
Comment on Wills and Pothos (2012) 1

Running head: COMMENT ON WILLS AND POTHOS (2012)

The Bayesian Evaluation of Categorization Models: Comment on Wills and

Pothos (2012)

Wolf Vanpaemel

Faculty of Psychology and Educational Sciences

University of Leuven

Michael D. Lee

Department of Cognitive Sciences

University of California, Irvine

Address correspondence to:

Wolf Vanpaemel

Faculty of Psychology and Educational Sciences, University of Leuven

3000 Leuven, Belgium.

Telephone: (32) 16 326256.

Facsimile: (32) 16 325993.

Electronic Mail: wolf.vanpaemel@ppw.kuleuven.be



Comment on Wills and Pothos (2012) 2

Abstract

Wills and Pothos (2012) review approaches to evaluating formal models of

categorization, raising a series of worthwhile issues, challenges, and goals.

Unfortunately, in discussing these issues and proposing solutions, Wills and

Pothos (2012) do not consider Bayesian methods in any detail. This means not

only that their review excludes a major body of current work in the field, but

also that it does not consider the body of work that provides the best current

answers to the issues raised. In this comment, we argue that Bayesian methods

can be—and, in most cases, already have been—applied to all the major model

evaluation issues raised by Wills and Pothos (2012). In particular, Bayesian

methods address the challenges of avoiding over-fitting, considering qualitative

properties of data, reducing dependence on free parameters, and testing

empirical breadth.
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Introduction

In their review, Wills and Pothos (2012) raise a number of challenges for

the evaluation of formal models in psychology, focusing on models of

categorization as a case study. In particular, they argue that the evaluation of

psychological models should avoid over-fitting, take qualitative properties of data

seriously, reduce dependence on free parameters, and test empirical breadth. We

fully agree these are worthwhile goals, and suspect that many others do too.

Wills and Pothos (2012) present a series of recommendations to address

these challenges. Unfortunately, their proposals fail to give serious consideration

to Bayesian methods. This is a clear omission in the context of a review, since

Bayesian methods have been advocated prominently as a means of evaluating

psychological models in general (e.g., Kruschke, 2010, 2011; Lee, 2004; Lee &

Wagenmakers, 2005; I. J. Myung & Pitt, 1997; Pitt, Myung, & Zhang, 2002;

Shiffrin, Lee, Kim, & Wagenmakers, 2008; Vanpaemel, 2010), and have been

applied to the evaluation of categorization models in particular (Lee, 2008; Lee

& Vanpaemel, 2008; Lee & Wetzels, 2010; Vanpaemel, 2011; Vanpaemel & Lee,

2007; Vanpaemel & Storms, 2010; Voorspoels, Storms, & Vanpaemel, 2011).

More importantly, as we argue in this comment, it is a serious omission in

the context of making good recommendations. Bayesian methods provide the

principles and tools needed to address all four of the major issues discussed by

Wills and Pothos (2012). In this comment, we discuss each issue in turn. For

each, we explain how Bayesian methods address the problem, cite existing

research in psychology that uses Bayesian methods to address the problem, and
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discuss why we consider the Bayesian approach preferable to the approaches

proposed by Wills and Pothos (2012).

Bayesian Approaches to Four Model Evaluation Issues

Bayesian statistics is a complete, coherent, and rational approach to

representing uncertainty and information, based on the axioms of probability

theory (Cox, 1961; Jaynes, 2003). It is perfectly suited to the problem of

drawing inferences from data using formal models, and for making inferences and

decisions about the adequacy of models based on data. These abilities mean that

Bayesian methods can address all of the major issues raised by Wills and Pothos

(2012). The Bayesian approach has advantages on both principled and practical

grounds. Some of the issues raised by Wills and Pothos (2012) are automatically

solved by adopting Bayesian methods, because of their inherent properties.

Other issues raised by Wills and Pothos (2012) can be solved in practice using

Bayesian methods, because they allow researchers to implement richer and more

general evaluations of psychological models.

Avoiding Over-fitting

Wills and Pothos (2012) are rightly concerned about the issue of

over-fitting. This occurs when a model can describe existing data very well, but

does not generalize well to new or related data. Over-fitting is usually caused by

a model being too complicated, in the sense that it is able to describe many

different patterns of data. It is well understood in cognitive modeling that

over-fitting should be avoided (e.g., Pitt & Myung, 2002; Nosofsky & Zaki,
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2002). Standard quantitative criteria that consider the best possible fit of a

model, such as the sum-squared error (SSE) measure highlighted by Wills and

Pothos (2012), are highly prone to over-fitting.

Bayesian methods can solve the problem. Bayesian methods for model

evaluation directly address the issue of over-fitting. Bayesian methods include

prior and posterior predictive Bayesian assessments of model adequacy, such as

the Bayes Factor. The key property of these methods is that they evaluate how

well a model fits data on average, over a set of parameter values, rather than

how well it fits data in the best-case scenario at a single parameter value.

Measures of average fit automatically balance goodness-of-fit with model

complexity. More complicated models are, in their statistical definition, those

that are able to predict more data patterns (I. J. Myung, Balasubramanian, &

Pitt, 2000). Since a measure of average fit includes those predictions that poorly

fit the observed data, more complicated models are penalized by Bayesian

methods. The founding principles of Bayesian statistics thus guarantee that they

address the issue of over-fitting.

Bayesian methods have solved the problem. Bayesian model evaluation

methods were developed long ago in statistics (e.g. Jeffreys, 1935, 1961), and are

now standard textbook material (e.g., Casella & Berger, 2002; Gelman, Carlin,

Stern, & Rubin, 2004; Kass & Raftery, 1995; Robert, 1994). In psychology,

Bayesian methods feature as early as Edwards, Lindman, and Savage (1963), and

have been promoted heavily in the last 15 years, starting with I. J. Myung and
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Pitt (1997), and growing from there (e.g., Kruschke, 2010, 2011; Lee, 2004; Pitt

et al., 2002; Shiffrin et al., 2008; Vanpaemel, 2010). Many papers in the cognitive

modeling literature have now used Bayesian methods to address the issue of

over-fitting (e.g., Gallistel, 2009; Kemp & Tenenbaum, 2008; Steyvers, Lee, &

Wagenmakers, 2009), including some focused on categorization models (e.g., Lee,

2008; Lee & Wetzels, 2010; Vanpaemel & Storms, 2010; Voorspoels et al., 2011).

Limitations of Wills and Pothos’ (2012) proposals. Wills and Pothos (2012)

briefly mention Bayesian model evaluation measures, but do not acknowledge

they solve the problem of over-fitting. Instead, Wills and Pothos (2012, p. 111)

advocate evaluating models in terms of their ability to capture ordinal properties

of data as a remedy to over-fitting. A complicated model, however, can over-fit

different ordinal data patterns as easily as it can over-fit the quantitative details

of the data. Thus, adopting Bayesian methods appears a better solution to the

problem of over-fitting than the proposal made by Wills and Pothos (2012).

Taking Qualitative Properties of Data Seriously

Wills and Pothos (2012) highlight the importance of qualitative properties

of the data, such as ordinal properties, for evaluating psychological models (see

also Nosofsky & Palmeri, 1997a; Pitt, Kim, Navarro, & Myung, 2006). Although

we are critical of the argument that ordinal property evaluation should be

preferred to reduce the risk of over-fitting, we do agree that going beyond the

quantitative minutiae of the data is a worthwhile goal. In particular, it is

sensible to place strong evaluative emphasis on the ability of models to describe
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those features of data that are the most scientifically important. These may be

ordinal constraints, as focused on by Wills and Pothos (2012), or may be more

general. It may be important, for example, that a model is able to capture the

crossing of two learning curves, a heavy tail in a response time distribution, or a

non-monotonicity in performance. Standard quantitative criteria like SSE are

not naturally sensitive to these sorts of qualitative or phenomenological features

of data.

Bayesian methods can solve the problem. Emphasizing some aspects of

data over others is naturally done within a Bayesian framework for evaluation.

The basic approach is to overlay utilities on the probabilities produced by

Bayesian inference. Augmenting probabilities with utilities affords the ability to

evaluate models relative to specific properties of the data, rather than strictly in

terms of their likelihood given data. So, for example, if an important aspect of

evaluation is that two learning curves cross, a large utility can be placed on that

property, and a model will be positively evaluated to the extent that it is

inferred to satisfy that property. The advantage of imposing utilities within the

Bayesian framework is that the uncertainty about model parameters is

automatically and completely incorporated into the utility comparisons. Thus,

while Bayesian methods do not automatically solve the problem, they provide

the right tools to address the problem.

Bayesian methods have solved the problem. Incorporating utility functions

is the cornerstone of Bayesian decision theory, which is textbook material in
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statistics (e.g., Berger, 1985; Bernado & Smith, 2000). To be fair, applications of

the Bayesian decision theoretic framework are hard to find in psychology.

Exceptions include J. Myung and Pitt (2009) and Zhang and Lee (2010), but

these authors have slightly different goals than the immediate evaluation of

cognitive models. More general and flexible decision criteria are desirable in

many cases of model evaluation, including in categorization, and the Bayesian

solution is not used as widely as it should be. One approach that is closely

related to the Bayesian approach, Parameter Space Partitioning, focuses on

evaluating ordinal criteria, and has been applied to the evaluation of a range of

psychological models (Pitt et al., 2006; Pitt, Myung, Montenegro, & Pooley,

2008).

Limitations of Wills and Pothos’ (2012) proposals. Wills and Pothos

(2012) discuss examples where it seems that primacy is given to ordinal

properties of the data, but, in fact, is not. Both Nosofsky and Palmeri (1997b)

and Love, Medin, and Gureckis (2004), which Wills and Pothos (2012, p. 111, p.

113, p. 119) portray as evaluating models based on their ordinal predictions, first

fit the models quantitatively, using a measure related to SSE. Based on these

quantitative fits, the qualitative model behavior is assessed. Hence, these studies

do not directly compare the model’s ordinal predictions to the ordinal properties

of the data. Thus, while their discussion reinforces the point that qualitative

properties are important, it does not provide methods for incorporating them

directly into formal evaluation.
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Reducing Dependence on Free Parameters

Wills and Pothos (2012) are concerned about free parameters in

psychological models (see also Nosofsky, 1998). We agree that minimizing the

dependence of successful models on free parameters is often a worthwhile goal.

Free parameters tend to reduce the empirical content or assertive power of a

theory (Popper, 1959). Theories with high empirical content tell us more about

the world than theories low in assertive power. For models that quantify

substantive theory, free parameters correspond to meaningful psychological

variables and, therefore, their existence often reflects important incompleteness

or immaturity in theorizing. Treating parameters as entirely free to vary, and

fitting the same model parameters for multiple data sets separately, which is a

standard practice, corresponds to admitting a lack of the theory needed to

constrain possible values, and ignores the collective empirical information that

related experiments provide about parameters.1

Bayesian methods can solve the problem. Bayesian methods allow—in fact,

require—information about parameters to be expressed formally in a model by

using prior distributions on model parameters. Some approaches to specifying

parameters priors are designed to represent a default state of knowledge (Kass &

Wasserman, 1996), whereas informative priors represent theoretical assumptions,

or other relevant knowledge, about the psychological variables they represent. As

better theories are developed, and more information about psychological

variables becomes available, Bayesian methods naturally incorporate this
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knowledge. Informative priors automatically reduce the dependence of a model

on free parameters, by making the parameters less “free”, and so simultaneously

decrease the flexibility and increase the empirical content of the model. Thus,

Bayesian methods provide the right tools to address the problem, but do not

automatically solve the problem, as many Bayesian model evaluations do not use

informative priors, but rather rely on uniform, flat, or other priors intended to be

“uninformative” or “weakly informative”.

Bayesian methods have solved the problem. The development of formal

methods for representing information in prior distributions is a major enterprise

in Bayesian statistics (Bernado & Smith, 2000; Jaynes, 2003). Maximum entropy

and transformational invariance methods have been developed to give principled

ways of incorporating prior information (e.g., Jaynes, 2003; Tribus & Fitts,

1968). The case for constructing psychologically meaningful priors, and examples

of how this can be done with psychological models, is made by Vanpaemel

(2009b, 2010). Demonstrations of capturing theory in informative priors in the

context of categorization models can be found in Lee and Vanpaemel (2008);

Vanpaemel (2011); Vanpaemel and Lee (2007). These authors focus on the

Varying Abstraction Model of category learning, which assumes that people

learn categories by clustering exemplars (VAM, Vanpaemel & Storms, 2008).

They show how the prior in the VAM can be used the express the theoretical

assumption that exemplar clustering is likely to be driven by similarity, a

theoretical position consistent with the SUSTAIN model (Love et al., 2004) and

the Rational Model of Categorization (Anderson, 1991; Griffiths, Canini,
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Sanborn, & Navarro, 2007).

Limitations of Wills and Pothos’ (2012) proposals. Wills and Pothos

(2012, p. 112, p. 113) propose two remedies for the challenge of reducing the

dependence of models on free parameters. One is to use universal or global

parameters, whose specification is general to the whole domain of phenomena

that the model is intended to address. The second is to remove the free

parameters by fixing each to a single value before seeing the data.

Wills and Pothos (2012, p. 113) themselves seem to concede the first

proposal is limited, as they are quick to emphasize that parameter values are

meant to change across experimental conditions. Indeed, a key property of useful

psychological models is selective influence, which requires that independent

experimental manipulations correspond to changes in the estimated values of

single model parameters. Selective influence has been evaluated in relation to a

number of psychological models (e.g., Rouder et al., 2008; Voss, Rothermund, &

Voss, 2004), and discussed in the context of category learning models (e.g.,

Vanpaemel, 2009a).

The proposal to evaluate the fit of a model at a single parameter value that

is dictated by theory is a laudable goal, but seems unrealistic in practice, at least

with the current state of psychological theorizing. Often, there is information

about parameters available from existing data collected in related experiments or

from psychological theory, but this information is unlikely to be complete enough

to fix parameters to single values. Evaluating a model using a single,

unrealistically precise, value often fails to incorporate important levels of
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uncertainty.

Wills and Pothos (2012, p. 113) discuss Nosofsky’s (1984) use of theorizing

about how learners allocate their attention to stimulus dimensions to fix the free

attention parameters from the Generalized Context Model (GCM). Recently,

Vanpaemel and Lee (submitted) demonstrated how Bayesian methods can be

used to capture the attention allocation assumption in an informative prior

distribution over parameter values rather than in a single point value. In this

way, the attention parameter is neither entirely free, as in common practice, nor

precisely constrained, as Wills and Pothos (2012) advocate. Instead, by using

informative prior distributions in a Bayesian setting, the GCM is evaluated in a

way that takes into account existing theorizing about attention, but at the same

time acknowledges that this theorizing is incomplete. The Bayesian approach

thus allows dependence on free parameters to be reduced, without necessitating

the over-confident reduction to singe values.

Testing Empirical Breadth

Wills and Pothos (2012) argue that an important aim in model evaluation

is to capture data from a broad set experiments, rather than from one or two

experiments, as seems typical in practice (see also Smith & Minda, 2000). We

agree that a hallmark of good theorizing and modeling throughout the empirical

science is that fundamental variables and processes play roles in a wide range of

experiments and phenomena. In classical physics, the underlying mass of an

object affects its measured weight, acceleration, momentum, kinetic energy, and
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so on. In psychology, the underlying acuity of a person’s memory affects their

measured ability in recall tasks, recognition tasks, recollection tasks, and so on.

Bayesian methods can solve the problem. An important feature of Bayesian

inference is that it seamlessly applies to hierarchical, or multilevel, models. The

key idea of the hierarchical Bayesian approach is to introduce additional

structure to the simple parameter-to-data relationship that characterizes most

psychological models. Among the many attractive features of this approach is

that it is natural to test the ability of the same model parameters and processes

to account for multiple data sets from multiple experimental tasks

simultaneously. This enables testing for empirical breadth. Again, the Bayesian

approach, hierarchical or otherwise, does not automatically test for empirical

breadth, but it does afford the possibility.

Bayesian methods have solved the problem. Hierarchical Bayesian methods

were proposed long ago in statistics (e.g., Lindley & Smith, 1972), and are now

standard textbook material (e.g., Gelman et al., 2004; Gelman & Hill, 2007).

The general idea behind the hierarchical Bayesian approach has been advocated

repeatedly in the psychological literature (e.g., Kruschke, 2010; Lee, 2006; Lee &

Vanpaemel, 2008; Rouder & Lu, 2005; Shiffrin et al., 2008), and the case for

hierarchical Bayesian models allowing the evaluation of empirical breadth in

psychology is made by Lee (2011). Recent psychological applications of this

approach to seek breadth can, for example, be found in Pooley, Lee, and Shankle

(2011) who deal with the combination of recognition and recall memory, and in
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Lee and Sarnecka (2011), in a developmental area closely related to

categorization. These authors show how two different tasks in which children

must demonstrate conceptual understanding can be modeled simultaneously in

terms of common latent developmental stage variables, and different process

models developed for the two different empirical tasks.

Limitations of Wills and Pothos’ (2012) proposals. Wills and Pothos

(2012, p. 119) propose the evaluation of models against a large set of key

phenomena in a way that parameters are held constant across the whole set of

phenomena, or are fixed to single values without recourse to data. As discussed

above, in the context of reducing dependence on free parameters, both of these

proposals are limited. For models with free parameters, it is often desirable that

they meaningfully vary across conditions, and it seems generally the case that

theory is insufficiently well-developed to fix parameters to single point values.

Conclusion

The Bayesian framework provides a complete and coherent solution to the

basic scientific challenge of drawing inferences over structured models from

sparse and noisy data. That is exactly what is needed to evaluate psychological

models, including models of categorization. In this comment, we have discussed

how Bayesian methods can address the four main evaluative issues raised by

Wills and Pothos (2012). We have pointed to research that has already adopted

Bayesian methods successfully, and indicated how the evaluation of psychological

models will benefit even further from an expanded use of the Bayesian
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framework.

For one of the issues raised by Wills and Pothos (2012), the basic principles

of Bayesian methods provide a solution. The correct application of Bayesian

inference automatically controls for model complexity, and prevents over-fitting.

But, for the other issues, the Bayesian approach does not in and of itself provide

a complete solution. Instead, it can provide an appropriate framework for

workable and principled solutions. Bayesian inference can operate naturally with

decision theoretic utilities that can be used to emphasize the scientifically

important qualitative properties of data. Bayesian inference requires the

specification of a prior distribution over model parameters, and so can allow

theoretical information about their content and constraints to be incorporated

into evaluation. And Bayesian inference can work effectively with hierarchical

models that can be applied to capture the way in which the same psychological

variables and processes are manifest in multiple psychological phenomena, and so

allows for direct evaluations of empirical breadth.

Of course, it will take some effort to realize all of the potential of the

Bayesian approach, and there are mundane practical considerations. Some

categorization models are computationally easier to implement within a fully

Bayesian analysis than others. Foundational models like the GCM are relatively

straightforward, but learning models like ALCOVE (Kruschke, 1992) or

SUSTAIN are more challenging. These are computational rather than conceptual

issues, and the successful Bayesian evaluation of closely related learning models,

like the Expectancy Valence model (Wetzels, Vandekerckhove, Tuerlinckx, &
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Wagenmakers, 2010), strongly suggests that they are surmountable.

Thus, we believe that the work that needs to be done to understand

categorization and other cognitive activities is to develop good theories and

models, and to collect the strong empirical evidence needed to evaluate those

theories and models. The challenge is not to find a framework for evaluation.

The Bayesian framework already exists, and is ready to do that part of the work.
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Footnotes

1We are not claiming that free parameters are always undesirable in

psychological modeling. When psychological models are used as measurement

models, for example, as in psychometric applications, estimating free parameters

is useful and sensible. In these applications, psychological models allow latent

psychological variables—like cognitive abilities in individuals—to be related to

people’s observed task behavior, and the scientific goal is to infer the free

parameters, not eliminate them.


