management of
Smart-X.

I Optimal behavioral hierarchy, Solway et al. (2014).

I Hierarchical control as a natural framework for compositional learning in Smart-X.
I Hierarchical control and learning at multiple scales in time and space. Examples:

I Options framework in RL/MDP.
I Feudal RL and hierarchies.
I MAXQ framework and value function decomposition.

https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003779&type=printable
http://www-anw.cs.umass.edu/~barto/courses/cs687/Sutton-Precup-Singh-AIJ99.pdf
http://www.cs.toronto.edu/~fritz/absps/dh93.pdf
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume13/dietterich00a.pdf


Our Recent Work

I External memory architectures and algorithms for adaptive control.

I Preadaptation in adaptive control.
I Online learning and optimization:

I Regret guarantees for online learning for control.
I Online disturbance gain minimization.

I Reinforcement learning for matching markets with applications to smart grids.

I Online meta learning.
I Smart-X applications:

I Anomaly detection in smart grids and manufacturing
I Graph network techniques for decision making in autonomous vehicles.

I Empathetic AI using Generative Adversarial Imitation Learning.

https://ieeexplore.ieee.org/abstract/document/9029549
https://arc.aiaa.org/doi/abs/10.2514/6.2021-0786
https://arxiv.org/pdf/2111.15041.pdf
https://arxiv.org/pdf/2111.15063.pdf
https://arxiv.org/pdf/2104.05654.pdf
https://arxiv.org/pdf/2010.11327.pdf
https://ieeexplore.ieee.org/abstract/document/9253615
https://ieeexplore.ieee.org/abstract/document/9363621
https://arxiv.org/pdf/2111.06123.pdf
https://arxiv.org/pdf/2105.13328.pdf


Cognition: Memory and Preadaptation

I External memory architectures and algorithms for adaptive control
I External memory augmented to neural network.
I Short term memory with quick update feature.
I Performance: significant improvement in adaptation.
I Theoretical guarantees for signal estimation problem.
I Attention models in neural adaptive control.

I Preadaptation in adaptive control
I Preadaptive function block to initialize adaptation algorithm.
I Online learning algorithm for preadaptation function.
I Peak reduction upto 50%.

https://ieeexplore.ieee.org/abstract/document/9029549
https://ieeexplore.ieee.org/abstract/document/9147493
https://arc.aiaa.org/doi/abs/10.2514/6.2021-0786


Online Learning and Optimization

I Regret guarantees for online learning for control.
I First sub-linear dynamic regret guarantee with limited preview.

I Online disturbance gain minimization.
I Extension of H∞ problem to the online learning setting.
I Novel characterization and guarantees for disturbance gain with limited preview of

future costs and disturbances.

I Adaptive gradient online control.
I Online matching algorithms with applications to smart grids

I Customers with dynamic willingness to pay.
I Key idea: online matching by criticality (rate of decrease of willingness to pay) of

currently active customers.
I Novel competitive ratio guarantees in terms of uncertainty in the market.

I Online algorithms for network robustness.

https://arxiv.org/pdf/2111.15041.pdf
https://arxiv.org/pdf/2111.15063.pdf
https://arxiv.org/pdf/2103.08753.pdf
https://ieeexplore.ieee.org/abstract/document/9136778
https://arxiv.org/pdf/2106.04037.pdf


RL for Matching Markets with Applications to Smart Grids

I Online matching heuristics could be sub-optimal.

I Reinforcement learning can learn optimal online policies.
I Challenges:

I Large action space of matching markets.
I Learning to match is a constraint learning problem.
I Reinforcement learning can converge to sub-optimal solutions.

I Our work: a scalable reinforcement learning algorithm for the matching problem in
smart grids.

I We are working on extending this work to large power networks.

https://arxiv.org/pdf/2104.05654.pdf


Data-Driven Methods for Smart-X

I Anomaly detection in smart grids and manufacturing.
I Architectures based on Sparse Representations (Hierarchical Temporal Memory).
I Demonstrably learns very efficiently, just in one-pass.
I Key observation: performance better or comparable to LSTMs trained with multiple

passes.

I Graph learning techniques in AV decision making:
I Problem studied: prediction of vehicle collision.
I Architecture: perception → relation graphs → graph processing → LSTM →

spatio-temporal embedding → prediction.
I Improved accuracy compared to CNN architecture. Improved efficiency of learning.

Implementable on AV hardware.
I Ongoing work: fast and safe planning using SOS programming.

I Cognitive manufacturing and graph learning

https://ieeexplore.ieee.org/abstract/document/9253615
https://ieeexplore.ieee.org/abstract/document/9363621
https://arxiv.org/pdf/2111.06123.pdf
https://ieeexplore.ieee.org/abstract/document/9474166/
https://ieeexplore.ieee.org/abstract/document/9642429


Meta Learning Paradigm

I Meta learning as a paradigm for dealing with new environments by “learning to
learn efficiently and effectively”.

I Meta learning idea has been explored in ML since the mid 80’s.

I Meta learning in nature and humans
I Two possible approaches

I First approach: learn the common structures across the tasks to induce a strong
prior or “inductive bias” — Bayesian inference

I Second approach: two-level optimization framework:
I Inner optimization optimizes the task at hand.
I Outer optimization optimizes the parameters of the inner optimization.

I Our work: meta-learning algorithm for a control setting.

https://arxiv.org/abs/1810.03548
https://www.sciencedirect.com/science/article/pii/S2352154621000024?via%3Dihub


Problem Setting: Online Meta Learning

I N episodes of length T .

I The environment draws an arbitrary θ = [A,B] ∈ Θ in each episode.

I System dynamics within each episode:

xt+1 = Axt + But , yt = xt + εt , εt is noise.

I Cost function at t: ct(xt , ut). Cost function for the future may not be known.

I Information at t:
I (ck)k∈[t:t+M−1] (limited preview M of future cost).
I (yk)k≤t , (uk)k≤t−1



Dynamic Regret

I Dynamic Regret in Episode i

R i
T =

[
C i (H)− C i ,∗

]
, where C i (H) =

T∑
j=1

[cj(x
i
j , u

i
j )],

C i ,∗ optimal cost with complete information.

I Average regret across N episodes:

R =
1

N

N∑
i=1

R i
T



Architecture: Two-Level Learning

subscript t: time index within an episode

Outer Learner, As

Meta-Update
φ̂

Meta-Loss, Ls

Inner Learner, Af

Loss, Lt
minθLt (θ)

+Re (θ, φ̂)

θ̂t

θ∗

System

xt
Control Policy

ut−1

Figure: Online Meta-learning Control Architecture



Inner Learner As

I Loss Lt :

Lt(θ̂) =
t∑

j=1

`θ̂,j , `θ̂,j =
∥∥∥yj+1 − θ̂[y>j , u

>
j ]>

∥∥∥2

2
.

I Least-squares estimate:

θ̂t = arg min
θ̂
Lt(θ̂) +Re(θ̂, φ̂),

Re(θ̂, φ̂) = λ
∥∥∥θ̂ − φ̂∥∥∥2

F
(Biased Regularizer)

I φ̂ is the bias given by the outer-learner.



Outer Learner Af

I Task is indexed by i .

I θ̂∗,i = best inner learner estimate in episode i .

I Loss per episode:

`oi (φ̂) =
∥∥∥θ̂∗,i − φ̂∥∥∥

F

I Outer learner update:

ψi+1 = φ̂i − ηi∇`oi (φ̂i ),

φ̂i+1 = ProjΘ(ψi+1), ηi =
1√
i



Control Policy: RHC (t, θ̂t , x̂t)

I Input: Preview M, (ck)k∈[t:t+M−1], Output: ût

I RHC (t, θ̂t , x̂t): (Optimizes the cost-to-go for the estimated dynamics.)

1. (ak)∗k∈[0:M−1] = arg min(ak )k∈[0:M−1]

∑M−1
k=0 ck+t(sk , ak)

s.t. sk+1 = Âsk + B̂ak , θ̂t = [Â, B̂], ak ∈ U , s0 = x̂

2. ût = a∗0 (Current input equals the first value in the optimal sequence.)



Balancing Exploration and Exploitation

I Perturbation δut is applied so that

tk∑
j=1

[
xj
uj

] [
x>j , u

>
j

]
= O(

√
tk) (persistent excitation)

(The specific rate of growth balances exploration and exploitation!)



Progression within an Episode

t = 1 ts2 tsk tsk+1

t1 t2 tk

. . . . . . . . . . . .Interval 1 Interval 2 Interval k

Estimates:

θ̂0, x̂1

Update θ̂0 → θ̂1

Update x̂ts2

Update θ̂k−2 → θ̂k−1

Update x̂ts
k

ût = RHC(t, θ̂0, x̂t)

ut = ût + δut

ût = RHC(t, θ̂1, x̂t)

ut = ût + δut

ût = RHC(t, θ̂k−1, x̂t)

ut = ût + δut

Interval Length = Preview Length



Main Result

I Under suitable technical conditions, for δ arbitrarily small, with probability greater
than 1−O(δ)

R =

(
a? +O

(
1√
N

))
Õ
(
T 3/4

)
, a? is a constant.



Contributions

I Dynamic regret guarantee with limited preview.

I Novel approach to balance exploration and exploitation in online RHC.

I First regret guarantee for online learning RHC.

I First online guarantee for meta-learning in a control setting.
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Concluding Remarks

I Cognitive CPS as a vision for the next frontier in CPS

I Cognitive CPS can provide a framework for integrating ML/AI into CPS

I Architectures and algorithms inspired from computational neuro- and cognitive
science have great potential for cognitive CPS

I Cognitive CPS can enable smart-X systems for societal benefits



Thank you!
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