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Model Solutions for Problems

Problem 2.1.1 Prove that for all vectors u in V , there is a unique vector v in

V such that u+ v = 0.

Proof Assume that for some vector u in V , there are vectors v1 and v2 in V

such that u+ v1 = 0 and u+ v2 = 0. Then

v1 = v1 + 0 (by VS3)

= v1 + (u + v2) (by our assumption that u+ v2 = 0)

= (v1 + u) + v2 (by VS2)

= (u+ v1) + v2 (by VS1)

= 0+ v2 (by our assumption that u+ v1 = 0)

= v2 + 0 (by VS1)

= v2. � (by VS3)

Problem 2.1.2 Prove that for all vectors u in V , if u+ u = u, then u = 0.

Proof Let u be a vector in V such that u+ u = u. Then

u = u+ 0 (by VS3)

= u+ (u+ (−u))

= (u+ u) + (−u) (by VS2)

= u+ (−u) (by our assumption that u+ u = u)

= 0. �

Problem 2.1.3 Prove that for all vectors u in V , and all real numbers a,

(i) 0 · u = 0

(ii) −u = (−1) · u
(iii) a · 0 = 0.

Proof Let u be a vector in V and let a be a real number. (i) By VS 6,

0 · u = (0 + 0) · u = 0 · u+ 0 · u.
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So, by problem 2.1.2, 0 · u = 0.

(ii) By VS 8 and VS 6,

u+ (−1) · u = 1 · u+ (−1) · u = (1− 1) · u = 0 · u.

But, by part (i), 0 · u = 0. So u + (−1) · u = 0. Thus, (−1) · u is the additive

inverse of u, i.e., (−1) · u = −u.

(iii) By VS 3 and VS 5,

a · 0 = a · (0+ 0) = a · 0+ a · 0.

So, by problem 2.1.2 again, a · 0 = 0. �

Problem 2.1.4 Prove that the intersection of any non-empty set of subspaces

of V is a subspace of V .

Proof Let X be a non-empty set of subspaces of V . We show that the inter-

section set ∩X is also a subspace of V , i.e., we show that (i) ∩X is non-empty,

and (ii) ∩X is closed under vector addition and scalar multiplication.

(i) The zero vector 0 belongs to every subspace of V . So, in particular, it belongs

to every subspace of V that is in X . So 0 ∈ ∩X .

(ii) Let u and v be vectors in ∩X , and let a be a real number. Then, for all

W in X , u and v belong to W . It follows – since each individual W in X is a

subspace – that u+v and a ·u belong to all W in X . So u+v and a ·u belong to

the intersection set ∩X . Thus, as required, ∩X is closed under vector addition

and scalar multiplication. �

Problem 2.1.5 Let S be a subset of V . Show that L(S) = S iff S is a subspace

of V .

Proof Let X be the set of all subspaces of V that contain S as a subset. So

L(S) = ∩X . Since S is a subset of each element of X , it is certainly a subset

of the intersection of all those elements, i.e., S ⊆ ∩X . So S ⊆ L(S). This much

holds for any subset S of V . But if S is itself a subspace of V , i.e., S ∈ X , then

it is also true that ∩X ⊆ S, and so L(S) ⊆ S. Thus, if S is a subspace of V , it

follows that L(S) = S. Conversely, suppose that L(S) = S. Then S is certainly

a subspace of V , for in this case S = ∩X and we know from problem 2.1.4 that

∩X is a subspace of V . �
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Problem 2.1.6 Let S be a subset of V . Show that S is linearly dependent iff

there is a vector u in S that belongs to the linear span of S − {u}.

Proof Let us first dispose of one special case. If S is the empty set, then S

is not linearly dependent. And in this case, there does not exist a vector u in

S that belongs to the linear span of S − {u}. So the stated equivalence holds.

Thus we may assume that S is non-empty.

Suppose that S is linearly dependent. Then, for some k ≥ 1, there exist

(distinct) vectors u1, ..., uk in S and real numbers a1, ..., ak, not all 0, such that

a1 · u1 + ... + ak · uk = 0. Without loss of generality – because we can always

renumber the vectors – we may assume that ak 6= 0. Now consider two cases:

(i) ak is the only non-zero coefficient in the indicated sum, or (ii) otherwise.

Assume first that (i) obtains. Then ak · uk = 0 and, hence, by VS8 and VS7,

uk = 1 · uk = ((1/ak) ak) · uk = (1/ak) · (ak · uk) = (1/ak) · 0.

But (1/ak)·0 = 0 by problem 2.1.3. Therefore, uk = 0. It follows that there is a

vector u in S, namely 0, that belongs to the linear span of S−{u}. (Why? The

the linear span of S − {u} is a subspace of V , and 0 belongs to every subspace

of V .)

Next assume that case (ii) obtains. Then, by problem 2.1.3 again, we have

ak · uk = −(a1 · u1 + ...+ ak−1 · uk−1) = (−1) · (a1 · u1 + ...+ ak−1 · uk−1),

and the indicated sum has at least one term. It follows by VS8 and VS7, once

again, that

uk = (−1/ak) · (a1 · u1 + ...+ ak−1 · uk−1).

So, in this case too, we see that there is a vector u in S, namely uk, that belongs

to the linear span of S − {u}.

Conversely, assume that there is a vector u in S that belongs to the linear

span of S − {u}. Again, we consider two cases: (i) S − {u} is the empty set,

and (ii) S −{u} is non-empty. In case (i), the linear span of S −{u} is {0}. So
u = 0. Therefore 0 belongs to S and, hence, the latter is linearly dependent.

In case (ii), the linear span of S − {u} is the set of all linear combinations of

elements in S − {u}. So, since u is in that linear span, there is a k ≥ 1, vectors

u1, ..., uk in S, and real numbers a1, ..., ak, such that

u = a1 · u1 + ...+ ak · uk.

Hence, by problem 2.1.3,

0 = u+ (−u) = (a1 · u1 + ...+ ak · uk) + (−u)

= (a1 · u1 + ...+ ak · uk) + (−1) · u.
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Since the vectors u1, ..., uk and u all belong to S, and since at last one of the

coefficients in the final sum is non-zero, namely the final coefficient (−1), we see

that S is linearly dependent. �

Problem 2.1.7 Show that two finite dimensional vector spaces are isomorphic

iff they have the same dimension.

Proof Let V = (V,+,0, ·) and V′ = (V ′,+′,0′, ·′) be finite dimensional vector

spaces. Assume first that there exists an isomorphism Φ : V → V ′. Let n =

dim(V). If n = 0, then V = {0} and V ′ = {Φ(0)} = {0′}. So, dim(V′) = 0 =

dim(V). Thus we may assume n ≥ 1. Let S = {u1, ..., un} be a basis for V.

We claim that S′ = {Φ(u1), ...,Φ(un)} is a basis for V′ and, therefore, in this

case too, dim(V′) = dim(V).

First we verify that S′ is linearly independent. Assume to the contrary that

there exist coefficients a1, ..., an, not all 0, such that

a1 ·′ Φ(u1) +
′ ...+′ an ·′ Φ(un) = 0′.

Since Φ is linear it follows that

Φ(a1 · u1 + ...+ an · un) = a1 ·′ Φ(u1) +
′ ...+′ an ·′ Φ(un) = 0′.

Hence, since ker(Φ) = {0}, a1 ·u1+ ...+an ·un = 0. But this is impossible since

S is a basis (and, therefore, linearly independent). So S′ is linearly independent,

as claimed.

Next we verify that L(S′) = V ′. Let u′ be a vector in V ′. Since Φ maps V

onto V ′, there is a vector u in V such that Φ(u) = u′. Since S is a basis for V,

there exist coefficients a1, ..., an such that u = a1 · u1 + ...+ an · un. Hence, by

the linearity of Φ again,

u′ = Φ(u) = Φ(a1 · u1 + ...+ an · un) = a1 ·′ Φ(u1) +
′ ...+′ an ·′ Φ(un).

Thus u′ is in L(S′). Since u′ was an arbitrary vector in V ′, L(S′) = V ′. Thus

S′ is a basis for V′, as claimed.

Conversely, assume that V and V′ both have dimension n. If n = 0, then

V = {0}, V ′ = {0′}, and the trivial map Φ that take 0 to 0′ qualifies as an

isomorphism between the vector spaces. So we may assume that n ≥ 1. Let

S = {u1, ...un} be a basis for V, and let S′ = {u′
1, ..., u

′
n} be a basis for V′.

We define a map Φ : V → V ′ as follows. Given any vector u in V , it can be

expressed uniquely in the form u = a1 · u1 + ... + an · un. We take Φ(u) to be

a1 ·′ u′
1+

′ ...+′ an ·′ u′
n. We claim that Φ, so defined, qualifies as an isomorphism

between V and V′.

First, it is injective, i.e., ker(Φ) = {0}. For suppose Φ(u) = 0′ for some

vector u = a1 ·u1 + ...+ an ·un. Then 0′ = Φ(u) = a1 ·′ u′
1 +

′ ...+′ an ·′ u′
n. And
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therefore, since S′ is linearly independent, all the coefficents ai must be 0, i.e.,

u = 0. So ker(Φ) = {0}, as claimed.

Next, Φ maps V onto V ′. For let u′ be any vector in V ′. It can be expressed

as u′ = a1 ·′ u′
1 +

′ ...+′ an ·′ u′
n. Hence, if u = a1 · u1 + ...+ an · un, Φ(u) = u′.

So Φ[V ] = V ′, as claimed.

Finally, Φ is linear. For given any vectors u = a1 · u1 + ... + an · un and

v = b1 · u1 + ... + bn · un in V , and any real number a, it follows (by VS 1, VS

2, and VS 6) that

Φ(u+ v) = Φ((a1 + b1) · u1 + ...+ (an + bn) · un)

= (a1 + b1) ·′ u′

1 +
′ ...+′ (an + bn) ·′ u′

n

= (a1 ·′ u′

1 +
′ ...+′ an ·′ u′

n) +′ (b1 ·′ u′

1 +
′ ...+′ bn ·′ u′

n)

= Φ(u) +′ Φ(v),

and (by VS 5 and VS 7) that

Φ(a · u) = Φ(a · (a1 · u1 + ...+ an · un))

= Φ((aa1) · u1 + ...+ (aan) · un)

= (aa1) ·′ u′

1 +
′ ...+′ (aan) ·′ u′

n

= a ·′ (a1 ·′ u′

1 +
′ ...+′ an ·′ u′

n)

= a ·′ Φ(u).

So we are done. �

Note: At this stage, we allow ourselves to perform simple computations with

vectors (e.g., rearranging terms in a sum) without justifying every step with a

direct appeal to clauses VS 1 - VS 8 in the definition of a vector space.

Problem 2.2.1 Show that for all points p and q in A, and all subspaces W of

V, the following conditions are equivalent.

(i) q belongs to p+W

(ii) p belongs to q+W

(iii) −→pq ∈ W

(iv) p+W and q+W coincide (i.e., contain the same points)

(v) p+W and q+W intersect (i.e., have at least one point in common)

Proof Let p and q be points in A, and let W be a subspace of V .

(i) ⇒ (ii) Assume that q belongs to p +W . Then there is a vector u in W

such that q = p + u. It follows that p = q + (−u). Since u is in W (and since

W is a subspace of V ), (−u) is in W as well. So p belong to q +W .
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(ii) ⇒ (iii) Assume that p belongs to q +W . Then there is a vector v in W

such that p = q + v. So −→qp = v ∈ W . But W is a subspace of V . So, since −→qp
belongs to W , −−→qp belongs to W as well. It follows that −→pq = −−→qp ∈ W .

(iii) ⇒ (iv) Assume that −→pq belongs to W . We show that (p+W ) ⊆ (q+W ).

(A similar argument shows that (q+W ) ⊆ (p+W ).) Let r be a point in p+W .

Then there is a vector u in W such that r = p+ u. It follows that

r = (q +−→qp) + u = q + (−→qp+ u) ∈ q +W

(since both −→qp and u belong to W and W is a subspace of V ). So r is in q+W .

Thus, (p+W ) ⊆ (q +W ), as claimed.

(iv) ⇒ (v) This one is trivial.

(v) ⇒ (i) Assume there is a point r that belongs to both p+W and q +W .

Then there exist vectors u and v in W such that r = p + u and r = q + v. It

follows that

q = r + (−v) = (p+ u) + (−v) = p+ (u− v).

Since u and v are both in W , and since W is a subspace of V , (u− v) is in W .

So q belongs to p+W .

Problem 2.2.2 Let p1+W1 and p2+W2 be lines, and let u1 and u2 be non-zero

vectors, respectively, in W1 and W2. Show that the lines intersect iff −→p1p2 is

a linear combination of u1 and u2.

Proof Assume first that the lines intersect. Then there is a point q in A, and

real numbers a1 and a2, such that q = p1 + a1u1 and q = p2 + a2u2. So,

p1 + a1u1 = p2 + a2u2. It follows that p2 = p1 + a1u1 + (−a2u2) and, hence,

that −→p1p2 = a1u1 − a2u2. So
−→p1p2 is a linear combination of u1 and u2.

Conversely, assume that −→p1p2 is a linear combination of u1 and u2, i.e.,

assume there exist real numbers a1 and a2 such that −→p1p2 = a1u1 + a2u2. Then

p2 = p1 + (a1u1 + a2u2) and, therefore, p2 + (−a2u2) = p1 + a1u1. It follows

that there exists a point – namely this point p1 + a1u1 – that belongs to both

p1 +W1 and p2 +W2. �

Problem 2.2.3 Let p, q, r, s be any four distinct points in A. Show that the

following conditions are equivalent.

(i) −→pr = −→sq
(ii) −→sp = −→qr
(iii) The midpoints of the line segments LS(p, q) and LS(s, r) coincide, i.e.,

p+
1

2
−→pq = s+

1

2
−→sr.
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Proof

(i) ⇒ (ii) Assume −→pr = −→sq. Then

−→sp = −→sq +−→qr +−→rp = −→pr +−→qr +−→rp = −→qr + (−→pr +−→rp) = −→qr + 0 = −→qr.

So we have (ii).

(ii) ⇒ (iii) Assume −→sp = −→qr. Then

p+
1

2
−→pq = (s+−→sp) + 1

2
(−→pr + −→rq)

= s+
1

2
(−→sp+−→sp+−→pr +−→rq)

= s+
1

2
(−→sp+−→qr +−→pr +−→rq)

= s+
1

2
((−→sp +−→pr) + (−→qr +−→rq))

= s+
1

2
(−→sr + 0) = s+

1

2
−→sr.

So we have (iii).

(ii) ⇒ (i) Assume p+
1

2
−→pq = s+

1

2
−→sr. Then

p = s+
1

2
−→sr +

(

−1

2
−→pq
)

= s+
1

2
(−→sr −−→pq)

= s+
1

2
((−→sp +−→pr)− (−→ps+−→sq))

= s+
1

2
((−→sp −−→ps) + (−→pr −−→sq))

= s+
1

2
(2−→sp+ (−→pr −−→sq))

= s+

(

−→sp+ 1

2
(−→pr −−→sq)

)

.

So −→sp = −→sp+ 1

2
(−→pr −−→sq). It follows that (−→pr − −→sq) = 0 and, hence, that

−→pr = −→sq. So we have (i).

Problem 2.2.4 Let p1, ..., pn (n ≥ 1) be distinct points in A. Show that there

is a point o in A such that −→op1 + ... + −→opn = 0. (If particles are present at the

points p1, ..., pn, and all have the same mass, then o is the “center of mass” of

the n particle system.)
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Proof Let q be any point at all, and let o be defined by

o = q +
1

n
(−→qp1 + ...+−→qpn).

Clearly, n−→qo = (−→qp1 + ...+−→qpn). It follows that

(−→op1 + ...+−→opn) = (−→oq +−→qp1) + ...+ (−→oq +−→qpn)
= n−→oq + (−→qp1 + ...+−→qpn)
= n−→oq + n−→qo = n (−→oq −−→oq) = 0. �

Problem 2.2.5 Let (V,A,+) be a two-dimensional affine space. Let {p1, q1, r1}
and {p2, q2, r2} be two sets of non-collinear points in A. Show that there is a

unique affine space isomorphism ϕ :A → A such that ϕ(p1) = p2, ϕ(q1) = q2,

and ϕ(r1) = r2.

Proof

Let {p1, q1, r1} and {p2, q2, r2} be two sets of non-collinear points in A. Then

the vectors −−→p1q1 and −−→p1r1 are linearly independent and, so, form a basis for V .

Similarly, −−→p2q2 and −−→p2r2 form a basis for V . It follows that there is a unique

isomorphism Φ: V → V such that

Φ(−−→p1q1) = −−→p2q2

Φ(−−→p1r1) = −−→p2r2.

Now consider the map ϕ : A → A defined by

ϕ(s) = p2 + Φ(−→p1s). (1)

It follows from proposition 2.2.6 that ϕ(p1) = p2, that ϕ is a bijection, and that

ϕ(s) = ϕ(t) + Φ(
−→
ts). (2)

for all s and t in A. Thus ϕ qualifies as an affine space isomorphism. And it

further follows from (1) that

ϕ(q1) = p2 + Φ(−−→p1q1) = p2 + −−→p2q2 = q2

ϕ(r1) = p2 + Φ(−−→p1r1) = p2 + −−→p2r2 = r2,

as required.

To establish uniqueness, suppose that ϕ′ : A → A is an affine space iso-

morphism such that ϕ′(p1) = p2, ϕ
′(q1) = q2, and ϕ′(r1) = r2. Suppose that

Φ′ : V → V is the corresponding vector space isomorphism. So we have

ϕ′(s) = ϕ′(t) + Φ′(
−→
ts). (3)
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for all s and t in A. It now follows by (3) and (1) that

Φ′(−−→p1q1) =
−−−−−−−−→
ϕ′(p1)ϕ

′(q1) = −−→p2 q2 =
−−−−−−−→
ϕ(p1)ϕ(q1) = Φ(−−→p1q1).

Similarly, we have

Φ′(−−→p1r1) = Φ(−−→p1r1).

So the isomorphisms Φ and Φ′ agree in their action on the elements of a basis

for V . It follows that they are agree in their action on all vectors in V , i.e.,

Φ′ = Φ. From this, in turn, it follows that ϕ and ϕ′ must be equal. For by (3)

and (1) again, we have

φ′(s) = φ′(p1) + Φ′(−→p1s)
= p2 + Φ′(−→p1s)
= φ(p1) + Φ(−→p1s)
= φ(s)

for all s in A.

Problem 2.3.1 Prove that for all vectors v and w in V ,

〈v, w〉 = 1

2
(〈v, v〉 + 〈w,w〉 − 〈v − w, v − w〉).

Proof This follows immediately from the fact that (by IP1, IP2, IP3, and

problem 2.1.3),

〈v − w, v − w〉 = 〈v + (−1)w, v + (−1)w〉
= 〈v, v〉+ 〈v, (−1)w〉 + 〈(−1)w, v〉+ 〈(−1)w, (−1)w〉
= 〈v, v〉 − 2〈v, w〉 + 〈w,w〉. �

Problem 2.3.2 Let W be a subspace of V . Show that the following conditions

are equivalent.

(i) W is definite.

(ii) There does not exist a non-zero vector w in W with 〈w,w〉 = 0.

Proof One direction ((i) ⇒ (ii)) is immediate. If W is definite, then either

〈w,w〉 > 0 for all non-zero w in W , or 〈w,w〉 < 0 for all non-zero w in W .

Either way, there cannot be a non-zero vector w in W such that 〈w,w〉 = 0.

For the converse, suppose that (ii) holds, but (i) does not. Then there exist

non-zero vectors u and v in W such that 〈u, u〉 < 0 and 〈v, v〉 > 0. (It follows
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alone from the fact that W is not definite that there exist non-zero vectors u

and v in W such that 〈u, u〉 ≤ 0 and 〈v, v〉 ≥ 0. And by (ii), the inequalities

must be strict.) Consider the function f :R → R defined by

f(x) = 〈xu + (1− x)v, x u+ (1− x)v〉.

Clearly, it can be expressed in the form

f(x) = ax2 + bx+ c,

where a = 〈u− v, u− v〉, b = 2〈u− v, v〉, and c = 〈v, v〉. Now f must have a real

root, i.e., there must be a real number x0 such that f(x0) = 0. We will verify

this shortly, but let us assume it for now. Then

w = x0 u+ (1− x0) v

is in W (since u and v are) and 〈w,w〉 = 0 (since 〈w,w〉 = f(x0)). Moreover, w

is not the zero vector. Why? If it were, it would follow that x0 u = −(1− x0) v

and, hence, that x2
0 〈u, u〉 = (1−x0)

2 〈v, v〉. And this is impossible, since 〈u, u〉
is negative and 〈v, v〉 is positive. So w is a non-zero vector in W satisfying

〈w, w〉 = 0. But this contradicts (ii). So it must be the case that if (ii) holds,

then (i) holds as well.

It only remains to verify that there is a real number x0 such that f(x0) =

0. There are various ways to see this. First, f is certainly continuous. (All

polynomials are.) And f(0) = 〈v, v〉 > 0, while f(1) = 〈u, u〉 < 0. So (by

the “intermediate value theorem”), there must be an “intermediate point” x0,

between 0 and 1, where f switches from positive to negative values.

Second, it follows from simple algebraic considerations. Any polynomial of

form f(x) = ax2 + bx+ c has a real root iff (b2 − 4ac) ≥ 0. (Recall the formula

that gives the roots, real or not, for the quadratic equation ax2 + bx+ c = 0.)

So it suffices to verify the latter inequality in the case at hand. What we have

to work with are the two conditions

c = 〈v, v〉 > 0

a+ b+ c = f(1) = 〈u, u〉 < 0.

So suppose the inequality does not hold, i.e., suppose that b2 < 4ac. Then

it must be the case that a > 0 and 0 < a + c < −b. But this leads to a

contradiction:

(a+ c)2 < b2 < 4ac = (a+ c)2 − (a− c)2 ≤ (a+ c)2.

So, (b2 − 4ac) ≥ 0. �

Problem 2.4.1 Prove that for all vectors u and v in V ,
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‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).

Proof Let u and v be vectors in V . Then

‖u+ v‖2 + ‖u− v‖2 = < u+ v, u+ v > + < u− v, u− v >

= 2 < u, u > + 2 < v, v >

= 2 (‖u‖2 + ‖v‖2).

Problem 2.4.2 Give a second proof of proposition 2.4.1.

Proof Let u and v be vectors in V . We may assume that u 6= 0, since otherwise

the proposition is trivial. Consider the function f :R → R defined by

f(x) = 〈xu+ v, xu + v〉 = ax2 + bx+ c,

where a = 〈u, u〉, b = 2〈u, v〉, and c = 〈v, v〉. Since the inner product 〈 , 〉 is

positive-definite, we have

(i) a > 0;

(ii) f(x) ≥ 0 for all x in R;

(iii) f(x) = 0 iff xu+ v = 0.

Now any function f :R → R of the form f(x) = ax2+bx+c, with a > 0, assumes

a minimal value
(−b2 + 4ac)

4a
at x =

−b

2a
. (Here we invoke basic principles of

algebra or calculus.) In the case at hand, by (ii), that minimal value must be

greater than or equal to 0. So, (−b2 + 4ac) ≥ 0. Substituting for a, b, and c in

this inequality yields

〈u, v〉2 ≤ ‖u‖2 ‖u‖2.

This gives us the first clause of proposition 2.4.1. For the second clause, notice

that (working backwards), 〈u, v〉2 = ‖u‖2 ‖u‖2, i.e., (−b2 + 4ac) = 0 iff the

minimal value of f is 0 iff f(−b/2a) = 0. But, by (iii), f(−b/2a) = 0 iff

v = (b/2a)u. �

Problem 2.4.3 (The measure of a straight angle is π.) Let p, q, r be (distinct)

collinear points, and suppose that q is between p and r (i.e., −→pq = a−→pr with

0 < a < 1). Show that ∡(p, q, r) = π.

Proof Since −→pq = a−→pr, we have −→qp = −a−→pr and −→qr = (1− a)−→pr. Hence,

< −→qp, −→qr > = < −a−→pr, (1− a)−→pr > = −a (1− a) ‖−→pr‖2
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and, since 0 < a < 1,

‖−→qp‖ ‖−→qr‖ = ‖ − a−→pr‖ ‖(1− a)−→pr‖ = a (1− a) ‖−→pr‖2.

It follows that

cos(∡(p, q, r)) =
< −→qp, −→qr >

‖−→qp‖ ‖−→qr‖ = −1.

The only number between 0 and π whose cosine is −1 is π. So, ∡(p, q, r) = π.

Problem 2.4.4 (Law of Cosines) Let p, q, r be points, with q distinct from p

and r. Show that

‖−→pr‖2 = ‖−→qp‖2 + ‖−→qr‖2 − 2‖−→qp‖ ‖−→qr‖ cos∡(p, q, r).

Proof By the polarization identity (problem 2.3.1), with v = −→qr and w = −→qp,
we have

2 〈−→qr, −→qp〉 = 〈−→qr, −→qr〉+ 〈−→qp, −→qp〉 − 〈−→qr −−→qp, −→qr −−→qp〉.

But, −→qr −−→qp = −→pr. So

2 〈−→qr, −→qp〉 = ‖−→qr‖2 + ‖−→qp‖2 − ‖−→pr‖2.

Furthermore,

〈−→qr, −→qp〉 = cos∡(p, q, r) ‖−→qp‖ ‖−→qr‖.

So,

‖−→pr‖2 = ‖−→qp‖2 + ‖−→qr‖2 − 2‖−→qp‖ ‖−→qr‖ cos∡(p, q, r). �

Problem 2.4.5 (Right Angle in a Semicircle Theorem) Let p, q, r, o be (distinct)

points such that (i) p, o, r are collinear, and (ii) ‖−→op‖ = ‖−→oq‖ = ‖−→or‖. (So q lies

on a semicircle with diameter LS(p, r) and center o.) Show that −→qp ⊥ −→qr, and
so ∡(p, q, r) =

π

2
.

Proof By (i), we have −→op = a−→or for some a. Hence, ‖−→op‖ = |a| ‖−→or‖ and,

therefore, by (ii), |a| = 1. Now a cannot be 1. For if −→op = −→or, then

−→op = −→or +−→rp = −→op+−→rp.

And so it would follow that −→rp = 0, which is impossible since p and r are

distinct. So a = −1 and −→op = −−→or. This implies that

−→qr = −→qo +−→or = −−→oq −−→op.
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We also clearly have
−→qp = −→qo +−→op = −−→oq +−→op.

Hence, by (ii) again,

< −→qp, −→qr > = < −−→oq +−→op, −−→oq −−→op > = < −→oq, −→oq > − < op, op >

= ‖−→oq‖2 − ‖−→op‖2 = 0.

Thus, −→qp ⊥ −→qr and

cos(∡(p, q, r)) =
< −→qp, −→qr >

‖−→qp‖ ‖−→qr‖ = 0.

The only number between 0 and π whose cosine is 0 is
π

2
. So, ∡(p, q, r) =

π

2
.

Problem 2.4.6 (Stewart’s Theorem) Let p, q, r, s be points (not necessarily

distinct), with s between q and r (i.e., −→qs = a−→qr with 0 ≤ a ≤ 1). Show that

‖−→pq‖2‖−→sr‖+ ‖−→pr‖2‖−→qs‖ − ‖−→ps‖2‖−→qr‖ = ‖−→qr‖‖−→qs‖‖−→sr‖.

Proof We are given that −→qs = a−→qr and, hence, −→sr = (1− a)−→qr for some a with

0 ≤ a ≤ 1. It follows that

‖−→qr‖‖−→qs‖‖−→sr‖ = a (1− a) ‖−→qr‖3. (4)

We also have

‖−→pq‖2 ‖−→sr‖ = 〈−→ps +−→sq, −→ps+−→sq〉 (1− a) ‖−→qr‖
= 〈−→ps − a−→qr, −→ps − a−→qr〉 (1− a) ‖−→qr‖
=

[

‖−→ps‖2 + a2‖−→qr‖2 − 2 a 〈−→ps, −→qr〉
]

(1− a) ‖−→qr‖ (5)

and, similarly,

‖−→pr‖2 ‖−→qs‖ =
[

‖−→ps‖2 + (1− a)2‖−→qr‖2 + 2 (1− a) 〈−→ps, −→qr〉
]

a ‖−→qr‖. (6)

Adding (5) and (6) yields

‖−→pq‖2 ‖−→sr‖+ ‖−→pr‖2 ‖−→qs‖ − ‖−→ps‖2 ‖−→qr‖ = a (1− a) ‖−→qr‖3. (7)

Comparing (4) and (7) yields the desired conclusion. �

Problem 3.1.1 Show that there are no subspaces of dimension higher than 1

all of whose vectors are causal.
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Proof Assume there are non-zero, linearly independent vectors u and v such

that, for all real numbers a and b, the vector au+ bv is causal, i.e.,

a2〈u, u〉+ 2ab〈u, v〉+ b2〈v, v〉 ≥ 0. (8)

Of course (taking a = 1, b = 0 and a = 0, b = 1) u and v must be causal

themselves. There are two cases to consider. Either one of the two is timelike,

or both are null. Assume first that one of the two, say u, is timelike. Then, by

proposition 3.1.1, we can express v in the form v = au + w, with w in u⊥. w

is in the space spanned by u and v. So it must be causal. But since w is in

u⊥, it must be spacelike or the zero vector (by proposition 3.1.1). So, w = 0.

This contradicts our assumption that u and v are linearly independent. So

we may assume next that u and v are null. (This is our second case.) Then

〈u, u〉 = 0 = 〈v, v〉 and so, by (8), ab〈u, v〉 ≥ 0 for all a and b. But this is only

possible if 〈u, v〉 = 0. So, by proposition 3.1.2, u and v must proportional. This

contradicts, once again, our assumption that u and v are linearly independent.

So we may conclude that there are no subspaces of dimension higher than 1 all

of whose vectors are causal. �

Problem 3.1.2 One might be tempted to formulate the extended definition

this way: two causal vectors are “co-oriented” if 〈u, v〉 ≥ 0. But this will not

work. Explain why.

There are (at least) two related problems with the proposal. First, it allows

two null vectors to qualify as “co-oriented” when, intuitively, they have opposite

orientations. (Consider any non-zero null vector v and its negation (−v).) Sec-

ond, the proposed relation is not transitive on the set of causal vectors. To see

this, let u and v be, respectively, timelike and null vectors such that 〈u, v〉 > 0.

Then the pairs {u, v} and {v,−v} qualify as “co-oriented” under the proposal,

but the pair {u,−v} does not.
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Problem 3.1.3 Let o, p, q be three points in A such that p is spacelike related to

o, and q is timelike related to o. Show that any two of the following conditions

imply the third.

(i) −→pq is null.

(ii) −→op ⊥ −→oq
(iii) ‖−→op‖ = ‖−→oq‖

Proof Since −→pq = −−→op+−→oq,

〈−→pq, −→pq〉 = 〈−→op, −→op〉 − 2〈−→op, −→oq〉+ 〈−→oq, −→oq〉. (9)

All three implications follow easily from (9). For example, if (i) and (ii) hold,

then 〈−→pq, −→pq〉 = 0 = 〈−→op, −→oq〉. So (9) yields −〈−→op, −→op〉 = 〈−→oq, −→oq〉. This is

equivalent to ‖−→op‖2 = ‖−→oq‖2, since −→op is spacelike and −→oq is timelike. Therefore

(iii) holds. (The other two implications are handled the same way.) �

Problem 3.1.4 Let p, q, r, s be distinct points in A such that

(i) r, q, s lie on a timelike line with q between r and s;

(ii) −→rp and −→ps are null.

Show that −→qp is spacelike, and ‖−→qp‖2 = ‖−→rq‖ ‖−→qs‖.

Proof We know from (i) that

−→rq = a−→rs (10)
−→qs = (1− a)−→rs (11)

for some real number a where 0 < a < 1. Hence,

a−→rs +−→qp = −→rp (12)

(1− a)−→rs −−→qp = −→ps. (13)

But we know from (ii) that that 〈−→rp, −→rp〉 = 0 = 〈−→ps, −→ps〉. So, by (12) and (13),

a2 〈−→rs, −→rs〉+ 2a 〈−→rs, −→qp〉+ 〈−→qp, −→qp〉 = 0 (14)

(1− a)2 〈−→rs, −→rs〉 − 2(1− a) 〈−→rs, −→qp〉+ 〈−→qp, −→qp〉 = 0. (15)

If we multiply (14) by (1− a), multiply (15) by a, and then add, we arrive at

a(1 − a)〈−→rs, −→rs〉+ 〈−→qp, −→qp〉 = 0. (16)

Since −→rs is timelike, and since 0 < a < 1, it follows that 〈−→qp, −→qp〉 < 0, i.e., −→qp is

spacelike. In addition, it follows from (10) and (11) that

‖−→rq‖ ‖−→qs‖ = a(1− a) ‖−→rs‖2 = ‖−→qp‖2. �

Problem 3.1.5 Let L be a timelike line, and let p be any point in A. Show the

following.
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(i) There is a unique point q on L such that −→pq ⊥ L.

(ii) If p /∈ L, there are exactly two points on L that are null related to p. (If

p ∈ L, there is exactly one such point, namely p itself.)

Proof Let o and r be distinct points on L with ‖−→or‖ = 1. Every point q on L

can be uniquely expressed in the form q = o + x−→or, where x is a real number.

For every such point,
−→pq = −→po+−→oq = −−→op+ x−→or. (17)

Hence, it suffices for us to show

(i) there is a unique real number x such that (−−→op+ x−→or) ⊥ −→or;
(ii) if p /∈ L, there are exactly two real numbers x such that ‖−−→op+x−→or‖ = 0.

The first claim is immediate. Since

〈−−→op+ x−→or, −→or〉 = −〈−→op, −→or〉+ x 〈−→or, −→or〉 = −〈−→op, −→or〉+ x,

the orthogonality condition in (i) will be satisfied iff x = 〈−→op, −→or〉. To verify (ii),

we need to do just a bit more work. Since

〈−−→op+ x−→or, −−→op+ x−→or〉 = 〈−→or, −→or〉x2 − 2〈−→or, −→op〉x+ 〈−→op, −→op〉
= x2 − 2〈−→or, −→op〉x+ 〈−→op, −→op〉,

we need to consider the equation

a x2 + b x+ c = 0, (18)

where a = 1, b = −2 〈−→or, −→op〉, and c = 〈−→op, −→op〉. Its solutions are given by

x =
−b±

√
D

2

where D = b2 − 4ac. So to establish (ii), it will suffice to verify that

(iii) D ≥ 0;

(iv) D = 0 ⇐⇒ p ∈ L.

To do so, we invoke proposition 3.1.1, and express −→op in the form −→op = k−→or+w,

with w ⊥ −→or. Then,

b = −2 〈−→or, −→op〉 = −2k

c = 〈k−→or + w, k−→or + w〉 = k2 + 〈w, w〉

and, therefore,

D = 4 k2 − 4(k2 + 〈w, w〉) = −4 〈w, w〉.
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Since w is orthogonal to the timelike vector −→or, it is either spacelike or the zero-
vector (by proposition 3.1.1 again). Either way, 〈w, w〉 ≤ 0. So we have (iii).

And precisely because w is either spacelike or the zero-vector, we also have

D = 0 ⇐⇒ 〈w, w〉 = 0 ⇐⇒ w = 0 ⇐⇒ −→op = k−→or ⇐⇒ p ∈ L. �

Problem 3.2.1 Let o, p, q, r, s be distinct points where

(i) o, p, q lie on a timelike line L with p between o and q;

(ii) o, r, s lie on a timelike line L′ with r between o and s;

(iii) −→pr and −→qs are null;

(iv) −→oq, −→pr, and −→qs are co-oriented.

Show that

‖−→rs‖
‖−→pq‖ =

[1 + v

1− v

]
1

2

,

where v is the speed that the individual with worldline L attributes to the

individual with worldline L′ .

Proof It follows from (i) and (ii) that there exist numbers a and b, with 0 <

a < 1 and 0 < b < 1, such that −→pq = a−→oq and −→rs = b−→os. We claim that a = b.

To see this, note first that

a−→oq +−→qs = −→pq +−→qs = −→pr +−→rs = −→pr + b−→os = −→pr + b (−→oq +−→qs)

and, therefore,

(a− b)−→oq = −→pr − (1− b)−→qs. (19)

It follows by (iii), and the fact that −→oq is timelike, that

−2 (1− b) 〈−→pr, −→qs〉 = (a− b)2 ‖−→oq‖2 ≥ 0. (20)

(Here we have just taken the inner product of each side of (19) with itself.)

Hence, 〈−→pr, −→qs〉 ≤ 0. But, by (iv), −→pr and −→qs are co-oriented. So 〈−→pr, −→qs〉 = 0

and, therefore (by (20)), a = b as claimed. Thus

‖−→rs‖
‖−→pq‖ =

‖−→os‖
‖−→oq‖ . (21)

Now we compute the right side of (21). To do so, we use the fact that
−→qs = −→os −−→oq. Taking inner products of each side (and using the fact that −→qs is

null), we have

0 = ‖−→os‖2 + ‖−→oq‖2 − 2 〈−→os, −→oq〉.
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It follows that −→os and −→oq are co-oriented (i.e., 〈−→os, −→oq〉 > 0) and, therefore, that

〈−→os, −→oq〉 = ‖−→os‖ ‖−→oq‖ cosh θ = ‖−→os‖ ‖−→oq‖ (1− v2)−
1

2 ,

where θ is the hyperbolic angle between −→os and −→oq, and v is the relative velocity

between the worldlines determined by the two vectors. (Here we are using

equation (3.2.3) in the notes.) Thus, if we take X to be the ratio
‖−→os‖
‖−→oq‖ , we have

X2 − 2X(1− v2)−
1

2 + 1 = 0. (22)

We also have a side constraint on X . Since −→oq +−→qs = −→os,

‖−→os‖2 = ‖−→oq‖2 + 2 〈−→oq, −→qs〉 > ‖−→oq‖2.

(Here we use the fact that −→qs is null, and −→oq and −→qs are co-oriented.) So X > 1.

It is a matter of simple algebra now to check that the quadratic equation (22)

has exactly one solution satisfying the constraint, namely

X =
[1 + v

1− v

]
1

2

. �

Problem 3.2.2 Give a second derivation of the “relativistic addition of veloci-

ties formula” using the result of problem 3.2.1.

o

p

q

r

s

t

w
L1 L2

L3

Proof Let the points p, q, r, s, t, w be as in the figure. (Here the dotted lines

containing p, r, t and q, s, w, respectively, are understood to be null.) Then, by

problem 2.3.1, we have:
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‖−→rs‖
‖−→pq‖ =

[1 + v12
1− v12

]
1

2

‖−→tw‖
‖−→rs‖ =

[1 + v23
1− v23

]
1

2

‖−→tw‖
‖−→pq‖ =

[1 + v13
1− v13

]
1

2

.

Mutiplying the first and second equations, and comparing with the third, yields:

1 + v13
1− v13

=
[1 + v12
1− v12

][1 + v23
1− v23

]

.

The rest is simple algebra. One need only solve for v13 in terms of v12 and v23.

�

Problem 3.3.1 Formulate and prove a uniqueness result for Euclidean angular

measure that corresponds to Proposition 3.3.1.

In what follows, let (A, 〈 , 〉) be an n-dimensional Euclidean space, with

n ≥ 2. Our uniqueness result can be formulated as folows.

Proposition 1 Let o be a point in A, and let So be the set of all points p in A

such that ‖−→op‖ = 1. Further, let f :So ×So → R be a continuous map satisfying

the following two conditions.

(i) (Additivity): For all points p, q, r in So co-planar with o, if −→oq is between
−→op and −→or,

f(p, r) = f(p, q) + f(q, r).

(ii) (Invariance): If ϕ :A → A is an isometry of (A, 〈 , 〉) that keeps o fixed,

i.e., ϕ(o) = o, then, for all p and q in So,

f(ϕ(p), ϕ(q)) = f(p, q).

Then there is a constantK such that, for all p and q in So, f(p, q) = K ∡(p, o, q),

where ∡(p, o, q) is understood to be defined by the requirement that 〈−→op,−→oq〉 =
cos∡(p, o, q).)

Note that we have the resources in hand for understanding the requirement

that f :So×So → R be “continuous”. This comes out as the condition that, for

all p and q in So, and all sequences {pi} and {qi} in So, if {pi} converges to p

and {qi} converges to q, then f(pi, qi) converges to f(p, q). (And the condition

that {pi} converges to p can be understood to mean that the sequence {‖−→pi p‖}
converges to 0.)
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Note also that the invariance condition is well formulated. For if ϕ :A → A

is an isometry of (A, 〈 , 〉) that keeps o fixed, then ϕ(p) and ϕ(q) are both points

on So (and so (ϕ(p), ϕ(q)) is in the domain of f). ϕ(p) belongs to So since

‖−−−→oϕ(p)‖ = ‖−−−−−−→ϕ(o)ϕ(p)‖ = ‖Φ(−→op)‖ = ‖−→op‖ = 1.

And similarly for ϕ(q). (Here Φ is the vector space isomorphism associated with

φ.)

Proof Given any four points p1, q1, p2, q2 in So with 〈−→op1,−→oq1〉 = 〈−→op2,−→oq2〉,
there is an isometry ϕ :A → A such that ϕ(o) = o, ϕ(p1) = p2, and ϕ(q1) = q2.

(We prove this after completing the main part of the argument.) It follows

from the invariance condition that f(p1, q1) = f(p2, q2). Thus we see that the

number f(p, q) depends only on the inner product 〈−→op,−→oq〉, i.e., there is a map

g : [−1, +1] → R such that

f(p, q) = g(〈−→op,−→oq〉),

for all p and q in So. Since f is continuous, so must g be.

Next we use the fact that f satisfies the additivity condition to extract

information about g. Let θ1 and θ2 be any two numbers in the interval (0, π)

such that (θ1 + θ2) is in the interval as well. We claim that

g(cos(θ1 + θ2)) = g(cos θ1) + g(cos θ2). (23)

To see this, let p be any point in So, and let s be any point in A such that −→os is

a unit vector orthogonal to −→op. (Certainly such points exist. It suffices to start

with any unit vector u in −→op⊥, and take s = o+ u.) Further, let points q and r

be defined by:

−→oq = (cos θ2)
−→op + (sin θ2)

−→os (24)
−→or = cos(θ1 + θ2)

−→op + sin(θ1 + θ2)
−→os. (25)

Clearly, q and r belong to So (since cos2 θ + sin2 θ = 1 for all θ). Multiplying

the first of these equations by sin (θ1 + θ2), the second by sin θ2, and then

subtracting the second from the first, yields

sin(θ1 + θ2)
−→oq − (sin θ2)

−→or
= [sin(θ1 + θ2) cos θ2 − cos(θ1 + θ2) sin θ2]

−→op
= [sin((θ1 + θ2) − θ2)]

−→op = (sin θ1)
−→op.

So we can express −→oq in the form −→oq = a−→op+ b−→or, with positive coefficients

a =
sin θ1

sin(θ1 + θ2)

b =
sin θ2

sin(θ1 + θ2)
.)
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Thus −→oq is between −→op and −→or. So, by the additivity assumption,

g(〈−→op,−→or〉) = f(p, r) = f(p, q) + f(q, r) = g(〈−→op,−→oq〉) + g(〈−→oq,−→or〉). (26)

But equations (24) and (25) (and the orthogonality of −→op and −→os) imply that:

〈−→op,−→or〉 = cos(θ1 + θ2)

〈−→op,−→oq〉 = cos θ2

〈−→oq,−→or〉 = cos(θ1 + θ2) cos θ2 + sin(θ1 + θ2) sin θ2

= cos((θ1 + θ2) − θ2) = cos θ1.

Substituting these values into (26) yields our claim (23).

Our argument to this point has established that the composite map

g ◦ cos :(0,∞) → R

is additive. It follows by the continuity of g (and cos) that there is a number

K such that g(cos(x)) = Kx, for all x in [0,∞). Given any p and q in So,

we need only substitute for x the number ∡(p, o, q) to reach the conclusion:

f(p, q) = g(〈−→op,−→oq〉) = g(cos ∡(p, o, q)) = K ∡(p, o, q). �

The lemma we need to complete the proof is the following.

Proposition 2 Let o and So be as in proposition 1. Given any four points

p1, q1, p2, q2 in So with 〈−→op1,−→oq1〉 = 〈−→op2,−→oq2〉, there is an isometry ϕ :A → A of

(A, 〈 , 〉) such that ϕ(o) = o, ϕ(p1) = p2, and ϕ(q1) = q2.

Proof It will suffice for us to show that there is a vector space isomorphism

Φ:V → V preserving the Euclidean inner product such that

Φ(−→op1) = −→op2
Φ(−→oq1) = −→oq2.

For then the corresponding map ϕ : A → A defined by setting ϕ(p) = o+Φ(−→op)
will be an isometry of (A, 〈, 〉) that makes the correct assignments to o, p1, and

q1:
ϕ(o) = o+Φ(−→oo) = o+Φ(0) = o+ 0 = o

ϕ(p1) = o+Φ(−→op1) = o+−→op2 = p2
ϕ(q1) = o+Φ(−→oq1) = o+−→oq2 = q2.

We will realize Φ as a composition of two maps. The first will be a rotation

Φ1 : V → V that takes −→op1 to −→op2. The second will be a rotation Φ2 : V → V

that leaves −→op2 fixed, and takes Φ1(
−→oq1) to −→oq2. (Clearly, if these conditions are

satisfied, then (Φ2 ◦Φ1)(
−→op1) = −→op2 and (Φ2 ◦Φ1)(

−→oq1) = −→oq2.) We consider Φ1

and Φ2 in turn.
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If p1 = p2, we can take Φ1 to be the identity map. Otherwise, the vectors
−→op1 and −→op2 span a two-dimensional subspace W of V . In this case, we define

Φ1 by setting

Φ1(
−→op1) = −→op2

Φ1(
−→op2) = −−→op1 + 2 〈−→op1,−→op2〉−→op2

Φ1(w) = w for all w in W⊥.

(A linear map is uniquely determined by its action on the elements of a basis.)

Thus, Φ1 reduces to the identity on W⊥, takesW to itself, and (within W ) takes
−→op1 to −→op2. Moreover, it preserves the inner product. (Notice, in particular, that

〈Φ1(
−→op1),Φ1(

−→op2)〉 = 〈−→op2, −−→op1 + 2 〈−→op1,−→op2〉−→op2〉
= −〈−→op1, −→op2〉+ 2〈−→op1,−→op2〉 〈−→op2,−→op2〉 = 〈−→op1,−→op2〉,

since 〈−→op2,−→op2〉 = 1.)

Next we turn to Φ2. Since 〈−→op2, −→op2〉 6= 0, it follow from proposition 2.3.1

that we can express Φ1(
−→oq1) and −→oq2 in the form

Φ1(
−→oq1) = a−→op2 + u (27)
−→oq2 = b−→op2 + v, (28)

where u and v are orthogonal to −→op2. Now we must have a = b since, by our

initial assumption that 〈−→op1,−→oq1〉 = 〈−→op2,−→oq2〉,

a = 〈−→op2, Φ1(
−→oq1)〉 = 〈Φ1(

−→op1), Φ1(
−→oq1)〉 = 〈−→op1, −→oq1〉 = 〈−→op2, −→oq2〉 = b.

Moreover, since Φ1(
−→oq1) and −→oq2 are both unit vectors, it follows from (27) and

(28) that

a2 + 〈u, u〉 = 1 = b2 + 〈v, v〉.

So ‖u‖ = ‖v‖.
Now (−→op2)

⊥

, together with the induced inner product on it, is an (n − 1)-

dimensional Euclidean space. So we can certainly find a vector space isomor-

phism of (−→op2)
⊥

onto itself that preserves the inner product and takes u to v. We

can extend this map to a vector space isomorphism Φ2 :V → V that preserves

the inner product by simply adding the requirement that Φ2 leave −→op2 fixed.

This map serves our purposes because it takes Φ1(
−→oq1) to −→oq2, as required:

Φ2(Φ1(
−→oq1)) = Φ2(a

−→op2 + u) = aΦ2(
−→op2) + Φ2(u) = b−→op2 + v = −→oq2. �
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Problem 3.4.1 Prove the following result.

Proposition Let (A, 〈 , 〉) be an n-dimensional Minkowskian space, with n ≥ 2.

Let L be a frame, and let S be a two-place relation on A. Suppose S satisfies

(S1) and, for some L in L, satisfies (S2). Further, suppose S is is invariant

under all L-isometries of type (e). Then S = SimL.

Proof For every point p ∈ A, let f(p) be the unique point q on L such that
−→pq ⊥ L. It will suffice for us to show the following.

(iii) For all p ∈ A, (p, f(p)) ∈ S.
For then we can complete the proof exactly as in the case of proposition 3.4.1.

Let p be a point in A, and let r be the midpoint of the line segment connecting

p and f(p). (So r = p+ 1

2

−−−→
p f(p).) Further, let Lp and Lr be the (unique) lines

in L that contain p and r respectively. Finally, let L′ be the line in L that is

midway between L and Lr. (So all four lines L, L′, Lp, and Lr are subsets of a

common two-dimensional subspace W . See the accompanying figure.)

L L′ Lr Lp

prf(p)

q ϕ1(q)

ϕ1

ϕ2

By (S2), there is a unique point q on L such that

(r, q) ∈ S. (29)

Now let ϕ1 : A → A be a non-trivial L-isometry of type (e) – either a reflection

or rotation – that leaves L′ intact and maps W onto itself. Then we have

ϕ1(r) = f(p)

ϕ1(q) = r +
−−−→
f(p) q.

Further, let ϕ2 : A → A be a non-trivial L-isometry of type (e) – either a

reflection or rotation – that leaves Lr intact and maps W onto itself. Then

ϕ2(f(p)) = p

ϕ2(ϕ1(q)) = ϕ1(q).
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It now follows from (29) and our invariance assumption that

(f(p), ϕ1(q)) = (ϕ1(r), ϕ1(q)) ∈ S

and

(p, ϕ1(q)) = ((ϕ2 ◦ ϕ1)(r), (ϕ2 ◦ ϕ1)(q)) ∈ S.

So (by the symmetry and transitivity of S), we have (p, f(p)) ∈ S. �

Problem 4.1.1 Exhibit a sentence φpar in the language L that captures the

“parallel postulate”, the assertion that given a line L1 and a point p not on L1,

there is a unique line L2 that contains p and does not intersect L1.

It will be convenient to introduce two abbreviations. We write

Coll(x, y, z) for (Bxyz ∨ Bzxy ∨ Byzx)

NoInt(x, y, u, v) for (x 6= y & u 6= v) & ¬(∃w)(Coll(x, y, w) & Coll(u, v, w))

Under the standard interpretation of our language, Coll(x, y, z) holds if the three

points x, y, z, are collinear; and NoInt(x, y, u, v) holds if the line determined

by x and y does not intersect the line determined by u and v.

We can take φpar to be the sentence:

(∀x)(∀y)(∀z)( ¬Coll(x, y, z) →
(∃w)(NoInt(x, y, z, w) & (∀u)(NoInt(x, y, z, u) → Coll(z, w, u)) ) ).

Here is a paraphrase: Given any three points x, y, z that are not collinear,

we can find a point w such that (i) the line determined by x and y does not

intersect the one determined by z and w, and (ii) given any point u, if it is also

true that the line determined by x and y does not intersect the one determined

by z and u, then z, w, u must be collinear.

Problem 4.2.1 Verify that the map ϕ defined on the top of page 68 is, as

claimed, a bijection between H+
o and D.

Recall how ϕ is defined. Given some point t in H+
o , we have taken D to be

the set of all points d such that
−→
td ⊥ −→

ot and ‖−→td‖ < 1. And we have defined

ϕ : H+
o → A by setting

ϕ(p) = o+ 〈−→op,−→ot〉−1 −→op
for all points p in H+

o . We have three things to check.

(1) For all p ∈ H+
o , ϕ(p) ∈ D, i.e.,

−−−→
t ϕ(p) ⊥ −→

ot and ‖
−−−→
t ϕ(p)‖ < 1.

(2) ϕ is injective.

24



(3) The image of H+
o under ϕ is all of D.

We take them in turn.

(1) Let p be a point in H+
o . Then

−−−→
t ϕ(p) = −−→

ot +
−−−→
oϕ(p) = −−→

ot + 〈−→op,−→ot〉−1 −→op.

It follows, since
−→
ot is a unit timelike vector, that

〈
−−−→
t ϕ(p),

−→
ot〉 = −〈−→ot, −→ot〉 + 〈−→op,−→ot〉−1〈−→op, −→ot〉 = 0.

This gives us our first claim. Next,
−−−→
t ϕ(p) is either spacelike or equal to the zero

vector, since it is orthogonal to the timelike vector
−→
ot . And −→op is also a unit

timelike vector. Hence

‖
−−−→
t ϕ(p)‖2 = −〈

−−−→
t ϕ(p),

−−−→
t ϕ(p)〉

= −[ 〈−→ot, −→ot〉 − 2〈−→op,−→ot〉−1〈−→op, −→ot〉 + 〈−→op,−→ot〉−2〈−→op, −→op〉 ]
= −1 + 2 − 〈−→op,−→ot〉−2 < 1.

This gives us our second claim.

(2) Suppose p and q are in H+
o , and ϕ(p) = ϕ(q). It follows that

〈−→op,−→ot〉−1 −→op =
−−−→
oϕ(p) =

−−−→
oϕ(q) = 〈−→oq,−→ot〉−1 −→oq.

But −→oq and −→oq are unit timelike vectors. So (taking the inner product of each

side with itself),

〈−→op,−→ot〉−2 = 〈−→oq,−→ot〉−2.

And the three vectors −→op, −→oq, −→ot are co-oriented. So 〈−→op,−→ot〉 = 〈−→oq,−→ot〉 and
−→op = −→oq. Therefore, p = o+−→op = o+−→oq = q. Thus, ϕ is injective.

(3) Let d be any point in D. So
−→
td ⊥ −→

ot and ‖−→td‖ < 1. We claim there is a

point p in H+
o such that ϕ(p) = d. In fact, it suffices to take p = o+ k

−→
od with

k = 〈−→od,−→od〉− 1

2 . (Note that
−→
od is timelike since

〈−→od,−→od〉 = 〈−→ot +−→
td,

−→
ot +

−→
td〉 = 1 + 〈−→td,−→td〉 = 1 − ‖−→td‖2 > 0.)

This point is certainly in H+
o since −→op = k

−→
od and, therefore,

〈−→op,−→op〉 = k2〈−→od,−→od〉 = 1.

Moreover, 〈−→od,−→ot〉 = 〈−→ot +−→
td,

−→
ot〉 = 〈−→ot,−→ot〉 = 1 and, therefore,

ϕ(p) = o+ 〈−→op,−→ot〉−1 −→op = o+ 〈k−→od,−→ot〉−1 k
−→
od = o+

−→
od = d.

So we are done. �
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