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The

standard model
of particle phyics

is extremely successful in describing observation.



picture taken from http://www.nobelprize.org/
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☞ Main reasons for going beyond the standard model of
particle physics:

1. Observation: neither the observed cold dark matter nor the
baryon asymmetry can be explained in the standard model.
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Physics beyond the standard model

☞ Main reasons for going beyond the standard model of
particle physics:

1. Observation: neither the observed cold dark matter nor the
baryon asymmetry can be explained in the standard model.

2. Conceptual: the standard model is based on a quantum
field theory, in which, however, it appears difficult to
incorporate gravity.

3. Aesthetics: the structure and the large amount of
parameters in the standard model ask for a simple, arguably
more fundamental explanation.

bottom–line:

New physics needed to describe our world at
the microscopic level!
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Outline

➊ Introduction X

➋ Grand unification in four & more dimensions

➌ Stringy models of particle physics

➍ Expectations and tests

➎ Summary



. . . in 4 dimensions
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☞ Interactions come from gauge symmetries

GSM = SU(3)C × SU(2)L ×U(1)Y

☞ Matter multiplets: 3 copies of why 3 generations?
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GSM = SU(3)C × SU(2)L ×U(1)Y

☞ Matter multiplets: 3 copies of

(3,2)1/6 ⊕ (3,1)−2/3 ⊕ (1,1)1 ⊕ (3,1)1/3 ⊕ (1,2)−1/2

hypercharge quantization: why?

stated differently: why are atoms neutral?

☞ electric charge = hypercharge + weak isospin
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☞ Matter multiplets: 3 copies of
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☞ Interactions come from gauge symmetries

GSM = SU(3)C × SU(2)L ×U(1)Y

☞ Matter multiplets: 3 copies of

(3,2)1/6 ⊕ (3,1)−2/3 ⊕ (1,1)1 ⊕ (3,1)1/3 ⊕ (1,2)−1/2

Local SU(2) rotation : e.g. lepton doublet

(
ψν
ψe

)
→

(
∗ ∗

∗ ∗

)(
ψν
ψe

)
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GSM = SU(3)C × SU(2)L ×U(1)Y ⊂ SU(5)
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(3,2)1/6 ⊕ (3,1)−2/3 ⊕ (1,1)1︸                                 ︷︷                                 ︸
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bottom–line:

All known (gauge) interactions can be unified!

http://inspirehep.net/search?p=Georgi:1974sy
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SU(5) and SO(10)

SU(5) grand unified theory (GUT) . . .

☞ explains charge quantization

☞ simplifies matter content

SM generation = 10 + 5

further simplification of matter sector Fritzsch & Minkowski (1975)

SO(10) ⊃ SU(5)

16 = 10 ⊕ 5 ⊕ 1

= SM generation with ‘right–handed’ neutrino

➥ Once there is an electron, SO(10) tells us that there are also
u and d quarks, i.e. protons and neutrons!

☞ However: coupling strengths are measured to be different

http://inspirehep.net/search?p=Fritzsch:1974nn
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☞ Gauge coupling evolution in the SM:
qualitatively nice: couplings run towards each other

☞ However: couplings do not meet at a point
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(Minimal) supersymmetric standard model

Fermions Bosons

Supersymmetry

︸                                                   ︷︷                                                   ︸
SM particles

︸                                                   ︷︷                                                   ︸
superpartners

R parity even R parity odd

distin-
guished
by ZR

2

features:

• (maximal) extension of Poincaré symmetry

• dark matter candidate
(
w/ ZR

2

)

• gauge hierarchy stabilization

• . . .
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Support for grand unification

Gauge coupling unification in the MSSM

☞ Running couplings in the (minimal) supersymmetric
standard model (MSSM) Dimopoulos, Raby & Wilczek (1981)
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g3

Unification
scale (MGUT)

☞ There is only one coupling, we observe different coupling
strengths only because of quantum effects

hierarchy stabilized by SUSY

http://inspirehep.net/search?p=Dimopoulos:1981yj


Towards a unified description of Nature Grand unification

Support for grand unification

Grand unification: virtues & predictions

☞ GUTs explain charge quantization



Towards a unified description of Nature Grand unification

Support for grand unification

Grand unification: virtues & predictions

☞ GUTs explain charge quantization

☞ In SO(10): understanding of the structure of SM matter



Towards a unified description of Nature Grand unification

Support for grand unification

Grand unification: virtues & predictions

☞ GUTs explain charge quantization

☞ In SO(10): understanding of the structure of SM matter

☞ Gauge coupling unification (. . . with supersymmetry)



Towards a unified description of Nature Grand unification

Support for grand unification

Grand unification: virtues & predictions

☞ GUTs explain charge quantization

☞ In SO(10): understanding of the structure of SM matter

☞ Gauge coupling unification (. . . with supersymmetry)

☞ Prediction: proton decay

u

u

d

p X

e+

d̄
π0



Towards a unified description of Nature Grand unification

Support for grand unification

Grand unification: virtues & predictions

☞ GUTs explain charge quantization

☞ In SO(10): understanding of the structure of SM matter

☞ Gauge coupling unification (. . . with supersymmetry)

☞ Prediction: proton decay

u

u

d

p X

e+

d̄
π0

main prediction of GUTs:

matter unstable



Towards a unified description of Nature Grand unification

Support for grand unification

Grand unification: virtues & predictions

☞ GUTs explain charge quantization

☞ In SO(10): understanding of the structure of SM matter

☞ Gauge coupling unification (. . . with supersymmetry)

☞ Prediction: proton decay

u

u

d

p X

e+

d̄
π0

main prediction of GUTs:

matter unstabley one day our universe will be ‘empty’
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Disturbing aspects

Doublet–triplet splitting problem

☞ GUTs also predict color triplets

smallest SO(10) representation containing Higgs

10 = 5 ⊕ 5 → (1,2)1/2 ⊕ (1,2)−1/2 ⊕ (3,1)−1/3 ⊕ (3,1)1/3

doublets: needed triplets: problematic

☞ Triplets

{
• spoil gauge coupling unification
• mediate proton decay
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Doublet–triplet splitting in four dimensions

matter
in complete

multiplets

Higgs
in split

multiplets

Why?

☞ there exist proposals to solve the doublet–triplet splitting
problem, e.g.

• Dimopoulos–Wilczek mechanism Dimopoulos & Wilczek (1981)

• Missing partner mechanism Masiero, Nanopoulos, Tamvakis & Yanagida (1982)

• . . .

http://inspirehep.net/search?p=Dimopoulos:1981xm
http://inspirehep.net/search?p=Masiero:1982fe
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Disturbing aspects

Doublet–triplet splitting in four dimensions

matter
in complete

multiplets

Higgs
in split

multiplets

Why?

☞ there exist proposals to solve the doublet–triplet splitting
problem, e.g.

• Dimopoulos–Wilczek mechanism Dimopoulos & Wilczek (1981)

• Missing partner mechanism Masiero, Nanopoulos, Tamvakis & Yanagida (1982)

• . . .

. . . however, a closer inspection shows that all of them have
certain deficiencies

http://inspirehep.net/search?p=Dimopoulos:1981xm
http://inspirehep.net/search?p=Masiero:1982fe
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matter
in complete

multiplets

Higgs
in split

multiplets

Why?

☞ ‘Natural’ solution of the doublet–triplet splitting problem
requires a symmetry that forbids Higgs mass µ

According to ’t Hoofts ‘naturalness’ criteria: explaining
a (supersymmetric) Higgs mass µ ≪MGUT requires a
symmetry that forbids µ.
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Disturbing aspects

Doublet–triplet splitting in four dimensions

matter
in complete

multiplets

Higgs
in split

multiplets

Why?

☞ ‘Natural’ solution of the doublet–triplet splitting problem
requires a symmetry that forbids Higgs mass µ

☞ Only R symmetries can do the job
superpartners have
different charges

Hall, Nomura & Pierce (2002) ; Lee, Raby, M.R., Ross, Schieren, et al. (2011) ; Chen, Fallbacher & M.R. (2012)

• anomaly freedom
• fermion masses

(Yukawa couplings & neutrino mass operator)

• consistency with SU(5)
• gauge coupling unification





y






only R symmetries
can forbid the µ term
in the MSSM
. . . and R parity is not enough

http://inspirehep.net/search?p=Hall:2002up
http://inspirehep.net/search?p=Lee:2010gv
http://inspirehep.net/search?p=Chen:2012tia
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Disturbing aspects

Doublet–triplet splitting in four dimensions

matter
in complete

multiplets

Higgs
in split

multiplets

Why?

☞ ‘Natural’ solution of the doublet–triplet splitting problem
requires a symmetry that forbids Higgs mass µ

☞ Only R symmetries can do the job and R parity does not

☞ However: R symmetries are not available in 4D GUTs
Fallbacher, M.R. & Vaudrevange (2011)

• GUT group G ⊃ SU(5)

• spontaneous breaking
• finite number of fields



 y





cannot have
exact MSSM spectrum &
residual R symmetries
(which are stronger than R parity)

in four dimensions

http://inspirehep.net/search?p=Fallbacher:2011xg
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Disturbing aspects

Doublet–triplet splitting in four dimensions

matter
in complete

multiplets

Higgs
in split

multiplets

Why?

☞ ‘Natural’ solution of the doublet–triplet splitting problem
requires a symmetry that forbids Higgs mass µ

☞ Only R symmetries can do the job and R parity does not

☞ However: R symmetries are not available in 4D GUTs

remainder of this talk:

Grand Unification in extra dimensions
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String compactifications

String compactifications

☞ Violin: needs to be
constructed in such a way
that the oscillating strings
produce the right sounds

☞ String compactification:
twist the string in such a
way that the excitations
carry the quantum
numbers of the standard
model particles
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What is an orbifold?

How to build a 4D string model

☞ (Super–)String theory predicts six extra dimensions

. . . but for simplicity discuss only two of them

☞ Simple example: Z2 orbifold plane = T2/Z2

Z2 bcb bcb

bcbbcb
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What is an orbifold?

bcb bcb

bcbbcb

Gbl Gbr

Gtl Gtr

G

bcb bcb

bcbbcb

☞ An orbifold is a space which is smooth/flat everywhere
except for special (orbifold fixed) points

☞ ‘Bulk’ gauge symmetry G is broken to (different) subgroups
(local GUTs) at the fixed points

☞ Low–energy gauge group : Glow−energy = Gbl ∩Gbr ∩Gtl ∩Gtr
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What are the light states of an orbifold?

Light states of effective field theory

heterotic string field theory
untwisted sector =
strings closed on the
torus

extra com-
ponents of
gauge fields

‘twisted’ sectors =
strings which are
only closed on the
orbifold

‘brane fields’
(hard to understand in

field–theoretical framework)

bcb bcb

bcbbcb

☞ (‘Brane’) Fields living at fixed point with a certain symmetry
appear as complete multiplet of that symmetry

➥ E.g. if the electron lives at a point with SO(10) symmetry
also u and d quarks live there
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What is an orbifold?

Orbifold compactification with local SO(10) GUT

Cartoon of heterotic orbifold compactification with local
SO(10) GUT structures

4D space–time

6D internal
space

bcb

SO(10)
16



Towards a unified description of Nature GUTs from strings

Idea of ‘local grand unification’

Local grand unification (using small extra dimensions)

Buchmüller, Hamaguchi, Lebedev, M.R. (2004–2006)

Lebedev, Nilles, Raby, Ramos–Sánchez,

M.R., Vaudrevange, Wingerter (2006)

bcb
SO(10)

16 bcb
Grb

bcbGlt bcb Grt

E8 × E8





‘low–energy’
−−−−−−−−−−−−−→
effective theory





standard
model
as an
intersection
of Grb,Grt,Glt

& SO(10)

in G

SM generation(s):

localized in region with
SO(10) symmetry

Higgs doublets:

live in the ‘bulk’
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Results
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➌ unification
precision gauge unification
(PGU) from non–local GUT
breaking
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Results

➊ 3 × 16 + Higgs + nothing

➋ SU(3) × SU(2) ×U(1)Y ×Ghid

➌ unification

➍ R parity & Z

R
4

✟
✟

✟✟❍
❍

❍❍ū d̄ d̄ ✟
✟
✟❍

❍
❍q d̄ ℓ

✟
✟✟❍
❍❍ℓ ℓ ē

✟
✟
✟❍

❍
❍

ℓHu

y proton long–lived

y DM stable
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➌ unification

➍ R parity & Z

R
4

➎ see–saw

➏ yt ≃ g @ MGUT & potentially
realistic flavor structures à la
Froggatt-Nielsen

➐ ‘realistic’ hidden sector

scale of hidden sector strong
dynamics is consistent with
TeV-scale soft masses and
realistic gauge coupling
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➏ yt ≃ g @ MGUT & potentially
realistic flavor structures à la
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➐ ‘realistic’ hidden sector

➑ solution to the µ problem

µ ∼ 〈W 〉

〈W 〉 ≪ 1 from
approximate U(1)R

symmetries

y light Higgs
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➊ 3 × 16 + Higgs + nothing

➋ SU(3) × SU(2) ×U(1)Y ×Ghid

➌ unification

➍ R parity & Z

R
4

➎ see–saw

➏ yt ≃ g @ MGUT & potentially
realistic flavor structures à la
Froggatt-Nielsen

➐ ‘realistic’ hidden sector

➑ solution to the µ problem






that’s what we
searched for. . .






. . . that’s what we
got ‘for free’

“stringy surprises”
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Lessons from the model search

2+1 family models

Structure of a class of successful models:

☞ Two families come from two
equivalent fixed points and are
related by a D4 family
symmetry

☞ 3rd generation is a ‘patchwork
family’
i.e. different multiplets have
different localization properties

bcb

bcbSO(10)
16

16
SO(10)

non–local
GUT

breakingD4
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Local grand unification & ZR

4

bcb
SO(10)

16 bcb
Grb

bcbGlt bcb Grt

E8 × E8

Z

R
4 (bottom–up)

Z

R
4 charge

matter 1
Higgs 0

SM generation(s):

localized in region with
SO(10) symmetry

Higgs doublets:

live in the ‘bulk’

Virtues of ZR

4
include:

Babu, Gogoladze & Wang (2003); Lee, Raby, M.R., Ross, Schieren, et al. (2011)

• controls the Higgs mass

• consistent w/ SO(10)

• satisfies consistency conditions (anomaly freedom etc.)

• guarantees longevity of the nucleon

• contains R parity (y DM stable)

http://inspirehep.net/search?p=Babu:2002tx,Lee:2010gv
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Towards a unified description of Nature Expectations & Tests

Implications for the LHC & future colliders

Pattern of soft supersymmetry breaking masses

☞ Scenario with✘✘✘❳❳❳SUSY by ‘matter field’ X + dilaton S

➥ Mirage pattern for gaugino masses + heavy sfermions

➥ Yields natural scenario for precision gauge unification
(PGU) Carena, Clavelli, Matalliotakis, Nilles & Wagner (1993) . . . Raby, M.R. & Schmidt-Hoberg (2010)

Krippendorf, Nilles, M.R. & Winkler (2013)
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Highlights

Implications for the LHC and future colliders

☞ PGU implies a superpartner mass scale ∼ 2 TeV

☞ Geometric properties of ingredients of top–Yukawa
coupling entail ‘focus point’ Krippendorf, Nilles, M.R. & Winkler (2012)

☞ Hu, QL & tR bulk fields

➥ Coinciding boundary
conditions at high scale

➥ ‘Focus point’

Feng, Matchev & Moroi (2000)
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Highlights

Implications for the LHC and future colliders

☞ PGU implies a superpartner mass scale ∼ 2 TeV

☞ Geometric properties of ingredients of top–Yukawa
coupling entail ‘focus point’ Krippendorf, Nilles, M.R. & Winkler (2012)

☞ PGU leads to naturally to a relic density of WIMPs which is
consistent with observed CDM Krippendorf, Nilles, M.R. & Winkler (2013)

w/ PGU w/o PGU

http://inspirehep.net/search?p=Krippendorf:2012ir
http://inspirehep.net/search?p=Krippendorf:2013dqa
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Results from a more detailed analysis
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☞ Running of the soft masses
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Highlights

Results from a more detailed analysis
Baer, Barger, Savoy, Serce & Tata (2017)

☞ Sample spectrum

☞ Amazingly low fine–tunig: ∆EW < 20 possible

☞ Perhaps hard to verify at the LHC

http://inspirehep.net/search?p=Baer:2017cck
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Proton decay

Proton decay
Mütter, M.R. & Vaudrevange (2016)

Z

R

4
symmetry:

• no dimension 4 proton
decay

• dimension 5 proton
decay negligible

http://inspirehep.net/search?p=Mutter:2016jxc


Towards a unified description of Nature Expectations & Tests

Proton decay

Proton decay
Mütter, M.R. & Vaudrevange (2016)
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Proton decay
Mütter, M.R. & Vaudrevange (2016)
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4
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• no dimension 4 proton
decay

• dimension 5 proton
decay negligible

non–local GUT breaking:

no dimension 6 proton
decay!
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Proton decay

Proton decay (cont’d)

☞ Models with local GUT breaking: proton decay from GUT
gauge boson exchange

τ(p→ e+π0) ∼ 1035±1 yr

Uncertainties: matrix
elements, α3(mZ), precise
value of mUnification etc.

u

u

d

p X

e+

d̄
π0
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Summary

☞ The quest for unification of all forces requires new physics
beyond the standard model such as supersymmetry, extra
dimensions & strings

☞ Stringy completions of the standard model allow us to
answer some of the basic questions:

• Family as a 16–plet of SO(10)

• Repetition of families from extra dimensions
• Discrete remnants of the Lorentz group of compact space

explain the longevity of the nucleon and the stability of dark
matter

☞ Testable predictions for the scale of superpartner masses,
the nature of dark matter and proton decay
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Neutrino masses in grand unification: see–saw

Minkowski (1977)
Gell-Mann, Ramond & Slansky (1979)

Yanagida (1979)
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ν = ‘left–handed’ neutrino
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vEW ∼ 100 GeV

ν = ‘left–handed’ neutrino
ν̄ = ‘right–handed’ neutrino

➥ Naive expectation: mν̄ ∼MGUT

mν ∼ (100 GeV)2/1016 GeV ∼ 10−3 eV

☞ Experiments:
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Neutrino masses in grand unification: see–saw

Minkowski (1977)
Gell-Mann, Ramond & Slansky (1979)

Yanagida (1979)

mν ∼
v2

EW

mν̄

vEW ∼ 100 GeV

ν = ‘left–handed’ neutrino
ν̄ = ‘right–handed’ neutrino

➥ Naive expectation: mν̄ ∼MGUT

mν ∼ (100 GeV)2/1016 GeV ∼ 10−3 eV

☞ Experiments:
√
∆m2

atm ≃ 0.04 eV &
√
∆m2

sol ≃ 0.008 eV

➥ Rough (although not perfect) agreement

http://inspirehep.net/search?p=Minkowski:1977sc
http://inspirehep.net/search?p=Gell-Mann:1980vs
http://inspirehep.net/search?p=Yanagida:1980
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Dimension five proton decay
Sakai & Yanagida (1982)

3H 3H

qj

qi

ℓk

qℓ

Integrating out
−−−−−−−−−−−−−−→
Higgs(ino) triplets

κ

qj

qi

ℓk

qℓ

http://inspirehep.net/search?p=Sakai:1981pk
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Dimension five proton decay
Sakai & Yanagida (1982)

3H 3H

qj

qi

ℓk

qℓ

Integrating out
−−−−−−−−−−−−−−→
Higgs(ino) triplets

κ

qj

qi

ℓk

qℓ

u

d

u

p

κ H̃
q̃

ℓ̃

ν̄

s
K+

e.g. Dermí̆sek, Mafi & Raby (2001)

for ‘reasonable’ soft
masses:

τ(p→ K+ + ν̄) & 3× 1033 y

y mtriplet & 1019 GeV

http://inspirehep.net/search?p=Sakai:1981pk
http://inspirehep.net/search?p=Dermisek:2000hr
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SO(10) breaking by Higgs mechanism

from Mohapatra & Pal (1991)SO(10)

SU(4) × SU(2) × SU(2) × Z2 SU(4) × SU(2) × SU(2)

SU(3) × SU(2) ×U(1) × ZR
2 SU(3) × SU(2) ×U(1)

54 210

126

126
16

16

☞ GUT breaking by Higgs: need large Higgs representations
(54, 126, 210)y lot of ‘junk’ (which, however, can be paired up)
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Light states of orbifolds

What are the light states of an orbifold?

Light states of effective field theory

heterotic string field theory
untwisted sector =
strings closed on the
torus

extra com-
ponents of
gauge fields

‘twisted’ sectors =
strings which are
only closed on the
orbifold

‘brane fields’
(hard to understand in

field–theoretical framework)

bcb bcb

bcbbcb

☞ (‘Brane’) Fields living at fixed point with a certain symmetry
appear as complete multiplet of that symmetry
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Light states of orbifolds

What are the light states of an orbifold?

Light states of effective field theory

heterotic string field theory
untwisted sector =
strings closed on the
torus

extra com-
ponents of
gauge fields

‘twisted’ sectors =
strings which are
only closed on the
orbifold

‘brane fields’
(hard to understand in

field–theoretical framework)

bcb bcb

bcbbcb

☞ (‘Brane’) Fields living at fixed point with a certain symmetry
appear as complete multiplet of that symmetry

➥ E.g. if the electron lives at a point with SO(10) symmetry
also u and d quarks live there
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UniqueZR
4

symmetry

Unique ZR
4 symmetry for the MSSM

Lee, Raby, M.R., Ross, Schieren, et al. (2011)

• anomaly freedom
• forbid µ term
• fermion masses

(Yukawa couplings &
neutrino mass operator)

• consistency with SO(10)



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y

{
unique solution:
discrete ZR

4 symmetry

http://inspirehep.net/search?p=Lee:2010gv


Towards a unified description of Nature Backup slides

UniqueZR
4

symmetry

Unique ZR
4 symmetry for the MSSM

Lee, Raby, M.R., Ross, Schieren, et al. (2011)

• anomaly freedom
• forbid µ term
• fermion masses

(Yukawa couplings &
neutrino mass operator)

• consistency with SO(10)



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y

{
unique solution:
discrete ZR

4 symmetry

Z

R
4






• forbids µ term perturbatively
• forbids dimension 5 proton decay perturbatively
• contains matter/R parity

• charge assignment:

{
matter: 1
Higgs: 0

http://inspirehep.net/search?p=Lee:2010gv
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Unique ZR
4 symmetry for the MSSM

Lee, Raby, M.R., Ross, Schieren, et al. (2011)

• anomaly freedom
• forbid µ term
• fermion masses

(Yukawa couplings &
neutrino mass operator)

• consistency with SO(10)





y

{
unique solution:
discrete ZR

4 symmetry

Z

R
4






• forbids µ term perturbatively
• forbids dimension 5 proton decay perturbatively
• contains matter/R parity

• charge assignment:

{
matter: 1
Higgs: 0

W
non−pert

eff ⊃ µeff Hu Hd + κijkℓ Qi Qj Qj Lℓ

∼ m3/2 ∼TeV ∼ m3/2/M
2
P ∼ 10−15/MP

http://inspirehep.net/search?p=Lee:2010gv
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