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Global Warming and GHG Emissions



Global GHG Emissions

a. Global net anthropogenic GHG emissions 1990-2019®
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The solid line indicates central estimate of emissions trends. The shaded area indicates the uncertainty range.
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https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf

Global GHG Emissions by Use

Direct emissions by sector (59 GtCO,-eq)
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https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf

US GHG Emissions 2021
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https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks

Global Warming: What has already Happened

Global surface temperature has increased by
1.1°C by 2011-2020 compared to 1850-1900
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® Gigatons of CO,-equivalent emissions (GtCO,-eq/yr)

GHG Reduction Imperative and Gap

Limiting warming to 1.5°C and 2°C involves rapid, deep and
in most cases immediate greenhouse gas emission reductions

Net zero CO, and net zero GHG emissions can be achieved through strong reductions across all sectors
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Figure ES.3 Global GHG emissions under different scenarios and the emissions gap in 2030 (median estimate and tenth
to ninetieth percentile range)
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https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf

Energy System Decarbonization



Big Picture: Climate Change and Energy System

* Energy efficiency must be a big target

» Electric energy sector is likely to be the easiest to decarbonize due to falling wind and solar
generation costs

» Transportation sector is much harder to decarbonize. Electrification of transportation
currently offers the most viable path forward.

» Industrial and manufacturing emissions are much harder to reduce.

» Negative emissions solutions (carbon capture utilization and storage) will likely be necessary.

« Climate change impacts are already here. Therefore, adaptation and resilience are
necessary.

» It is not an engineering or technology problem alone - public policy and human behavior will
play very large roles.

* Younger generations see this as their big problem.




CO, Emissions from Fossil Fuels

Global Fossil CO, Emissions
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https://robbieandrew.github.io/GCB2022/

Figure 2.1 >

Projections of the Future

World population by region and global GDP in the NZE
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By 2050, the world’s population expands to 9.7 billion people
and the global economy is more than twice as large as in 2020
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Figure 2.13 = Total final consumption and demand avoided by mitigation
measure in the NZE
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Energy efficiency plays a key role in reducing energy consumption across end-use sectors

Source: [EA


https://www.iea.org/reports/net-zero-by-2050

IEA Net Zero Emissions Measures

Figure 2.12 = Emissions reductions by mitigation measure in the NZE, 2020-2050
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Solar, wind and energy efficiency deliver around half of emissions reductions to 2030
in the NZE, while electrification, CCUS and hydrogen ramp up thereafter

Source: |[EA


https://www.iea.org/reports/net-zero-by-2050

CO2 Emissions by Sector in IEA Net Zero

Figure 3.1 = CO2 emissions by sector in the NZE
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Emissions fall fastest in the power sector, with transport, buildings and industry seeing steady
declines to 2050. Reductions are aided by the increased availability of low-emissions fuels

Source: |[EA


https://www.iea.org/reports/net-zero-by-2050
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Electric Energy System



Global Electric Energy Generation

Global electricity generation EMB=R
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https://ember-climate.org/insights/research/global-electricity-review-2022/

Electricity Demand Growth

Figure 6.3 = Electricity demand growth by region and scenario, 2012-2030
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Global electricity demand growth picks up over the next decade, as a slowing
in China is more than counterbalanced by strong increases in many other markets

Note: EMDE = emerging market and developing economies.

Source: |IEA Net Zero Report
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https://www.iea.org/reports/net-zero-by-2050
https://www.iea.org/reports/electricity-market-report-2023

Electricity Demand by Sector

Table 2.5 = Key global milestones for electrification in the NZE

Figure 2.16 = Global electricity demand and share of electricity in

energy consumption in selected applications in the NZE

Sector 2020 2030 2050
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Global electricity demand more than doubles in the period to 2050,
with the largest rises to produce hydrogen and in industry

Source: |IEA Net Zero Report



https://www.iea.org/reports/net-zero-by-2050

Electric Energy Production by Sources

Wind and solar grow to 12% of global power - pushing up the
share of clean electricity to almost 40%
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https://ember-climate.org/insights/research/global-electricity-review-2022/

We May be at an Inflection Point

A new era of falling fossil generation is about to begin
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https://ember-climate.org/insights/research/global-electricity-review-2022/
https://www.iea.org/reports/electricity-market-report-2023

Sources of Hope: Solar, Wind, Storage Costs Decline

The unit costs of some forms of renewable energy and of batteries for passenger EVs have fallen,
and their use continues to rise.
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https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf

Electricity Generation and IEA Net Zero
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https://ember-climate.org/insights/research/global-electricity-review-2022/

Transmission and Distribution Grid Buildout

Figure 6.19 = Grid development by type, region and scenario, 2022-2050
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https://www.iea.org/reports/net-zero-by-2050
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Figure 25. Wind and solar resource maps of the United States show that many of the best
Source: Examining Supply-Side Options to Achieve 100% resources are in locations remote from demand centers in the eastern part of the country, which
Clean Electricity by 2035, NREL/TP-6A40-81644 require new transmission.



https://www.nrel.gov/docs/fy22osti/81644.pdf
https://www.nrel.gov/docs/fy22osti/81644.pdf

Transmission Buildout
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Figure 26. Interregional transmission capacity grows substantially in three of the four scenarios

(ADE demand case).

This result allows greater access to high-quality (low-cost) wind resources and provides the benefits of spatial diversity.
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Figure 27. Maps of transmission capacity in 2020 and 2035 (ADE demand case) show substantial
additions into wind-rich regions of the United States.

Transmission capacity is differentiated into alternating-current (AC) and two direct-current (DC) technologies:
lines using voltage source converters (VSC) and lines using line-commutated converters (LCC) or back-to-back
interties (B2B).%?


https://www.nrel.gov/docs/fy22osti/81644.pdf
https://www.nrel.gov/docs/fy22osti/81644.pdf

Constructing Electric Grids Takes Years

I Average lead times to build new electricity grid assets in Europe & the United States, 2010-2021

Energy Technology Perspectives 2023
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https://www.iea.org/data-and-statistics/charts/average-lead-times-to-build-new-electricity-grid-assets-in-europe-and-the-united-states-2010-2021
https://www.iea.org/reports/energy-technology-perspectives-2023

“At least 3 000 gigawatts (GW) of
renewable power projects, of which 1 500
GW are in advanced stages, are waiting in
grid connection queues - equivalent to five
times the amount of solar PV and wind
capacity added in 2022.”
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https://www.iea.org/reports/electricity-grids-and-secure-energy-transitions
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Electric Energy System is Transforming

The Process of Delivering Electricity in the U.S.
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The transition from central planning to distributed generation
The electricity market was introduced in 1999
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Peak Demand

Evolution of the annual grid peak load in Texas (left) and in India (right), 2019-2023H1
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https://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/NERC_SRA_2023.pdf
https://www.iea.org/reports/electricity-market-report-2023

Management and Control of Electric Grids

* Modern electric power systems are large scale, spatially distributed, dynamic, interconnected
systems

» Highly reliable, economic, and (aspire to be) carbon-free

» Electric energy is difficult to store in large quantities

* Major engineering constraint: generation = consumption

» Traditional paradigm: adjust supply to match stochastic time-varying demand

» A complex techno-economic management and control system operating at multiple time-scales
to achieve the above goal

* Wind and solar generation cannot be controlled as easily

* New control paradigm: match stochastic generation with stochastic demand



ICT Energy and Carbon Footprint



Information and Communications Technology Sector

« ICT Sector consumes about 3-4% of global electricity production
» |CT Sector contributes about 1.3% of total GHG emissions

« Data centers consume about 1% of global electricity production
« Data centers contribute 0.2% of total GHG emissions

* Machine learning computations are energy intensive. Therefore, we
need to keep an eye on the growth rates of this sector.

« Energy efficiency is an unalloyed good thing!

* More details in the panel session



ICT Sector Electricity Consumption and GHG Footprint

Table 7 ICT sector use stage electricity consumption and GHG emissions in 2020

ICT sector part Use stage Embodied GHG Use stage GHG Total GHG
electricity emissions emissions emissions
(TWh) (Mtonne CO»e) (Mtonne COae) (Mtonne COxe)
User devices * 421 208 228 436
Networks ® 247 31 155 186
Data centers 223 30 95 126
Enterprise networks 25 3 13 16
Total © 916 272 492 764
AIncluding IoT and surveillance cameras, B Including telecommunication satellites, © Rounded values
70%
60%
50%
o * |ICT electricity use: ~3-4% of total
. * ICT GHG footprint: ~1.3% of total
- « Data centers electricity use: ~1%
» Data centers GHG footprint: ~.2% of total

10%

0%

Devices Networks Datacenters Enterprise networks
Embodied GHG emissions (%) Use stage GHG emissions (%)

Figure 3 Total ICT sector carbon footprint 2020
Source: Malmodin et al (2023)



https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4424264

ICT GHG Trend

ICT sector footprint development
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-------- Excluding IoT devices
Total use stage electricity consumption (T Wh)

» Excluding IoT devices

ICT sector development per subscriber
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e Carbon footprintper ICT subscriber (kg CO2e/sub)
Use stage electricity per ICT subscriber (kWh/sub)

Figure 5 Development of ICT sector’s carbon footprint (left), where the dotted lines show the development
without impact from IoT devices in Table 6 and the total ICT sector footprint per subscriber (right)

Source: Malmodin et al (2023)



https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4424264

ICT GHG Breakdown by Sector

Devices NN —
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[

Data centers
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|
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Other EXM 1l
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Cryptocurrencies |
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m Use stage GHG emissions (Mtonne CO2e¢)
®Embodied GHG emissions (Mtonne CO2e)
% Addition for land use (Mtonne CO2e)

Figure 6 Carbon footprint of ICT sector (above the horizontal line) and relating sector/activities

Source: Malmodin et al (2023)



https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4424264

Data Centers



Data Center Energy Utilization Efficiency

Figure 1

PUE progress has stalled

What is the average annual PUE for your largest data center? (n=669)

2.50

@ Average annual PUE

1.57 1.55
——C= —
2007 2011 2014 2018 2019 2020 2021 2022

Uptimelnstitute’ | INTELLIGENCE

Source: Uptime Institute, 2022



https://uptimeinstitute.com/resources/research-and-reports/uptime-institute-global-data-center-survey-results-2022

Data Center Energy Sustainability

Figure 8 Renewables, cooling are biggest drivers for sustainability gains

In your opinion, which of the following will have the biggest impact in making the data center
industry more environmentally sustainable in the next three to five years? Choose one. (n=667)

. Improved data center cooling
. More renewable energy purchasing options
. Improved IT utilization
. Stricter environmental regulatory ﬁ
requirements for data centers
Heat reuse u
. More efficient chip technology

Greater use of public cloud data centers
. A significant increase in energy prices 8%
. Improved data center management software

(All figures rounded)

UPTIME INSTITUTE GLOBAL SURVEY OF
IT AND DATA CENTER MANAGERS 2022 UptimeInstitute" INTELLIGENCE

Source: Uptime Institute, 2022



https://uptimeinstitute.com/resources/research-and-reports/uptime-institute-global-data-center-survey-results-2022

US Data Center Growth

US data center demand is forecast to grow by some 10 percent a year

until 2030.
Data center power consumption, by Data center power consumption, by
providers/enterprises,' gigawatts providers/enterprises,' % share
35 —
+8 7%
30 —

o5 +9.6%

100 —
Enterprises
+11.9% Co-location
20 — companies
CAGR
B H3.0%
10 —
5 I I I Hyperscalers
0

2014 2020 2030 2014 2020 2030

'Demand is measured by power consumption to reflect the number of servers a data center can house. Demand includes megawatts for storage, servers,
and networks.

Source: McKinsey, 2023



https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/investing-in-the-rising-data-center-economy

Ireland Data Center Electricity Growth
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Figure 2.1 - Ireland demand expected from assumed build-out of data centres and new tech loads. EirGrid incorporate
this demand into the low, median and high demand forecast scenarios for 2031

Source: EIRGRID and SONI, All-Island Generation Capacity Statement 2022-2031



https://www.soni.ltd.uk/media/documents/EirGrid_SONI_2022_Generation_Capacity_Statement_2022-2031.pdf

Ireland Data Center and New Technology Loads

50 -
28% of all demand
45 from data centres . .
and new tech - .
40 -+
loads by 2031 - -
— I
35 ]

w
o

Sectoral Split Total Electricity Requirement (TWh)
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Residential (excl. EV&HP) H Commercial
¥ Industrial (excl. Data Centres & New Tech Loads) Data Centres and New Tech Loads

m EVs and Heat Pumps

Figure 2.5 - For the Ireland median demand scenario, this illustrates the approximate split into different sectors.
EirGrid estimate that 28% of total demand will come from data centres and new tech loads by 2031

Source: EIRGRID and SONI, All-Island Generation Capacity Statement 2022-2031



https://www.soni.ltd.uk/media/documents/EirGrid_SONI_2022_Generation_Capacity_Statement_2022-2031.pdf

Ireland Data Centers

HOME > NEWS > GRID LEVEL

Ireland isn't going to limit data
centers despite high energy use

Announcement comes as government issues an amber warning
for the grid

June 13, 2023 By: Georgia Butler {0 Have your say

i fe]n]s]=%

Enterprise Minister Simon Coveney added that there
is “no technology-based economic growth without
data centers.”

“The challenge for us isn't to reduce the number of

data centers in Ireland. The challenge is to find a
way of powering them with sustainable abundant
power by capturing the potential of, in particular,
offshore wind, which | think you'll see a significant
change in investment in the next few years.”




Machine Learning



Energy Impacts of Al Industry

B B z Signin Home News Sport Reel Worklife ' I

Home | War in Ukraine | Climate | Video | World | US & Canada | UK | Business | Tech | Science

= The growing energy

Warning Al industry could use as footprint of artificial intelligence
much energy as the Netherlands Alex de Vries' 7%

“While the exact future of Al-related electricity consumption
remains difficult to predict, the scenarios discussed in this
commentary underscore the importance of tempering both overly

optimistic and overly pessimistic expectations.”

Source: A de Vries, Joule, 2023



https://www.cell.com/joule/pdf/S2542-4351(23)00365-3.pdf

Machine Learning Carbon Footprint

The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink
David Patterson'?, Joseph Gonzalez?, Urs Holzle', Quoc Le', Chen Liang', Lluis-Miquel Munguia®,
Daniel Rothchild?, David So', Maud Texier', and Jeff Dean’

Model. Selecting efficient ML model architectures while advancing ML quality, such as sparse
models versus dense modes, can reduce computation by factors of ~5-10.

Machine. Using processors optimized for ML training such as TPUs or recent GPUs (e.g., V100
or A100), versus general-purpose processors, can improve performance/\Watt by factors of 2-5.

Mechanization. Computing in the Cloud rather than on premise improves datacenter energy
efficiency®, reducing energy costs by a factor of 1.4-2.

Map. Moreover, Cloud computing lets ML practitioners pick the location with the cleanest energy?,
further reducing the gross carbon footprint by factors of 5-10°.

“Four best practices can reduce ML training energy by up to 100x and CO2 emissions up to 1000x.”

Source: Google, 2022, 2204.05149


https://arxiv.org/abs/2204.05149
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COOLERCHIPS

* Flexnode -

«HP -

* HRL Laboratories -

+ Intel Federal -

+ JetCool Technologies -

« National Renewable Energy Laboratory (NREL) -
+ Nvidia -

+ Purdue University -

+ Raytheon Technologies Research Center -
« University of California, Davis (UC Davis) -
+ University of Florida -

« University of Illinois -
+ University of Maryland (UMD) -
« University of Missouri -

Source: arpa-e « University of Texas at Arlington (UT Arlington) -



https://www.ashrae.org/file%20library/technical%20resources/bookstore/emergence-and-expansion-of-liquid-cooling-in-mainstream-data-centers_wp.pdf
https://arpa-e.energy.gov/technologies/programs/coolerchips

2030 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO.8, AUGUST 2014

Energy and Network Aware Workload
Management for Sustainable Data Centers
with Thermal Storage

Yuanxiong Guo, Student Member, IEEE, Yanmin Gong, Student Member, IEEE,
Yuguang Fang, Fellow, IEEE, Pramod P. Khargonekar, Fellow, IEEE, and
Xiaojun Geng, Member, IEEE

Abstract—Reducing the carbon footprint of data centers is becoming a primary goal of large IT companies. Unlike traditional energy
sources, renewable energy sources are usually intermittent and unpredictable. How to better utilize the green energy from these
renewable sources in data centers is a challenging problem. In this paper, we exploit the opportunities offered by geographical load
balancing, opportunistic scheduling of delay-tolerant workloads, and thermal storage management in data centers to facilitate green energy
integration and reduce the cost of brown energy usage. Moreover, bandwidth cost variations between users and data centers are
considered. Specifically, this problem is first formulated as a stochastic program, and then, an online control algorithm based on the
Lyapunov optimization technique, called Stochastic Cost Minimization Algorithm (SCMA), is proposed to solve it. The algorithm

can enable an explicit trade-off between cost saving and workload delay. Numerical results based on real-world traces illustrate

the effectiveness of SCMA in practice.

Index Terms—Data center, energy management, thermal storage, load scheduling, Lyapunov optimization



Conclusions

Climate change is one of the central challenges of our time.

« Energy system decarbonization is a fiendishly difficult imperative.
« Electric energy system sustainability is a viable path forward.

« ICT electric energy and carbon footprints are notable.

« Data center and machine learning energy minimization are worthy goals.
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