Recent Publications:

Syage A, Pachow C, Cheng Y, Mangale V, Green KN, Lane TE. Microglia influence immune responses and restrict neurologic disease in response to central nervous system infection by a neurotropic murine coronavirus. Front Cell Neurosci. 2023;17:1291255. Published 2023 Nov 30. doi:10.3389/fncel.2023.1291255

Cheng Y, Javonillo DI, Pachow C, Scarfone VM, Fernandez K, Walsh CM, Green KN, Lane TE. Ablation of microglia following infection of the central nervous system with a neurotropic murine coronavirus infection leads to increased demyelination and impaired remyelination. J Neuroimmunol. 2023 Jun 17;381:578133. doi: 10.1016/j.jneuroim.2023.578133. Epub ahead of print. PMID: 37352687.

Olivarria G, Lane TE. Evaluating the role of chemokines and chemokine receptors involved in coronavirus infection. Expert Rev Clin Immunol. 2022 Jan 3:1-10. doi: 10.1080/1744666X.2022.2017282. Epub ahead of print. PMID: 34964406.

Olivarria GM, Cheng Y, Furman S, Pachow C, Hohsfield LA, Smith-Geater C, Miramontes R, Wu J, Burns MS, Tsourmas KI, Stocksdale J, Manlapaz C, Yong WH, Teijaro J, Edwards R, Green KN, Thompson LM, Lane TE. Microglia do not restrict SARS-CoV-2 replication following infection of the central nervous system of K18-hACE2 transgenic mice. J Virol. 2021 Dec 22:jvi0196921. doi: 10.1128/jvi.01969-21. Epub ahead of print. PMID: 34935438.

Gema M. OlivarriaYuting ChengSusana FurmanCollin PachowLindsay A. HohsfieldCharlene Smith-GeaterRicardo MiramontesJie WuMara S. BurnsKate I. TsourmasJennifer StocksdaleCynthia ManlapazWilliam H. YongJohn TeijaroRobert EdwardsKim N. GreenLeslie M. ThompsonThomas E. Lane (2021). Microglia do not restrict SARS-CoV-2 replication following infection of the central nervous system of K18-hACE2 transgenic mice.

Syage, A.R., H.A. Ekiz, D.D. Skinner, C. Stone, R.M. O’Connell and T.E. Lane (2020). Single-cell RNA sequencing reveals the diversity of the immunological landscape following CNS infection by a murine coronavirus. J. Virology. DOI: 10.1128/JVI.01295-20

Mangale, V., A.R. Syage, H.A. Ekiz, D.D. Skinner, Y. Cheng, C.L. Stone, K. Green, R.M. O’Connell and T.E. Lane (2020).  Microglia influence host defense and disease following coronavirus infection of the central nervous system. Glia, doi: 10.1002/glia.23844

Ramstead, A.G., J.A. Wallace, S-H. Lee, K.M. Bauer, W. Tang, J.P. Snook, M.A. Williams, T.E. Lane,
J.L. Round, and R. M. O’Connell (2020). Mitochondrial pyruvate carrier 1 (MPC1) enforces T cell
homeostasis by enabling pyruvate oxidation in the mitochondria. Cell Reports, In press.

King, T., P. Mimche, C. Bray, B. Umaru, L. Brady, C. Stone, A. Tunon-Ortiz, C. Eboumbo Moukoko, T.E. Lane, L. Ayong and T. Lamb (2020). EphA2 mediates disruption of the blood-brain barrier in cerebral malaria.  PLoS Pathogens, In press.

 Marro, B.S., D.D. Skinner, J.J. Grist, L.L Dickey, E. Eckman, C. Worne, L. Liu, R.M. Ransohoff  and T.E. Lane(2019). Disrupted CXCR2 signaling on oligodendroglia lineage cells enhances myelin repair in a viral model of multiple sclerosis. J. Virology, Jun 26. pii: JVI.00240-19. doi: 10.1128/JVI.00240-19.

Brown, D.G., R. Soto, S. Yandamuri, C. Stone, L. Dickey, J.C. Gomes-Neto, E.D. Pastuzyn, R. Bell, C.Petersen, K. Buhrke, R.S. Fujinami, R.M. O’Connell, W.Z. Shepherd, T.E. Lane*, and J.L. Round* (2019). The gut microbiota protects from viral-induced neurologic damage through microglia-intrinsic TLR signaling (*Co-corresponding authors), eLife, Jul 16;8. pii: e47117. doi: 10.7554/eLife.47117.

Kim, H., L.L. Dickey, C. Stone, J.L. Jafek, T.E. Lane* and D. Tantin* (2019). T cell-selective deletion of Oct1 protects animals from autoimmune neuroinflammation while maintaining neurotrophic pathogen response. (*Co-corresponding authors) J. Neuroinflammation, Jul 3;16(1):133. doi: 10.1186/s12974-019-1523-3.

Mollaoglu, G., A. Jones, A. Mukhopadhyay, S.J. Wait, S. Jeong, Rahul Arya, D. Hansen, T.L. Mosbruger3, C. Stubben, A. Bhutkar, J.M.Vahrenkamp, K.C. Berrett, T.E. Lane, M.H. Cessna, B.L. Witt, M.E. Salama,  J. Gertz, K.B. Jones, E.L. Snyder, T.G. Oliver (2018). Lineage specifiers SOX2 and NKX2-1 regulate neutrophil recruitment and adenosquamous transdifferentiation in lung cancer. Immunity, 49(4):764-779.

Grist, J.J., B.S. Marro, C. Worne, D.J. Doty, R.S. Fujinami, and T.E. Lane (2018). Induced central nervous system expression of CXCL1 augments neurologic disease in an autoimmune model of multiple sclerosis via enhanced neutrophil recruitment. Eur. J. Immunol. 48(7): 1199-1210, (Cover article).

Denham, S.T., S. Verma, R.C. Reynolds, C.L. Worne, J.M. Daugherty, T.E. Lane, and J.C.S. Brown (2017). Regulated release of cryptococcal polysaccharide drives virulence and suppresses immune cell infiltration into the central nervous system. Infection & Immunity, 2017 Dec 4. pii: IAI.00662-17.

Mangale, V., B.S. Marro, W.C. Plaisted, C.M. Walsh and T.E. Lane (2017). Neural precursor cells derived from induced pluripotent stem cells exhibit reduced susceptibility to infection with neurotropic coronavirus. Virology 511:49-55.

Soto, R., C. Petersen, C.L. Novis, J.L. Kubinak, W.Z. Stephens, R. Bell, T.E. Lane, R. Fujinami, A. Bosque, R.M. O’Connell, and J.L. Round (2017). The microbiota promotes systemic T cell survival through a novel apoptotic factor. PNAS, 114(21):5497-5502.

 Dickey, L.L., C.L. Worne, J.L. Glover, T.E. Lane*, and R.M. O’Connell* (2016). MicroRNA-155 enhances T cell trafficking and antiviral effector function in a model of coronavirus-induced neurologic disease. (*Co-corresponding authors) J. Neuroinflammation, 13(1):240.

Plaisted, W.C., A. Zavala, E. Hingco, H. Tran, R. Coleman, T.E. Lane, J.F. Loring, and C.M. Walsh (2016). Remyelination is correlated with regulatory T cell induction following human embryoid body-derived neural precursor cell transplantation in a viral model of multiple sclerosis. PLOS One, 11(6):e0157620.

 Marsh, S.E., E.M. Abud, A. Lakatos, A. Karimzadeh, S.T. Yeung, H. Davtyan, G. Fote, L. Lau, J.G. Weinger, T.E. Lane, M.A. Inlay, W.W. Poon, and M. Blurton-Jones (2016).  The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglia function. PNAS, 113(9):E1316-25.

Marro, B.S., J.J. Grist, and T.E. Lane (2016). Inducible expression of CXCL1 within the central nervous system amplifies viral-induced demyelination. J. Immunol., 196(4):1855-64.

Blanc, C.A., J.J. Grist, H. Rosen, I. Sears-Kraxberger, O. Steward, and T.E. Lane (2015). S1P receptor antagonism enhances proliferation and migration of engrafted neural progenitor cells in a model of viral-induced demyelination. Am. J. Path.185(10):2819-32. (Selected as Editor’s Choice article)

 

Recent Review Articles:

Furman S, Green K, Lane TE. COVID-19 and the impact on Alzheimer’s disease pathology. J Neurochem. 2023 Oct 18. doi: 10.1111/jnc.15985. Epub ahead of print. PMID: 37850241.

Skinner, D.D. and T.E. Lane (2020). CXCR2 signaling and remyelination. DNA and Cell Biology, In press.

Cheng, Y., D.D. Skinner, and T.E. Lane (2018). Innate immune responses and viral-induced neurologic disease. J. Clin. Med., 8(1). pii: E3. doi: 10.3390/jcm8010003.

Skinner, D.D. and T.E. Lane (2018). The chemokine CXCL10 and coronavirus-induced neurologic disease. Viral Immunology, doi: 10.1089/vim.2018.0073.

Mangale, V., L. McIntyre, C.M. Walsh, J.F. Loring, and T.E. Lane (2018). Promoting remyelination through cell replacement therapies in a model of viral-induced neurodegenerative disease. Dev. Dynamics, doi: 10.1002/dvdy.24658.

Dickey, L.L., T.M.Hanley, T. Huffaker, A.G. Ramstead, R.M. O’Connell, and *T.E. Lane (2017). MicroRNA-155 and viral-induced neuroinflammation. J. Neuroimmuno., *Invited Co-Editor, Special Issue – “Neuropathogenesis Associated with Viral Infection”.

Grist, J.J., B.S. Marro, and T.E. Lane (2016). Neutrophils and viral-induced neurologic disease. Clinical Immuno, pii: S1521-6616(16)30082-1.

 Yandamuri, S.S. and T.E. Lane (2016). Imaging axonal degeneration and repair in pre-clinical animal models of multiple sclerosis. Front. Immunology, 7(189):1-12.

Marro, B.S., C.A. Blanc, J.F. Loring, M.D. Cahalan, and T.E. Lane (2014). Promoting remyelination: utilizing a viral model of demyelination to assess cell-based therapies. Expert Rev. Neurotherap.14(10):1169-79.

 

Book Chapters

Walsh C.M., Plaisted W.C., McIntyre L.L., Loring J.F., Lane TE (2020). Transplantation of iPSC-derived neural progenitor cells promotes clinical recovery and repair in response to murine coronavirus-induced neurologic disease. In iPSCs for Studying Infectious Diseases, Elsevier Press.

 

Commentary

Klein, R.S., R. Voskuhl, B.M. Segal, B.N. Dittel, T.E. Lane, J.R. Bethea, M.J. Carson, C. Colton, S. Rosi, A. Anderson, L. Piccio, J.M. Governman, E.N. Benveniste, M.A. Brown, S. K. Tiwari-Woodruff, T.H. Harris, and A.H. Cross (2017). Speaking out about gender imbalance in invited speakers improves diversity: an example in neuroimmunology. Nat. Immuno., 18(5):475-78.