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An Empirical Investigation of Relative
Risk Aversion

L. ROBIN KELLER

Abstract— A single-attribute utility function models a decisionmaker’s
prelerences as revealed by choices among risky alternatives. A measurable
value function models a decisionmiaker’s strength of preference for various
levels of the attribute. An experimental investigation of the relationship
berween the utility function and measurable value function for twenty-nine
cases is described. The utility function was the same as the measurable
value function in only three cases. Further, the recently developed concept
of a relative risk attitude was used to categorize the observed preferences.
Although relative risk aversion occurred in ten cases, it was not found to be
the universal relative risk attitude. In addition, a person’s relative risk
attitude dilfered across attributes.

I. INTRODUCTION

SINGLE-ATTRIBUTE utility function u(x) models

a decisionmaker’s preferences as revealed by his
choices among risky alternatives. Traditionally, the shape
of the utility curve is examined to reveal the “risk attitude”
of the decisionmaker [22). Similarly, a measurable value
function v(x) m::2i- 2 decisionmaker’s strength of prefer-
ence for variws i#vels ot the attribute. Thus, a measurable
value funcuo: wifl indicate whether a decisionmaker has
decreasing marginai value for additional equal-sized incre-
ments of the attribute. This paper reports an investigation
of the relationship between u(x) and v(x) for 29 actual
cases.

Expected utility is often used as a criterion for ranking
risky alternatives. Satisfaction of the von Neumann-
Morgenstern [25] axioms or equivalent conditions (e.g., see
Marschak [20]) provides a theoretical basis for this use of
the expected utility criterion. The computation of the ex-
pected utility of a risky alternative requires specification of

the probability distribution for the alternative’s outcomes

and the decisionmaker’s u(x) over various levels of the
attribute. A utility function can be assessed by arbitrarily
setting the utility values of the best and the worst levels of
the attribute to be u(x,)=1 and u(x,)=0. The de-
cisionmaker is then asked to provide the-attribute level x
for which he would be indifferent between receiving x ¢
for sure and a risky alternative with a half chance of
receiving x; and a half chance of receiving x,. The utility

of x5 is then equal to the expected utility of the risky -

alternative, which is 0.5. In a similar manner the x,,5 and
Xo7s levels, representing u(xg,s) = 0.25 and u(xgqss) =
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0.75, are obtained. Details of this assessment procedure are
provided in Keeney and Raiffa [16].

A measurable value function is used to measure the
differences in the decisionmaker’s strength of preference
among various attribute levels. Suppose, for attribute levels
x;, x;,and x,, that v(x,) = v(x,)is equal to v(x,) — v(x,).
Then the decisionmaker perceives the same difference in
his strength of preference between levels x; and x, as he
does between x, and-x;. Axioms for the existence of v(x)
are presented by Krantz, er al. [18}, and Dyer and Sarin [4]
have developed a multiattribute measurable value theory.
One method for assessing measurable value functions is to
directly rate the preference differences among pairs of
attribute levels. Several other methods of eliciting measur-
able value functions are given in Fishburn [11] and Dyer
and Sarin {4]. While the assessment of a utility function
requires the use of probabilistic question formats, measur-
able value function assessment requires only deterministic
interrogation procedures.

The first research question addressed here is whether the
utility function is the same as the measurable value func-
tion for most decisionmakers. Harsanyi [14] claims that
u(x) should equal v(x); and some psychological studies
(e.g., [1]) have made this implicit assumption. Sarin [23)
presents conditions under which u(x) and v(x) are logi-
cally equivalent. On the contrary, arguments by Fishburn
{12}, Elisberg [9], and others claim that no identity relation-
ship between u(x) and v(x) needs to exist in general.
Since a utility function is assessed solely on choices among
risky alternatives, no information about the decisionmaker’s
perception of the relative preference differences between
the various attribute levels is collected. Thus, u(x) does
not, by construction, measure preference differences, which
are modeled by v(x). Empirical evidence on this question
was collected by assessing the single-attribute u(x) and
v(x) functions for 12 subjects on from one to three attri-
butes.

Dyer and Sarin {5] define and discuss the concept of
relative risk aversion and provide further insight into the
relationship between u(x) and v(x). In utility assessment
applications, decisionmakers have indicated at least two
factors that affect their decisions in risky situations: 1)
varying preference differences for incremental changes in
the amount of the attribute and 2) attitude toward risk
taking. The first factor can be singled out by assessing the
measurable value function. Each equal increment in the
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level of the value function will represent an equal prefer-
ence difference. In an attempt to isolate risk attitude,
define a utility function u,(v(x)) = u(x). The u, (v(x))
function should reflect only the rnisk factor, since it is
assessed over v(x). The pairs of points (v(x), u(x)) can be
plotted to determine the shape of the w,(v(x)) utility
curve. An examination of the shape of the curve will
provide additional insight into the decisionmaker’s risky
choice behavior. For example, if a decisionmaker’s u,,(v(x))
curve is concave, he will be termed relatively risk averse.
(The terms concave and convex are used here in the strict
sense, excluding the case of a linear function.)

Definition: Suppose that for any i, j, and k satisfying
v(x;) — v(x;) = v(x,) — v(x;), some decisionmaker would
chose to take attribute level x; rather than a risky alterna-
tive with a half chance of getting either x; or x,. Then this
decisionmaker will be defined as relatively risk averse since
he or she would choose the riskless alternative x; rather
than taking a risk in which the expected measurable value

of the risky alternative 0.50(v(x,)) + 0.50(v(x,)) is equal

- to the measurable value v(x,) of the riskless alternative. A

“

relatively risk neutral dec1snonmaker would be indifferent
between the riskless alternative x; and the risky alternative,
and a relatively risk prone decisionmaker would prefer the
risky alternative over the riskless alternative x;.

For example, suppose a person’s preferences among
different annual salary amounts can be modeled by the
utility function u(x) = x%% where x ranges from 0 to 1.0
and represents fractional amounts of a $50000 total. Note
that this utility function is concave, so the person is risk
averse [22]. The same person’s measurable value function
may be v(x) = x2, where annual salary x is on the same
scale as above. This value function is convex, and thus the
person feels there is increasing marginal value for equal-
sized increments in the annual salary. We represent the
person’s preferences under risk with the utility function
u,(v(x)). This utility function is modeled over values of
v(x), where equal-sized increments in v(x) represent equal
preference differences. In this case u,(v(x)) = v(x)*%.
[Since v(x) = x?, we know v(x)®® = x. Substituting for x
in u,(v(x)) = u(x) = x5, we get u,(v(x)) = (v(x)*%)**
= v(x)%%.] Thus u,(v(x)) is concave and this person is
relatively risk averse. To illustrate the definition of relative
risk aversion, consider x, =0, x; = 0.71, and x, = 1.0.
Note that v(x;) — v(x;) = 0.5 — 0 is the same as v(x,) -
v(x;)=10 - 0 5. This person would prefer the riskless
altemauve x; over the risky alternative with a half chance
of either x; or x, since u,(v(x;)) = 0.84 > 0.5u,(v(x,)) +
0.5u (v(x,‘)) =0. 5(0025) +0. 5(1 0%2%) = 0.50.

Notice that a decisionmaker may be risk prone [22] and
be relatively risk averse. This would occur, for example, if
both u(x) and v(x) were convex, but v(x) were more
convex than u(x), so that v(x) lay completely below u(x).
Bell and Raiffa [2] propose that u,(v(x)) is concave (corre-
sponding to relative risk aversion) and suggest specifically
that u (v(x)) is strategically equivalent to —e~““*), The
second research question of this study is whether 1 ,(v(x))
is generally concave, and further, whether it has the ex-
ponential form.
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Few empirical studies have elicited both wu(x) and
v(x) functions. In an experimental study with 24 cases
and an examination of ten previously reported cases,
Krzysziofowicz [19] found support for a constant relative
risk attitude (i.e., ¥, (v(x)) is either linear or it is concave
or convex exponential). His study did not support Dyer
and Sarin’s [5] conjecture that a decisionmaker may have
an intrinsic relative risk attitude, which is invariant across
attributes. Currim and Sarin {4] experimentally evaluated
the use of utility and value functions in consumer prefer-
ence models and discussed the application of the relative
risk attitude in consumer research. McCord and de Neuf-
ville [21] elicited single-attribute utility and value func-
tions. Their results can be shown to illustrate relative risk
aversion for those who were risk averse (in the sense of
Pratt {22]) and relative risk proneness for those who were
risk prone. Fischer [10] and Beach [1] also conducted
empirical studies eliciting and comparing utility and mea-
surable value functions. Finally, Eliashberg [7] assessed
single-attribute #(x) and v(x) functions, but didn’t com-
pare the two types of preference functions.

A measure of the ment of decision analysis research is its
potential impact on actual preference assessment appli-
cations. If a functional relationship between a decision-
maker’s v(x) and u(x) can be established, a broader range
of assessment techniques may be appropriate. For example,
a decisionmaker faced with a decision among risky alterna-
tives might refuse to answer lottery-type assessment ques-
tions, but be willing to answer riskless questions, thus
yielding v(x). Then the utility function u(x) could be
derived using the established functional relationship. The
application of multiattribute utility theory to risky large-
scale societal decisions (such as siting power plants) may
benefit from explicit consideration of relative risk attitudes.
Preferences for levels of different attributes are often mod-
eled by assessing the single-attribute utility functions of
experts in the different areas. But the experts’ utility func-
tions confound their strength of preference with their risk
attitudes. Different experts may have very different relative
risk attitudes, either because of personal traits or academic
training. It may be possible to use the experts’ opinions
about their strength of preference over levels of the attn-
butes (by assessing measurable value functions) without
having to accept their relative risk attitudes. Taken to an
extreme, the relative risk attitude might become a decision
variable. For example, one might choose to exhibit con-
stant relative risk aversion. For more discussion of the
benefits of investigating relative risk attitudes, see Dyer
and Sarin [5].

The next section contains a description of the assessment
of the subjects’ u(x) and v(x) functions. Section III con-
tains the analysis of the results. The research findings are
in Section IV. The final section contains the summary and
suggestions for future research.

1L

Subjects’ v(x) and w(x) functions were assessed with
self-administered questionnaires over one attribute in a few

ASSESSMENT OF PREFERENCE JUDGMENTS
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unrelated decision problems that were framed as both
riskless and risky hypothetical situations. Twelve graduate
and upper-division engineering students in a UCLA deci-
sion analysis seminar participated in the study. Though the
subjects had a background in basic probability and were
learning about single-attribute utility functions, they were
naive about the underlying research questions.

The usual limitations in using students as subjects were
of special concern in this study. In an attempt to ensure
that the subjects would provide meaningful survey re-
sponses based on well-formed preferences, a preliminary
survey was conducted to establish the subjects’ familiarity
with various attributes. Four attributes were selected for
the study based on the results of the preliminary survey:
minutes waiting in a gas line, minutes spent on a bus trip,
grade earned in a class, and annual salary level. Further,
though no direct reward was offered for participation in
the study, the decision analysis students were provided
with relevant academic knowledge in the debriefing.

In each questionnaire, preliminary questions were de-
signed to screen out cases in which the subject apparently
misunderstood the instructions. A bracketing procedure
[21} was introduced as a means for arriving at an indif-
ference judgment by making a series of strict preference
Judgments from both sides of the indifference point. Also,
pairs of questions eliciting the same response were used to
check the consistency of the subjects’ answers. Subjects
were instructed to answer surveys in pencil and to feel free
to change answers if, upon more thought, they felt their
answers were inconsistent with their preferences. The twelve
subjects answered questions on from one to three attri-
butes. depending on their familiarity with decisions involv-
ing the various attributes. In 29 cases, the subjects under-
stood the questioning procedure and consistently provided
the u(x) and v(x) functions. The assessment procedures
for each attribute are described next.

Gasoline Line

Riskless Judgments: This experiment was conducted at a

time when waiting times at gasolire stations sometimes _

were greater than one hour. The scenario was that the
subject’s car was almost out of gas, the car held ten gallons,
and the subject had three hours free before school. The
subject was asked to specify a gas price which would yield
indifference between two gasoline stations. The first ques-
tion was

You are now planning to go to the gas station at which gas
costs $0.90/gallon and there is a 60-minute wait. Fill in the
blank: If I could go to the alternative station below, I'd be
willing to pay $x, = /gallon with a 50-minute wait.

The- ensuing questions elicited prices x,, x,, Xx,, x5 such
that (x,, 50 min) ~ (x,, 40 min) ~ (x,, 30 min) ~ (x4, 20
min) ~ (x5, 10 min). Note that to realistically model the
gasoline-line problem, the second attribute of price per
gallon was introduced. For the relatively small dollar
amounts in this problem, it was verified that subjects’
preferences were linear in money. (See [16, p. 125] for a
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discussion of necessary assumptions in willingness-to-pay
assessment procedures.) '

Risky Judgments: Subjects adjusted waiting times 1o
achieve indifference between gasoline stations. With some
stations, the waiting time was known and at other stations
the exact waiting time was unknown, but was specified
probabilistically. The first task was to fill in the blank
portion of the following:

I am indifferent between a station .at which for sure I'll
wait ten minutes versus a station at which I have a half
chance of waiting five minutes and a half chance of waiting
Y1 = _____minutes.

Ensuing questions sequentially elicited y,, y,,- -
that

"y Yo Such

(; min; 100-percent chance)

~ (y,_, min, 50 percent, Y;+1 min, 50 percent).

Bus Trip Time

Riskless Judgments: The scenario was that subjects com-
muted to school daily on a public bus, choosing among
routes with varying fares and trip times. Subjects stated the
fares x,;,x,,---,x¢ to achieve indifference between the
alternative routes: (80.20. 60 min) ~ (x;, 50 min) ~ (x5,
40 min) ~ --- ~ (x5, 10 min) ~ (x4, 5 min). As in the
gasoline problem, the fare price has been introduced as a
second attribute. It was verified that subjects’ preferences
were linear in money for the relatively small dollar amounts
in this problem.

Risky Judgments: Subjects adjusted bus trip time lengths
to achieve indifference between routes. With some routes
the length was known and on others the length was speci-
fied probabilistically. A suggested reason for a varying
route time length was the uncertainty of whether the sub-
Ject would be able to make transfer connections quickly.
The question format was similar to that described earlier
for the assessment of risky judgments about lengths of time

‘in gasoline lines.

Grades

Riskless Judgments: Subjects were asked to consider how
much better one grade is than another in a calculus class.
They were told to think of an exchange of a higher grade
for a lower grade as a measure of how much academic
improvement has occurred. Represent the exchange of a
B+ grade in place of a B by B — B+ . Subjects received
10 cards containing exchanges of adjacent pairs of grades
from D — D+ to A — A+. Subjects directly rated the
degree of improvement (a surrogate for preference dif-
ference) on each card by giving ten points to the card
showing the least improvement and assigning points to the
other cards relative to this benchmark. For example, if a
card represented twice as much improvement as the ten-
point card, it was to be awarded 20 points.

Risky Judgments: Subjects specified probability values to
achieve indifference between alternative sections of the
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TABLE1
PAIRED u(x) AND v(x) VALUES FOR THE ATTRIBUTE: GRADE IN A CLASS
Case Number 1 2 3 4 5 6 7 8 9 10
Subject A B D E G H 1 J K L
Atrribute
Level x, u v u v u v u v u v u v u v u v u v u t
D 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
D+ 013 004 046 007 039 005 033 004 061 018 00 007 006 009 001 003 002 005 00 006
C- 044 011 091 015 077 0.13 054 008 081 034 002 020 031 0.17 001 007 024 038 00 0.17
C 057 019 096 022 094 020 069 014 087 048 007 028 043 026 0.87 012 026 046 0.04 0.25
C+ 066 028 098 032 095 024 078 021 094 060 018 036 050 035 0.88 045 039 0.50 008 032
B- 0.75 040 099 042 098 036 0.85 029 096 071 030 048 058 043 089 038 068 0.67 0.18 044
B 0.80 049 099 052 098 047 089 038 098 080 042 056 0.66 053 093 063 077 0.71 031 050
B+ 086 062 10 062 099 052 093 049 099 087 054 066 073 064 096 068 087 0.75 0.45 0.59
A - 092 079 10 074 10 073 095 062 099 092 065 078 085 0.76 1.0 085 097 092 0.66 0.76
A 096 087 1.0 085 10 087 098 077 1.0 097 1.0 090 092 088 10 09 10 0.96 0.83 0386
A+ 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1.0 1.0 10
calculus class. The first problem was III.  ANaLysis

I am indifferent between a course in which I'm sure to
receive an A versus a course in which there is a p chance of
an A+ and a1 — p chance of an A— .

Annual Salary Level

Riskless Judgements: Subjects were asked to consider
how much better a job with a specified annual salary was
than another job with a different annual salary that did not
differ by any other important attributes. First, subjects
made the bisection judgment

$6000 — x; ~*x, — $12,000

which they were told would be interpreted as meaning “the
improvement in getting annual salary level x, rather than
$6000 is the same as the improvement of getting $12,000
rather than x,.” Then, subjects sequentially specified
X3, X3,***, X, constructing a uniform sequence of equal
preference difference intervals

x, = $12,000 ~*$12,000 - x,

-~% -~
X2_’X3 x"_l—’x".

Risky Judgments: Subjects adjusted salary levels to
achieve indifference between jobs differing only by salary
levels. The first task was to specify the salary level > such
that a job with a fixed annual salary of $8000 was indiffer-
ent to a job with a starting salary of $6000 and a 50-per-
cent chance of a raise to y, dollars within a short time. The
second judgment was to specify the salary level y, to
achieve indifference between a fixed salary of y, dollars
and a job with a starting salary of $8000 and a 50-percent
chance of a raise to y, dollars. Ensuing judgments followed
this pattern, generating a sequence of y, values. Note that
in order to realistically introduce risk to the salary deci-
sion, some jobs contain the possibility of a raise, which
occurs after a time delay. In this analysis, the utility of an
annual salary* of y, dollars occurring due to a raise is
interpreted as equal to the utility of a fixed annual salary
of y, dollars. Thus the time delay before the raise is not
explicitly considered.

Among the 29 cases of assessed u(x) and v(x) func-
tions, eight cases represented subjects’ preferences for time
on a bus trip, three were for time in a gas line, eight were
for annual salary, and ten were for calculus class grades. In
each of the cases, once u(x) and v(x) were assessed. the
two functions were transformed to a 0-1 scale. Pairs of
u(x) and v(x) values for the different attribute levels are
in Tables I-1V. For the annual salary attribute, both
functions were plotted versus x, and curves were faired
through the points by visual inspection. Pairs of u(x) and
v(x) values were read from the graph for a number of
attribute levels to be used in the analysis. .

This section contains a description of the method of
analysis for each of the research questions. The initial
research question, “Does u(x) = v(x) in general?”, can
also be stated as “Is the linear form u,(v(x)) = v(x)
appropriate in most cases?”. First, various functions of
v(x) were considered as possible models of wu, (v(x)).
Distinguish the model uui v(x)) = f(v(x)) from the actual
data u,(v(x)) by an overbar. If a model provided an
approximate fit to the data. then the actual u,(v(x)) curve
was assumed to share the curvature properties of the
model. The initial research question was then addressed by
examining whether the linear model u, (v{x)) = v(x) pro-
vided the best acceptable fit among all the models consid- -
ered in each of the cases.

. In addition to the linear form, three other model forms
were considered. The exponential form

1- e-t‘(v(x))
=

1-e"

c#0

I'd ’

is concave when the parameter ¢ is positive and convex for
¢ < 0. For ¢ very close to zero, the exponential model is
essentially linear. The logarithmic form

- log (v{x) +¢)—loge

l1+¢
log( p )

, c>0

u,\v{x

1]
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TABLEII :
. PAIRED u(x) AND t'(x) VALUES FOR THE ATTRIBUTE: ANNUAL SALARY LEVEL' .
Case Number i1 12 13 14 15 16 17 18
Subject B C F H ] K L M
$K  u v $K v $K u v 3K u v $K u v $K u v Sk wu v SK v
60 00 00 60 00 00 60 00 00 60 00 00 60 00 00 60 00 00 60 00 00 60 00 00
88 013 009 95 029 008 95 014 020 90 012 020 95 016 0.6 85 041 050 90 038 009 87 012 008
120 019 017 120 042 017 120 033 040 120 025 040 120 027 029 94 050 067 110 050 017 120 032 017
160 029 026 150 050 023 150 050 059 130 050 052 150 035 043 120 10 10 120 053 0.19 160 042 025
200 038 033 160 0356 025 150 051 060 140 066 060 250 0.50 0.66 150 059 028 200 0.50-031
240 042 042 200 063 033 180 075 0.80 160 080 080 270 053 071 180 063 038 21.0 053 034
290 050 050 250 070 042 210 10 10 180 10 10 350 062 086 220 072 047 270 063 042
350 056 0.59 300 0.77 0.50 450 10 10 240 075 053 330 0.72 0.5
420 063 067 350 083 0.8 280 081 063 400 075 0358
300 072 076 400 087 067 290 084 072 480 081 066
600 081 083 450 088 075 330 088 081 570 085 075
710 098 092 500 092 0.3 410 097 091 680 089 0.53
840 10 10 550 09 092 460 10 10 810 095 052
600 10 10 %0 10 10
!SK Annual salary level in thousands of doilars.
P TA\*;LE I developed here: A model is acceptable if the root mean-
AIRED 4(x) AND v(x) VALUES FOR THE ATTRIBUTE: ) .
MINUTES WAITING IN A GaS LINE squared error of the model’s predicted u,(v(x)) from the
is less than or equal to 0.05. Recal
Cace Numiber T o ) actual u, (v(x))is ss q 5. Rec 1 that the
Subject A B I range of the normalized u,(v(x)) curve is one, and note
Attribute that if the model and the actual data varied by no more
Level u v v u v than 0.05 on each pair of values, then the RMSE would be
45 min 0.0 0.0 0.0 0.0 0.0 0.0 less than or equal to 0.05.
40 min 0.14 0.14 0.15 047 0.08 042
30 min 043 043 049 10 032 072 Seventeen of the 29 cases were acceptably modeled by
20 min 071 071 066 10 044 078 one of the four functional forms. The best-fitting models
10 min 1.0 1.0 1.0 1.0 1.0 1.0

is concave for all values of the parameter ¢, but for
¢ 2 100 the curve becomes essentially linear. Finally, a
power function model was considered

u,(v(x)) =v(x),

c>0.

This model is concave for ¢ < 1, linear for ¢ = 1, and
convex for ¢ > 1. '

The closeness of fit of the estimated u,{v(x)) to the
actual u(x) = u, (v(x)) was measured by the root mean-
squared error (RMSE), which is the square root of the
mean-squared error (MSE) -

-

N
MSE = % ) [u,,ivix,ﬂ - u(xi)]z.

i=1
The best-fitting exponential, logarithmic, and power model
for each case was found by a computer search for the
parameter value which minimized the RMSE. Fishburn
and Kochenberger [13] fit exponential and power func-
tions, and Spetzler [24] describes a method for estimating
the logarithmic parameter. Finally, among all models con-
sidered for a specific case, the model with the minimum
RMSE was chosen as the best-fitting model.

Dyer, Farrell, and Bradley [6] and Fishburn and
Kochenberger {13] used mean-squared error for measuring
the closeness of fit of a model to an assessed function, but
they did not propose a criterion for determining whether a
model is “close enough” to reality. An ad hoc rule was

and their properties are listed for each case in Table V. A
linear model provided the best acceptable fit in one case.
In two additional cases, the linear model was close to the
best, as measured by an RMSE < 0.05. The exponential
model provided the best fit in nine cases, the logarithmic
model was best in three cases, and the power model was
best in four cases. In one case, u,(v(x)) was convex, but
none of the four models yielded an acceptable fit. In eleven
cases no uniformly concave, linear, or convex model was
found to be acceptable.

Before responding to the first research question, it was
necessary to develop a measure of the difference between
the best-fitting model and the linear model in each case. If
both models provide approximately the same degree of fit
to the data, then both models are equally appropriate.
Define G, a measure of how much better the best-fitting
model fits the actual data than the linear model, as

_ MSE (best-fitting model)

G=1
MSE (linear model)

for MSE (linear model) # 0.

If the mean-squared error for the linear model is zero, the
data are linear since u(x) = v(x). In this case define G to
be zero. Similar to R2?, which is the coefficient of
determination, G can be interpreted as a measure of the
additional explanation of the variance (of predicted data
points from actual points) by the best-fitting model
over that explained by the linear model. (Fishburn and
Kochenberger [13] introduce a similar measure for compar-
ing a model with the linear model.) A value of G which is
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TABLE IV
PAIRED u(x) AND v(x) VALUES FOR THE ATTRIBUTE: MINUTES IN A Bus Trip
Case Number 22 vk 24 25 26 27 28 29
Subject A F H )] L 1 K M
Attribute
Level u v u v u v u v u v u v u v u v
60 min 60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
50 min 015 029 025 00 001 003 025 007 031 033 025 00 025 025 0.3 007
40 min 049 043 049 021 0.11 0.17 053 033 052 0.50 049 033 050 0.75 031 0.07
30 min 063 057 074 040 022 033 0.63 047 075 0.70 063 034 063 0.75 046 0.47
20 min 088 086 0.88 080 057 050 088 0.67 0.8 09 086 067 075 10 063 066
! 10 min 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
TABLEV
BEST-FrimiNG MopeLs!
Best Other
Case Logarithmic Exponential Power Linear Acceptable Acceptable Curve
Number c- RMSE c RMSE C RMSE RMSE Fit G Fits Shape
1 0.038 0.2995 3.701 0.04708 0.384 0.05600 0.25352 Log 0.986 Exp Concave
2 0.0004 0.10346 11.572 0.04051 0.113 0.10791 0.47608 Exp 0.993 None Concave
3 0.0004 0.10313 11.279 001967 0.135 0.11136 0.47978 Exp 0.998 None Concave
4 0.0036 0.05287 8.097 0.04303 0215 0.07258 0.40937 Exp 0.989 None Concave
5 0.007 0.2529 477 0.01528 0.226 0.03155 0.26775 Exp 0.997 Log, Pow Concave
6 100.0 (013799 -1.365 0.06754 1.604 0.05487 0.13721 None 0.840 None Near Convex
7 0.443  0.03435 1.199 0.03518 0.693 0.04242 0.10833 Log 0.899 Exp. Pow Concave
8 0.029 0.17496 5.689 0.15782 0.375 0.19481 0.30872 None 0.739 None Near Concave
9 100.0 0.09318 -0400 0.08573 1.196 0.08166 0.09283 None 0.226 None S-Shaped
10 100.0 0.15703 -1.675 0.06084 1757 0.04200 0.15620 Pow 0.923 None Convex
11 100.0 0.03222 0.006 0.03222 00981 0.03184 0.03223 Pow 0.024 Lin, Log, Exp Near Linear
12 0.079 0.01405 2697 0.03311 0.441 0.02445 0.21481 Log 0996 Pow, Exp Concave
13 100.0 0.06322 -0.693 0.00682 1.269 0.01021 0.06234 Exp 0.988 Pow Convex
14 100.0 0.06897 -0.328 0.06147 1.145 0.05791 0.06856 None 0.287 None S-Shaped
15 100.0 0.12433 —-1.265 0.7439 1.465 0.08949 0.12369 None 0.638 None Convex
16 100.0 0.09695 -—1.099 0.03105 1.470 0.03685 0.096]8 Exp 0.896 Pow Convex
17 0.062 0.03996 2789 0.07302 0418 0.02151 0.22073 Pow 0.991 Log Concave
18 0.257 0.01821 1.625 0.01731 0.603 0.03458 0.14124 Exp 0.985 Log, Pow Concave
19 100.0 0.00076 ~0.001 0.00008 1.0 0.0 0.0 Lin 0.0 None Linear
20 100.0 0.30948 -3.180 0.27412 2.513 0.27412 0.30922 None 0.214 None Convex & Jump
21 100.0 0.28050 -—3.778 001073 3.336 0.01282 0.27971 Exp 0.999 Pow Convex
22 32201 0.06727 0.032 0.06727 1.016 006719 0.06733 None 0.004 None S-Shaped
23 0.0688 0.10529 2.891 0.10665 0.413 010628 0.20932 None 0.747 None  Near Concave
24 100.0 0.05939 =-0.23 0.05656 1.101 0.05410 0.05916 None 0.164 None S-Shaped
25 0.1665 0.04450 1.85 0.05201 0.538 0.034%0 0.15389 Pow 0.949 Log Concave .
26 10.66 0.02758 0.091 0.02757 0.975 0.02796 0.02858 Exp 0.069 Log, Pow, Lin Near Linear
27 0.165 0.10950 1.98 0.10862 0.512 0.11063 0.18632 None 0.660 None Jump
28 100.0 0.15280 -1.469 0.12060 1.642 0.12878 0.15242 None 0.374 None Jump
29 40012 0.10089 0.192 0.10101 0.793 0.09277 0.10182 None 0.170 None Jump

!Definitions for the above categories are as follows:

value of parameter in model

root mean squared error

G value for the best fitting model

modet has RMSE < 0.05

none of the models provided an acceptable fit

c
RMSE
G

acceptable fit
none
S-shaped
jump

the u,(v(x)) curve has a vertical jump.
close to zero will indicate that the best-fitting model is
close to the linear model. Conversely, relatively high values
of G will indicate that the best-fitting model provides a
substantially superior fit. The values of G in the different
cases are recorded in Table V. '

In one case the linear mode! provided the best accept-
able fit, so G was necessarily zero. In four of the 16 other
cases in which an acceptable model was found, the best-fit-
ting model was considerably better than the linear model,

convex over lower range/concave over higher range

as measured by G values exceeding 0.89. In the two
remaining cases, the best-fitting models were only slightly
concave and provided fits that were very close to the fit
provided by the linear model. This was shown by G values
that were less than 0.07. In the twelve cases for which no
acceptable model was found, the linear model was, of
course, unacceptable. So, the linear model was appropriate
in at most three of 29 cases. Thus it can be reasonably
concluded that u(x) is not in general equal to v(x).
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TABLE VI TABLE VII
RELATIVE RISK ATTITUDES AND SHAPES OF u,(x)) CURVES! RELATIVE RISK ATTITUDES ACROSS ATTRIBUTES!
Relative ‘Attributes
Risk Annual Grade Bus Gas
Relatively  Relatively Relative  Attitude Salary ina Trip Line
Risk Averse Risk Neutral Risk Prone Varies Subjects Level Class Minutes Minutes
Attribute (concave) (linear) (convex)  (other) H Varies  Varics, near RRP Varies
Annual salary level 12 3 1 ] RRP Varics. near RRA RRA
(8 cases) K~ RRP Varies Varies
Grade in a class 6 0 1 3 L RRA RRP RRN?
(10 cases) 2 A RRA Varies RRN
Bus trip minutes 1 1 0 6 1 RRA Varies RRP
(8 cases) Vari
Gas Line Minutes 0 1 2 0 M REA A acar RRA
@ cases) B RRN? RRA RRP

Total cases in which
shape was observed 10 3 6 10
(out of 29 total cases)

VEntries in table are number of subjects whose preferences fall into each
category.

“This case is very near linear, but a slightly concave model has an
RMSE that is betier by less than or equal to 0.0011.

’

The second research question was whether, in general,
u,(v(x)) was concave. Examination of the shapes of the
best-fitting models identified during the analysis of the
first research question provided the answer to this ques-
tion. A summary of the u,(v(x)) curve shapes is in Table
~ VL Ten curves were concave, three were essentially linear,
and six were convex. In ten cases the curve was not
uniformly concave, linear, or convex. Thus, u,(v(x)) was
not generally concave.

The second research question can be restated as “In
most cases are decisionmakers relatively risk averse?,” since
a concave u, (v(x)) curve indicates relative risk aversion.
Categorization of the observed preferences by relative risk
attitude is facilitated by also observing that when u,(v(x))
is linear, the decisionmaker is relatively risk neutral and
when u,(v(x)) is convex, the decisionmaker is relatively
risk prone. (These observations are based on the reasoning
in the proofs of Theorems 4.3 and 4.4 in Keeney and
Raiffa [16].) When a u,(v(x)) curve cannot be represented
by a uniformly concave, linear, or convex model, then the
decisionmaker has a relative risk attitude that varies over
the levels of the attribute. The subjects were only relatively
risk averse in ten of 29 cases so we can conclude that
decisionmakers are not, in general, relatively risk averse. In
fact, the subjects displayed different relative risk attitudes
for different attributes, as shown in Table VII. For exam-
ple, Subject A was relatively risk averse for the “grades”
attribute but relatively risk neutral for the “gas line
minutes” attribute. Norie of the nine subjects who re-
sponded for more than one attribute had the same relative
risk attitude across these attributes.

1V. FINDINGS

Two major findings emerge from this analysis. First, the
utility function and the measurable value function were not
generally the same. In fact, u(x)= v(x) was only an

!'Blank spaces indicate subject did not report preferences on that
attribute. Relative risk attitudes are as follows:

RRA relatively risk averse

RRN relatively risk neutral

RRP relatively risk prone
Varies relative risk attitude varies.

2This case is very near linear, but a slightly concave model does
marginally better.

acceptable model of the relationship between the functions
in three out of 29 cases. Thus decisionmakers will not
usually be relatively risk neutral.

Second, u,(v(x)) was not generally concave. The
u,(v(x)) models were only concave in ten out of 29 cases.
Subjects varied in their relative risk attitudes: ten cases
were relatively risk averse, three were relatively risk neu-
tral, and six were relatively risk prone. Ten cases displayed
a nonuniform relative risk attitude.

Additionally, a preliminary finding is that decision-
makers appear to have different relative risk attitudes for
different attributes. Among the subjects who stated their
preferences on more than one attribute, none displayed the
same relative risk attitude for all attributes. This finding
does not support Dyer and Sarin’s [5] conjecture that
relative risk attitude may be independent of the attribute
on which preferences are assessed. Krzysztofowicz [19)
reports a similar result.

Another preliminary finding is that the concave ex-
ponential form of u(v(x)), which exhibits constant relative
risk aversion, appears to be appropriate for some de-
cisionmakers but not for others. This form was the best
acceptable model found in five of the 29 cases and was an
acceptable model in three additional cases. (In two other
cases a very nearly linear concave exponential model pro-
vided an acceptable fit.) This finding suggests that the
prescriptive theory developed by Bell and Raiffa [2] claim-
ing that constant relative risk aversion is rationally implied.
by some reasonable assumptions cannot also be used in all
cases to model actual preferences descriptively. The results
are also in contrast to the finding of a constant relative risk
attitude by Krzysztofowicz [19), since only ten of 29 cases
were best modeled by the concave or convex exponential
form or the linear form. However, in four of the other
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cases, the exponential or linear model was close in fit to the
best model.

V. SUMMARY AND FUTURE RESEARCH

This study has provided experimental results on the
relationship of individuals’ single-attribute measurable
value functions and their corresponding utility functions.
First, the empirical evidence strongly supports the theoreti-
cal arguments by Fishburn [12] and Ellsberg [9] that u(x)
and v(x) are not generally the same. At the same time the
evidence is strongly against the assumption in Beach [1]
that u(x) = v(x).

The finding that decisionmakers’ relative risk atutudes
differ suggests further descriptive and normative research
possibilities. The descriptive research possibilities focus on
gathering more information on the relative risk attitudes
that decisionmakers exhibit. For example, this study was
limited to an investigation of unrelated attributes. A logical
extension of this work would examine relative risk attitudes
for related attributes in a multiattribute setting (see
von Winterfeldt er al. [26]). In addition, the preferences of
a larger number of subjects could be assessed to examine
how decisionmakers’ relative risk attitudes vary across many
attributes. Also, the relationship between the subjects’ risk
, attitudes and relative risk attitudes across many attributes
could be examined.

As Bell and Raiffa [2] point out, “our reasoning cannot
be said to be ‘correct’ unless empirical studies suggest close
agreement to observed responses or unless many people
who wish to behave rationally fee! these arguments to be
compelling.” This study has not empirically supported
their concave exponential form of u,(v(x)) (i.e., constant
relative risk aversion) as a descriptive model of preferences.
However, the form appeared appropriate in some cases,
and future studies could present normative arguments
which might influence decisionmakers to choose to exhibit
constant relative risk aversion.

Finally, there is great potential for research on prefer-
ence function assessment biases and errors. Hershey, et al.
[15] and McCord and de Neufville [21] have shown that
assessed utility functions depend on the specific assessment
procedure used. In this study each preference function was
assessed using only one procedure. A further study could
use preference functions resulting from multiple assess-
ment procedures. Also, many studies have shown that
subjects do not always conform with the principles re-
quired by expected utility. In assessing utility functions in
the future, choice problems could be formatted in propor-
tional decision matrices which have been shown by Keller
{17] to enhance conformity with expected utility. Finally,
when a preference model is constructed based upon a
subject’s actual responses, it is desirable to have the ability
to determine statistically if the model provides a close
enough fit to the data. For example, we may want to know
if the model is sufficiently close to the actual data that any
deviation of the model from the data could be attributed to
random response error (see Eliashberg and Hauser [8)).
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