String GUTs

Michael Ratz

2019

Based on collaborations with:
M. Blaszczyk, F. Brümmer, W. Buchmüller, M.-C. Chen, M. Fallbacher, M. Fischer, S. Groot Nibbelink, K. Hamaguchi, R. Kappl, T. Kobayashi, O. Lebedev, H.M. Lee, R. Mohapatra, A. Mütter, H.P. Nilles, B. Petersen, F. Plöger, S. Raby, S. Ramos-Sánchez, G. Ross, F. Ruehle, R. Schieren, K. Schmidt-Hoberg, C. Staudt, V. Takhistov, A. Trautner, M. Trapletti, P. Vaudrevange \& A. Wingerter

Why SUSY Mu入 つ ค？人 and
 Grand Unification

？

Gauge coupling unification in the MSSM

Running couplings in the (minimal) supersymmetric standard model

Gauge coupling unification in the MSSM

Running couplings in the (minimal) supersymmetric standard model (MSSM)

Gauge coupling unification might be a consequence of $G_{\mathrm{SM}}=\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \subset \mathrm{SU}(5)$
\qquad

Where is SUSY?

(9) Answer: in 2019 in Corpus Christi (TX)

Doublet-triplet splitting vs. full generations

() Gauge coupling unification: $M_{\text {GUT }} \sim 10^{16} \mathrm{GeV}$ with SUSY

Doublet-triplet splitting vs. full generations

(). Gauge coupling unification: $M_{\text {GUT }} \sim 10^{16} \mathrm{GeV}$ with SUSY
() One generation of observed matter fits into 16 of $\mathrm{SO}(10)$

$$
\begin{aligned}
\mathrm{SO}(10) \rightarrow & \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{\mathrm{Y}}=G_{\mathrm{SM}} \\
\mathbf{1 6} \rightarrow & (\mathbf{3}, \mathbf{2})_{1 / 6} \oplus(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3} \oplus(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3} \\
& \oplus(\mathbf{1}, \mathbf{1})_{1} \oplus(\mathbf{1}, \mathbf{2})_{-1 / 2} \oplus(\mathbf{1}, \mathbf{1})_{0}
\end{aligned}
$$

(․ However: Higgs only as doublet(s):

$$
\mathbf{1 0} \rightarrow(\mathbf{1}, \mathbf{2})_{1 / 2} \oplus(\mathbf{1}, \mathbf{2})_{-1 / 2} \oplus(\mathbf{3}, \mathbf{1})_{-1 / 3} \oplus(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}
$$

Doublet-triplet splitting vs. full generations

() Gauge coupling unification: $M_{\text {GUT }} \sim 10^{16} \mathrm{GeV}$ with SUSY
(). One generation of observed matter fits into 16 of $\mathrm{SO}(10)$

$$
\begin{aligned}
\mathrm{SO}(10) \rightarrow & \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{\mathrm{Y}}=G_{\mathrm{SM}} \\
\mathbf{1 6} \rightarrow & (\mathbf{3}, \mathbf{2})_{1 / 6} \oplus(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3} \oplus(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3} \\
& \oplus(\mathbf{1}, \mathbf{1})_{1} \oplus(\mathbf{1}, \mathbf{2})_{-1 / 2} \oplus(\mathbf{1}, \mathbf{1})_{0}
\end{aligned}
$$

() However: Higgs only as doublet(s):
$\mathbf{1 0} \rightarrow(\mathbf{1}, \mathbf{2})_{1 / 2} \oplus(\mathbf{1}, \mathbf{2})_{-1 / 2} \oplus(\mathbf{3}, \mathbf{1})_{-1 / 3} \oplus(\overline{3}, \mathbf{1})_{1 / 3}$
A true solution to the problem requires a symmetry that forbids the μ term in the MSSM

Doublet-triplet splitting vs. full generations

() Gauge coupling unification: $M_{\text {GUT }} \sim 10^{16} \mathrm{GeV}$ with SUSY
() One generation of observed matter fits into 16 of $\mathrm{SO}(10)$

$$
\begin{aligned}
& \mathrm{SO}(10) \rightarrow \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{\mathrm{Y}}=G_{\mathrm{SM}} \\
& \mathbf{1 6} \rightarrow(\mathbf{3}, \mathbf{2})_{1 / 6} \oplus(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3} \oplus(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3} \\
& \oplus(\mathbf{1}, \mathbf{1})_{1} \oplus(\mathbf{1}, \mathbf{2})_{-1 / 2} \oplus(\mathbf{1}, \mathbf{1})_{0}
\end{aligned}
$$

() However: Higgs only as doublet(s):
$\mathbf{1 0} \rightarrow(\mathbf{1}, \mathbf{2})_{1 / 2} \oplus(\mathbf{1}, \mathbf{2})_{-1 / 2} \oplus(\mathbf{3}, \mathbf{1})_{-1 / 3} \oplus(\overline{3}, \mathbf{1})_{1 / 3}$
A true solution to the problem requires a symmetry that forbids the μ term in the MSSM

The GUT-breaking Higgs representations are hard to get in string theory

Purpose of this talk

Discrete R symmetries to solve some of the most stringent problems of the MSSM

- μ problem
- proton decay operators

Purpose of this talk

Discrete R symmetries to solve some of the most stringent problems of the MSSM

- μ problem
- proton decay operators

Discrete flavor symmetries as the origin of $\mathcal{C P}$ violation

Purpose of this talk

Discrete R symmetries to solve some of the most stringent problems of the MSSM

- μ problem
- proton decay operators

Discrete flavor symmetries as the origin of $\mathcal{C P}$ violation
Stringy origin of these discrete symmetries

Outline

(1) Introduction \& Motivation
(2) Anomaly-free discrete symmetries \& unification

- anomaly cancellation
- consistency with unification
- unique \mathbb{Z}_{4}^{R} symmetry
- no-go theorems in 4D
- stringy realization
(3) $\mathcal{C P}$ violation from strings
- $\mathcal{C P}$ violation from finite groups
- discrete (family) symmetries from strings
- stringy origin
(4) Summary

Anomaly-free HINOWS|-lı66

discrete symmetries

and

Grand Unification

- anomaly cancellation
- consistency with unification
- unique \mathbb{Z}_{4}^{R} symmetry
- no-go theorems in 4D

Superpotential of the MSSM

Yukawa couplings

$$
\begin{aligned}
& \mathscr{W}_{\text {gauge invariant }}=\mu \boldsymbol{h}_{d} \boldsymbol{h}_{u}+\kappa_{i} \boldsymbol{\ell}_{i} \boldsymbol{h}_{u} \\
& \quad+Y_{e}^{g f} \boldsymbol{\ell}_{g} \boldsymbol{h}_{d} \boldsymbol{e}^{\mathcal{C}}{ }_{f}+Y_{d}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{d} \boldsymbol{d}^{\mathcal{C}}{ }_{f}+Y_{u}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{u} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \\
& \quad+\lambda_{g f k} \boldsymbol{\ell}_{g} \boldsymbol{\ell}_{f} \boldsymbol{e}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime} \boldsymbol{\ell}_{g} \boldsymbol{q}_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime \prime} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{d}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \\
& \quad+\kappa_{g f} \boldsymbol{h}_{u} \ell_{g} \boldsymbol{h}_{u} \ell_{f}+\kappa_{g f k \ell}^{(1)} \boldsymbol{q}_{g} \boldsymbol{q}_{f} \boldsymbol{q}_{k} \ell_{\ell}+\kappa_{g f k \ell}^{(2)} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \boldsymbol{e}^{\mathcal{C}}{ }_{\ell}
\end{aligned}
$$

effective neutrino mass operator

Want: Yukawa couplings and Weinberg operator

Superpotential of the MSSM

$$
\begin{aligned}
& \mathscr{W}_{\text {gauge invariant }}=\mu \boldsymbol{h}_{d} \boldsymbol{h}_{u}+\kappa_{i} \boldsymbol{\ell}_{i} \boldsymbol{h}_{u} \\
& \quad+Y_{e}^{g f} \boldsymbol{\ell}_{g} \boldsymbol{h}_{d} \boldsymbol{e}^{\mathcal{C}}{ }_{f}+Y_{d}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{d} \boldsymbol{d}^{\mathcal{C}}{ }_{f}+Y_{u}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{u} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \\
& +\lambda_{g f k} \boldsymbol{\ell}_{g} \boldsymbol{\ell}_{f} \boldsymbol{e}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime} \boldsymbol{\ell}_{g} \boldsymbol{q}_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime \prime} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{d}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \\
& +\kappa_{g f} \boldsymbol{h}_{u} \boldsymbol{\ell}_{g} \boldsymbol{h}_{u} \boldsymbol{\ell}_{f}+\kappa^{(1)}{ }_{f k \ell} \boldsymbol{q}_{g} \boldsymbol{a}_{f} \boldsymbol{q}_{k} \boldsymbol{\ell}_{\ell}+\kappa_{g f k \ell}^{(2)} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \boldsymbol{e}^{\mathcal{C}}{ }_{\ell} \\
& R \text {-parity violation }
\end{aligned}
$$

Want: Yukawa couplings and Weinberg operator

Do not want/need R-parity violation

Superpotential of the MSSM

$$
\stackrel{!}{\sim} \mathcal{O}\left(m_{3 / 2}\right)
$$

$$
\begin{aligned}
& \mathscr{W}_{\text {gauge invariant }}=\mu \boldsymbol{h}_{d} \boldsymbol{h}_{u}+\kappa_{i} \boldsymbol{\ell}_{i} \boldsymbol{h}_{u} \\
& \quad+Y_{e}^{g f} \boldsymbol{\ell}_{g} \boldsymbol{h}_{d} \boldsymbol{e}^{\mathcal{C}}{ }_{f}+Y_{d}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{\vdots}^{!} \leq \frac{10^{-18}}{M_{\mathrm{P}}}{ }_{u}{ }_{u} \boldsymbol{q}_{g} \boldsymbol{h}_{u} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \\
& \quad+\lambda_{g f k} \boldsymbol{\ell}_{g} \boldsymbol{\ell}_{f} \boldsymbol{e}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime} \boldsymbol{\ell}_{g} \boldsymbol{q}_{f} \boldsymbol{d}^{C_{k}}+\lambda_{g f k}^{\prime \prime} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{d}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \\
& \quad+\kappa_{g f} \boldsymbol{h}_{u} \boldsymbol{\ell}_{g} \boldsymbol{h}_{u} \boldsymbol{\ell}_{f}+\kappa_{g f k \ell}^{(1)} \boldsymbol{q}_{g} \boldsymbol{q}_{f} \boldsymbol{q}_{k} \ell_{\ell}+\kappa_{g f k \ell}^{(2)} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \boldsymbol{e}^{\mathcal{C}} \ell_{\ell}
\end{aligned}
$$

Want: Yukawa couplings and Weinberg operator
Do not want/need R-parity violation
Want to tie μ term to supersymmetry breaking and suppress proton decay operators

Prejudices, assumptions \& goals

Assumptions:

SO (10) unification of matter is not an accident
μ term is forbidden by a symmetry but appears after SUSY breaking Want to preserve gauge coupling unification

-

na

SO

Peat as
\square
1
$+$

Anomaly-free symmetries, μ and unification

Working assumptions:
(i) anomaly universality (allow for GS anomaly cancellation) if violated, gauge coupling unification will be spoiled

$$
\begin{aligned}
A_{G^{2}-\mathbb{Z}_{N}}= & \sum_{f} \ell^{(f)} \cdot q^{(f)} \stackrel{!}{=} \rho \bmod \eta \text { for all } G \\
A_{\mathrm{grav}^{2}-\mathbb{Z}_{N}}= & \sum_{m} q^{(m)} \stackrel{!}{=} \rho \bmod \eta \\
& \mathbb{Z}_{N} \text { charge } \quad \eta:= \begin{cases}N & \text { for } N \text { odd } \\
N / 2 & \text { for } N \text { even }\end{cases}
\end{aligned}
$$

Anomaly-free symmetries, μ and unification

Working assumptions:
(i) anomaly universality (allow for GS anomaly cancellation)
(ii) μ term forbidden (before SUSY)
need to forbid the μ term to be able to appreciate the Kim-Nilles and/or Giudice-Masiero mechanisms

Anomaly-free symmetries, μ and unification

Working assumptions:
(i) anomaly universality (allow for GS anomaly cancellation)
(ii) μ term forbidden (before SUSY)
(iii) Yukawa couplings and Weinberg neutrino mass operator allowed

Anomaly-free symmetries, μ and unification

Working assumptions:
(i) anomaly universality (allow for GS anomaly cancellation)
(ii) μ term forbidden (before SUSY)
(iii) Yukawa couplings and Weinberg neutrino mass operator allowed (iv) compability with $\mathrm{SU}(5)$ or $\mathrm{SO}(10)$ GUT

$$
\begin{aligned}
\mathrm{SO}(10) \rightarrow & \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{\mathrm{Y}}=G_{\mathrm{SM}} \\
\mathbf{1 6} \rightarrow & (\mathbf{3}, \mathbf{2})_{1 / 6} \oplus(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3} \oplus(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3} \\
& \oplus(\mathbf{1}, \mathbf{1})_{1} \oplus(\mathbf{1}, \mathbf{2})_{-1 / 2} \oplus(\mathbf{1}, \mathbf{1})_{0}
\end{aligned}
$$

Anomaly-free symmetries, μ and unification

Working assumptions:
(i) anomaly universality (allow for GS anomaly cancellation)
(ii) μ term forbidden (before SUSY)
(iii) Yukawa couplings and Weinberg neutrino mass operator allowed
(iv) compability with $\mathrm{SU}(5)$ or $\mathrm{SO}(10)$ GUT

Can prove:

1. assuming (i) \& $\operatorname{SU}(5)$ relations:
\curvearrowright only R symmetries can forbid the μ term
Hall, Nomura \& Pierce [2002] ; Lee, Raby, M.R., Ross, Schieren, et al. [2011a] ; Lee, Raby, M.R., Ross, Schieren, et al. [2011b]

Anomaly-free symmetries, μ and unification

Working assumptions:
(i) anomaly universality (allow for GS anomaly cancellation)
(ii) μ term forbidden (before SUSY)
(iii) Yukawa couplings and Weinberg neutrino mass operator allowed
(iv) compability with $\mathrm{SU}(5)$ or $\mathrm{SO}(10)$ GUT

Can prove:

1. assuming (i) \& $\mathrm{SU}(5)$ relations:
\curvearrowright only R symmetries can forbid the μ term
2. assuming (i)-(iii) \& $S O(10)$ relations:
\curvearrowright unique \mathbb{Z}_{4}^{R} symmetry

	\boldsymbol{q}	$\boldsymbol{u}^{\mathcal{C}}$	$\boldsymbol{d}^{\mathcal{C}}$	$\boldsymbol{\ell}$	$\boldsymbol{e}^{\mathcal{C}}$	\boldsymbol{h}_{u}	\boldsymbol{h}_{d}	$\boldsymbol{\nu}^{\mathcal{C}}$
\mathbb{Z}_{4}^{R}	1	1	1	1	1	0	0	1

Anomaly-free symmetries, μ and unification

Working assumptions:
(i) anomaly universality (allow for GS anomaly cancellation)
(ii) μ term forbidden (before SUSY)
(iii) Yukawa couplings and Weinberg neutrino mass operator allowed
(iv) compability with $\mathrm{SU}(5)$ or $\mathrm{SO}(10)$ GUT

Can prove:

1. assuming (i) \& $\mathrm{SU}(5)$ relations:
\curvearrowright only R symmetries can forbid the μ term
2. assuming (i)-(iii) \& $S O(10)$ relations:
\curvearrowright unique \mathbb{Z}_{4}^{R} symmetry
3. R symmetries are not available in 4D GUTs uneaten parts of the Higgs that breaks the GUT symmetry cannot be paired up

't Hooft anomaly matching for R symmetries

Powerful tool: anomaly matching

't Hooft anomaly matching for R symmetries

Powerful tool: anomaly matching
At the $\mathrm{SU}(5)$ level: one anomaly coefficier extra
$A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}=A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}^{\text {matter }}+A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}^{\text {extr }}+5 q_{\theta}$

't Hooft anomaly matching for R symmetries

Powerful tool: anomaly matching
At the $\operatorname{SU}(5)$ level: one anomaly coefficient

$$
A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}=A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{matter}}+A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{extra}}+5 q_{\theta}
$$

Consider the $\operatorname{SU}(3)$ and $\mathrm{SU}(2)$ subgroups

SM gauginos

$$
\begin{aligned}
A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{SU}(5)}=A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{M}^{R}}^{\operatorname{matter}}+A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{extra}}+3 q_{\theta}+\frac{1}{2} \cdot 2 \cdot 2 \cdot q_{\theta} \\
A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{SU}(5)}=A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{M}^{R}}^{\operatorname{matter}}+A_{\mathrm{SU}(2)^{2}}^{\text {extra }}+2 q_{\theta}+\frac{1}{2} \cdot 2 \cdot 3 \cdot q_{\theta}
\end{aligned}
$$

extra
gauginos
from X, Y
bosons

't Hooft anomaly matching for R symmetries

Powerful tool: anomaly matching
At the $\operatorname{SU}(5)$ level: one anomaly coefficient

$$
A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}=A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}^{\operatorname{matter}}+A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}^{\operatorname{extra}}+5 q_{\theta}
$$

Consider the $\mathrm{SU}(3)$ and $\mathrm{SU}(2)$ subgroups

$$
\begin{aligned}
& A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{SU}(5)}=A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{M}^{R}}^{\text {matter }}+A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{extr}}+3 q_{\theta}+\frac{1}{2} \cdot 2 \checkmark 2 \cdot q_{\theta} \\
& A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{SU}(5)}=A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{M}^{R}}^{\operatorname{matte}}+A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{extra}}+2 q_{\theta}+\frac{1}{2} \cdot 2 \wedge-3 \cdot q_{\theta}
\end{aligned}
$$

Assume now that some mechanism eliminates the extra gauginos

't Hooft anomaly matching for R symmetries

Powerful tool: anomaly matching
At the $\mathrm{SU}(5)$ level: one anomaly coefficient

$$
A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}=A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}^{\operatorname{matter}}+A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{exta}}+5 q_{\theta}
$$

Consider the $\mathrm{SU}(3)$ and $\mathrm{SU}(2)$ subgroups

Assume now that some mechanism eliminates the extra gauginos
\Rightarrow Extra stuff must be non-universal (split multiplets)

't Hooft anomaly matching for R symmetries

Powerful tool: anomaly matching
At the $\operatorname{SU}(5)$ level: one anomaly coefficient

$$
A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}=A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{matter}}+A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{extra}}+5 q_{\theta}
$$

Consider the $\mathrm{SU}(3)$ and $\mathrm{SU}(2)$ subgroups

$$
\begin{aligned}
& A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{SU}()^{2}}=A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{M}^{R}}^{\text {matter }}+A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{extr}}+3 q_{\theta}+\frac{1}{2} \cdot 2 \curvearrowright 2 \cdot q_{\theta} \\
& A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{SU}(5)}=A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{M}^{R}}^{\operatorname{matte}}+A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{extra}}+2 q_{\theta}+\frac{1}{2} \cdot 2 \wedge-3 \cdot q_{\theta}
\end{aligned}
$$

bottom-line:

't Hooft anomaly matching for (discrete) R symmetries implies the presence of split multiplets below the GUT scale!

\mathbb{Z}_{4}^{R} summarized

Babu, Gogoladze \& Wang [2003] ;L Yukawa couplings \checkmark 11a] ;Lee, Raby, M.R., Ross, Schieren, et al. [2011b]

$$
\begin{aligned}
& \mathscr{W}_{\text {gauge invariant }}=\mu \boldsymbol{h}_{d} \boldsymbol{h}_{u}+\kappa_{i} \boldsymbol{\ell}_{i} \boldsymbol{h}_{u} \\
& \quad+Y_{e}^{g f} \boldsymbol{\ell}_{g} \boldsymbol{h}_{d} \boldsymbol{e}^{\mathcal{C}}{ }_{f}+Y_{d}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{d} \boldsymbol{d}^{\mathcal{C}}{ }_{f}+Y_{u}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{u} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \\
& \quad+\lambda_{g f k} \boldsymbol{\ell}_{g} \boldsymbol{\ell}_{f} \boldsymbol{e}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime} \boldsymbol{\ell}_{g} \boldsymbol{q}_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime \prime} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{d}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \\
& \quad+\kappa_{g f} \boldsymbol{h}_{u} \boldsymbol{\ell}_{g} \boldsymbol{h}_{u} \boldsymbol{\ell}_{f}+\kappa_{g f k \ell}^{(1)} \boldsymbol{q}_{g} \boldsymbol{q}_{f} \boldsymbol{q}_{k} \boldsymbol{\ell}_{\ell}+\kappa_{g f k \ell}^{(2)} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \boldsymbol{e}^{\mathcal{C}}{ }_{\ell}
\end{aligned}
$$

effective neutrino mass operator
allowed superpotential terms have R charge $2 \bmod 4$

\mathbb{Z}_{4}^{R} summarized

Babu, Gogoladze \& Wang [2003] ;Lee, Raby, M.R., Ross, Schieren, et al. [2011a] ;Lee, Raby, M.R., Ross, Schieren, et al. [2011b]

$$
\begin{aligned}
& \mathscr{W}_{\text {gauge invariant }}=\mu \boldsymbol{h}_{d} \boldsymbol{h}_{u}+\kappa_{i} \boldsymbol{\ell}_{i} \boldsymbol{h}_{u} \\
& \quad+Y_{e}^{g f} \boldsymbol{\ell}_{g} \boldsymbol{h}_{d} \boldsymbol{e}^{\mathcal{C}}{ }_{f}+Y_{d}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{d} \boldsymbol{d}^{\mathcal{C}}{ }_{f}+Y_{u}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{u} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \\
& +\lambda_{g f k} \boldsymbol{\ell}_{g} \boldsymbol{\ell}_{f} \boldsymbol{e}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime} \boldsymbol{\ell}_{g} \boldsymbol{q}_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime \prime} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{d}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \\
& +\kappa_{g f} \boldsymbol{h}_{u} \boldsymbol{\ell}_{g} \boldsymbol{h}^{\prime} \boldsymbol{\ell}_{f}+\kappa{ }^{(1)}{ }_{f k \ell} \boldsymbol{q}_{g} \boldsymbol{a}_{j} \boldsymbol{\varphi}_{k} \boldsymbol{\ell} \ell_{\ell}+\kappa_{g f k \ell}^{(2)} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \boldsymbol{e}^{\mathcal{C}}{ }_{\ell} \\
& \quad \text { forbidden by exact } \mathbb{Z}_{2}^{R} \subset \mathbb{Z}_{4}^{\mathrm{R}}
\end{aligned}
$$

© \mathbb{Z}_{4}^{R} has an unbroken \mathbb{Z}_{2} matter parity subgoup

\mathbb{Z}_{4}^{R} summarized

$$
\begin{aligned}
& \mathscr{W}_{\text {gauge invariant }}=\mu \boldsymbol{h}_{d} \boldsymbol{h}_{u}+\kappa_{i} \boldsymbol{\ell}_{i} \boldsymbol{h}_{u} \\
& \quad+Y_{e}^{g f} \boldsymbol{\ell}_{g} \boldsymbol{h}_{d} \boldsymbol{e}^{\mathcal{C}}{ }_{f}+Y_{d}^{g f} \boldsymbol{q}_{g} \boldsymbol{H} \mathcal{O}\left(\frac{m_{3 / 2}}{M_{\mathrm{P}}^{2}}\right)^{f} \boldsymbol{q}_{g} \boldsymbol{h}_{u} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \\
& \quad+\lambda_{g f k} \boldsymbol{\ell}_{g} \boldsymbol{\ell}_{f} \boldsymbol{e}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime} \boldsymbol{\ell}_{g} \boldsymbol{q}_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}{ }^{\boldsymbol{L}} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{d}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \\
& \quad+\kappa_{g f} \boldsymbol{h}_{u} \boldsymbol{\ell}_{g} \boldsymbol{h}_{u} \boldsymbol{\ell}_{f}+\kappa_{g f k \ell}^{(1)} \boldsymbol{q}_{g} \boldsymbol{q}_{f} \boldsymbol{q}_{k} \boldsymbol{\ell}_{\ell}+\kappa_{g f k \ell}^{(2)} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \boldsymbol{e}^{\mathcal{C}}{ }_{\ell}
\end{aligned}
$$

R parity violating couplings forbidden
μ term of the right size
order parameter of R symmetry breaking $=\langle\mathscr{W}\rangle \simeq m_{3 / 2}$
proton decay under control

String theory realization วfulub fugoth legilisffiou and

String models

- evading the no-go theorem
- origin of \mathbb{Z}_{4}^{R}
- higher-dimensional operators (effective μ term etc.)

Grand unification in higher dimensions
 string bu is
 㢄
 mensions
 Gr a

$$
-
$$

$$
-
$$

$$
-
$$

Well known: higher-dimensional GUTs appear more "appealing" al GUTs a

\qquad
列
.
\qquad | $\bar{\square}$

\qquad

Grand unification in higher dimensions

Well known: higher-dimensional GUTs appear more "appealing"
New possibilities of symmetry breaking arise

Grand unification in higher dimensions

Well known: higher-dimensional GUTs appear more "appealing"
New possibilities of symmetry breaking arise
Witten [1985] ; Breit, Ovrut \& Segre [1985]
KK towers provide us with infinitely many states and allow us to evade the no-go theorem

Grand unification in higher dimensions

Well known: higher-dimensional GUTs appear more "appealing"
New possibilities of symmetry breaking arise
Witten [1985] ; Breit, Ovrut \& Segre [1985]
KK towers provide us with infinitely many states and allow us to evade the no-go theorem

Even more, R symmetries have a clear geometric interpretation in terms of the Lorentz symmetry of compact dimensions

String compactifications

Vio Violin: needs to be constructed in such a way that the oscillating strings produce the right sounds

String compactifications

(1) Violin: needs to be constructed in such a way that the oscillating strings produce the right sounds

From strings to the real world?

Many popular attempts to connect strings with observation:

- heterotic orbifolds
- intersecting D-branes
- Calabi-Yau compactifications
- F-theory
- ...
.

From strings to the real world?

Many popular attempts to connect strings with observation:

- heterotic orbifolds
- intersecting D-branes
- Calabi-Yau compactifications
- F-theory
- ...

On Only the first two are true string models
(but the others are believed to relate to string compactifications)

From strings to the real world?

Many popular attempts to connect strings with observation:

- heterotic orbifolds
- intersecting D-branes
- Calabi-Yau compactifications
- F-theory
- ...

Only the first two are true string models (but the others are believed to relate to string compactifications)

main theme of the rest of this talk:

orbifold compactifications of the heterotic string

\mathbb{Z}_{2} orbifold pillow

Starting point: torus

String model(s)

\square
\mathbb{Z}_{2} orbifold pillow

都

 (
 $-$ \square
orbifold pillow string model(s)
Orbifold pillow String model(s)
Orbifold pillow String model(s)
orbifold pillow String model(s)
Orbifold pilow String model(s)
orbifold pillow Sting moder()

\square -

\mathbb{Z}_{2} orbifold pillow
 .

\qquad
\square

[^0](20)
(20)
(20)
(20)
(20)
(ances)

Coses)

(20)

Conces)
(

 --(---res ---()

(as)
\qquad

P
P

-

\qquad I

\mathbb{Z}_{2} orbifold pillow

\mathbb{Z}_{2} orbifold pillow

String GUTs

 St
\mathbb{Z}_{2} orbifold pillow

 String model(s)
\qquad String model(s)

 String model(s) String model(s)
\square

\mathbb{Z}_{2} orbifold pillow

,

\qquad

\mathbb{Z}_{2} orbifold pillow

,

\square

?
?
(4)

\qquad

\qquad
\qquad
\qquad

\mathbb{Z}_{2} orbifold pillow

\qquad
\qquad
\qquad
-
\qquad

$+1$
 +

\mathbb{Z}_{2} orbifold pillow

\qquad

4－
 －

 I－ \square

[^1] \square \square \square （ $-$ － ． I （1）
五

\square

號

\mathbb{Z}_{2} orbifold pillow

\mathbb{Z}_{2} orbifold pillow

\mathbb{Z}_{2} orbifold pillow

\mathbb{Z}_{2} orbifold pillow .

n
-

 -

\qquad
| I

$+$

String GUTs

\mathbb{Z}_{2} orbifold pillow

\mathbb{Z}_{2} orbifold pillow

String models)
\square (

[^2]\qquad r
 back \square \qquad

\mathbb{Z}_{2} orbifold pillow

lol

\qquad
\qquad

(1)
\qquad
\square \square \square -\square

\qquad五

\mathbb{Z}_{2} orbifold pillow

String model(s)

\mathbb{Z}_{2} orbifold pillow

 \section*{\mathbb{Z}_{2} orbifold pillow
 \section*{\mathbb{Z}_{2} orbifold pillow

 or}

 or}

\qquad

\qquad 18

路

\square

$(-1+0$
.
\square ,

$$
0
$$

\mathbb{Z}_{2} orbifold pillow

\mathbb{Z}_{2} orbifold pillow

String GUTs

 St

\mathbb{Z}_{2} orbifold pillow

String GUTs

 St
\mathbb{Z}_{2} orbifold pillow

\mathbb{Z}_{2} orbifold pillow

\mathbb{Z}_{2} orbifold pillow

String GUTs

 St
\mathbb{Z}_{2} orbifold pillow

String models)

String models) back
\qquad
 back

\qquad
-ـ .

$$
0
$$

.
.
 ∞

震
:
-

I

-$-$
-

\mathbb{Z}_{2} orbifold pillow

\mathbb{Z}_{2} orbifold pillow

String GUTs

 St
\mathbb{Z}_{2} orbifold pillow

\mathbb{Z}_{2} orbifold pillow

\mathbb{Z}_{2} orbifold pillow

．

\mathbb{Z}_{2} orbifold pillow

An orbifold is a space which is smooth/flat everywhere except for special (orbifold fixed) points

\mathbb{Z}_{2} orbifold pillow

An orbifold is a space which is smooth/flat everywhere except for special (orbifold fixed) points
'Bulk' gauge symmetry G is broken to (different) subgroups (local GUTs) at the fixed points

\mathbb{Z}_{2} orbifold pillow

An orbifold is a space which is smooth/flat everywhere except for special (orbifold fixed) points
'Bulk' gauge symmetry G is broken to (different) subgroups (local GUTs) at the fixed points
Low-energy gauge group : $G_{\text {low-energy }}=G_{\mathrm{bl}} \cap G_{\mathrm{br}} \cap G_{\mathrm{tl}} \cap G_{\mathrm{tr}}$

What is an orbifold?

An orbifold is a space which is smooth/flat everywhere except for special (orbifold fixed) points

What is an orbifold?

An orbifold is a space which is smooth/flat everywhere except for special (orbifold fixed) points
'Bulk' gauge symmetry G is broken to (different) subgroups (local GUTs) at the fixed points

What is an orbifold?

An orbifold is a space which is smooth/flat everywhere except for special (orbifold fixed) points
'Bulk' gauge symmetry G is broken to (different) subgroups (local GUTs) at the fixed points

Low-energy gauge group : $G_{\text {low-energy }}=G_{\mathrm{bl}} \cap G_{\mathrm{br}} \cap G_{\mathrm{tl}} \cap G_{\mathrm{tr}}$

Strings on orbifolds

heterotic string	field theory
untwisted sector $=$	extra compo-
strings closed on the	nents of gauge
torus	fields
'twisted' sectors $=$	'brane fields'
strings which are only	(hard to understand in closed on the orbifold
field-theoretical framework)	

('Brane') Fields living at a fixed point with a certain symmetry appear as complete multiplet of that symmetry

Strings on orbifolds

heterotic string	field theory	
untwisted sector $=$	extra compo-	
strings closed on the	nents of gauge	
torus	fields	
'twisted' sectors $=$	'brane fields'	
strings which are only	(hard to understand in closed on the orbifold	
field-theoretical framework)		

('Brane') Fields living at a fixed point with a certain symmetry appear as complete multiplet of that symmetry
\Leftrightarrow E.g. if the electron lives at a point with $\mathrm{SO}(10)$ symmetry also u and d quarks live there

String compactifications with local SO(10) GUTs
 String GUT

-

;

\square I
,

String compactifications with local $\mathrm{SO}(10)$ GUTs

58 (2)
em

$$
-
$$

Residual R symmetries

Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions and are arguably on the same footing as the fundamental symmetries C, P and T
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries

Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries

(1) Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries

(1) Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries

(1) Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries

(1) Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries

(1) Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries

Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
(®) \mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

\qquad

Residual R symmetries

(1) Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries

Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries

Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries

Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries

Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries

Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries

(1) Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries

\qquad

\qquad

 .

 .

Residual R symmetries

(1) Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries

(1) Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries

(1) Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
(T) \mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries

(1) Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries


```
*
```


Abstract

^[-]

Residual R symmetries

Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries

Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries

Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Residual R symmetries

Discrete R symmetries arise as remnants of the Lorentz symmetry of compact dimensions
\mathbb{Z}_{4}^{R} originates from \mathbb{Z}_{2} orbifold plane

Features

(1) $3 \times 16+$ Higgs + nothing

No exotics

Lebedev, Nilles, Raby, Ramos-Sánchez, M.R., Vaudrevange \& Wingerter [2007a]

Features

(1) $3 \times 16+$ Higgs + nothing
(2) $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{Y} \times G_{\text {hid }}$

Features

(1) $3 \times 16+$ Higgs + nothing
(2) $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{Y} \times G_{\text {hid }}$
(3) Unification
precision gauge unification (PGU) from non-local GUT breaking

Raby, M.R. \& Schmidt-Hoberg [2010], Krippendorf, Nilles, M.R. \& Winkler [2013]

Features

Features

(1) $3 \times 16+$ Higgs + nothing
(2) $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{Y} \times G_{\text {hid }}$
(3) Unification
(4) R parity \& \mathbb{Z}_{4}^{R}

\curvearrowright proton long-lived
\curvearrowright DM stable

Lebedev, Nilles, Raby, Ramos-Sánchez, M.R., Vaudrevange \& Wingerter [2007b], Kappl, Petersen, Raby, M.R., Schieren \& Vaudrevange [2011]

Features

(1) $3 \times 16+$ Higgs + nothing
(2) $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{Y} \times G_{\text {hid }}$
(3) Unification
(4) R parity \& \mathbb{Z}_{4}^{R}
(5) See-saw

Buchmüller, Hamaguchi, Lebedev, Ramos-Sánchez \& M.R. [2007]

Features

(1) $3 \times 16+$ Higgs + nothing
(2) $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{Y} \times G_{\text {hid }}$
(3) Unification
(4) R parity \& \mathbb{Z}_{4}^{R}
(5) See-saw
(6) $y_{t} \simeq g @ M_{\text {GUT }}$ \& potentially realistic flavor structures à la Froggatt-Nielsen

\curvearrowright realistic top mass

Hosteins, Kappl, M.R. \& Schmidt-Hoberg [2009]

Features

(1) $3 \times 16+$ Higgs + nothing
(2) $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{Y} \times G_{\text {hid }}$
(3) Unification
(4) R parity \& \mathbb{Z}_{4}^{R}
(5) See-saw
(6) $y_{t} \simeq g @ M_{\mathrm{GUT}}$ \& potentially realistic flavor structures à la Froggatt-Nielsen
(7) 'Realistic' hidden sector scale of hidden sector strong dynamics is consistent with TeV-scale soft masses

Lebedev, Nilles, Raby, Ramos-Sánchez, M.R., Vaudrevange \& Wingerter [2007a]

Features \& "stringy surprises"

(1) $3 \times 16+$ Higgs + nothing
(2) $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{Y} \times G_{\text {hid }}$
(3) Unification
(4) R parity \& \mathbb{Z}_{4}^{R}
(5) See-saw
(6) $y_{t} \simeq g @ M_{\text {GUT }}$ \& potentially realistic flavor structures à la Froggatt-Nielsen
(7) 'Realistic' hidden sector

8 Solution to the μ problem

$$
\mu \sim\langle\mathscr{W}\rangle
$$

$\langle\mathscr{W}\rangle \ll M_{\mathrm{P}}^{3}$ from approximate $\quad \mathrm{U}(1)_{R}$ symmetries
\curvearrowright light Higgs

Kappl, Nilles, Ramos-Sánchez, M.R., SchmidtHoberg \& Vaudrevange [2009], Brümmer, Kappl, M.R. \& Schmidt-Hoberg [2010]

Features \& "stringy surprises"

(1) $3 \times 16+$ Higgs + nothing
(2) $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)_{Y} \times G_{\text {hid }}$
(3) Unification
(4) R parity \& \mathbb{Z}_{4}^{R}
(5) See-saw
(6) $y_{t} \simeq g @ M_{\text {GUT }}$ \& potentially realistic flavor structures à la Froggatt-Nielsen
(7) 'Realistic' hidden sector

8 Solution to the μ problem
that's what we searched for...
...that's what we got 'for free'
"stringy surprises"

CP xiolation

from finite groups flow filuife blombe

$\mathcal{C P}$ violation in Nature

促 so far only observed in flavor sector
\qquad ．

flavor sector

\qquad $+$ $+$ $+$ $+$ \square $+$ － $+$ \square
\square
再

$\mathcal{C P}$ violation in Nature
 CP violation

承 so far only observed in flavor sector
\Leftrightarrow it appears natural to seek connection between flavor physics \& R
\qquad

位

$\mathcal{C P}$ violation in Nature

央 so far only observed in flavor sector
\Leftrightarrow it appears natural to seek connection between flavor physics \& 友
flavor structure may be partially explained by (non-Abelian discrete) flavor symmetries

$\mathcal{C P}$ violation in Nature

次 so far only observed in flavor sector
\Leftrightarrow it appears natural to seek connection between flavor physics \& 友
flavor structure may be partially explained by (non-Abelian discrete) flavor symmetries

here:

non-Abelian discrete (flavor) symmetry $G \leftrightarrow \mathscr{\text { CR }}$
—
\square

Three types of groups

automorphisms
automorphisms
\square
\qquad
 5 －
\square
正 O 4
 $+$
\square
\square ）

－

 （教
\qquad

0

 \section*{\section*{Three types of groups

 \section*{\section*{Three types of groups

 \section*{\section*{Three types of groups

 年}

 年}

 年}

Chen，Fallbacher，Mahanthappa，M．R．\＆Trautner［2014］

\qquad

（
\square
\square

$+$
（ \qquad

都
都

\qquad
\square

\square

Three types of groups

$\mathcal{C P}$ xiolation

from
strings

First 3 family models from stringy orbifolds
 Firs $-$

Ibáñez, Kim, Riles \& Quevedo [1987]
Very first stringy model of particle physics based on \mathbb{Z}_{3} orbifold

-

-

$-$
-

First 3 family models from stringy orbifolds

Very first stringy model of particle physics based on \mathbb{Z}_{3} orbifold
three generations may live on equivalent fixed points
permutation symmetry of fixed points/families

First 3 family models from stringy orbifolds

Ibáñez, Kim, Nilles \& Quevedo [1987]
Very first stringy model of particle physics based on \mathbb{Z}_{3} orbifold
three generations may live on equivalent fixed points
permutation
symmetry of fixed points/families
\Rightarrow flavor/family symmetry
localized strings tansform as 3or $\overline{3}$-plets

from a
\mathbb{Z}_{3} orbifold plane
\square
 0

$\mathbb{T}^{2} / \mathbb{Z}_{3}$ orbifold

 (-
 2
\qquad

$\mathbb{T}^{2} / \mathbb{Z}_{3}$ orbifold

Kobayashi, Nilles, Plöger, Raby \& M.R. [2007] e_{2}
Δ (54) from a \mathbb{Z}_{3} orbifold plane

\qquad

 \square 1 $+$

$\mathbb{T}^{2} / \mathbb{Z}_{3}$ orbifold

Dixon, Friedan, Martinec \& Shenker [1987]
coupling between n localized states $\left|\left(\theta, m^{(j)} e_{1}\right)\right\rangle$ only allowed if

$$
n=3 \times(\text { integer }) \quad \wedge \sum_{j=1}^{n} m_{1}^{(j)}=0 \bmod 3
$$

$\mathbb{T}^{2} / \mathbb{Z}_{3}$ orbifold

Kobayashi, Nilles, Plöger, Raby \& M.R. [2007]

Dixon, Friedan, Martinec \& Shenker [1987]
coupling between n localized states $\left|\left(\theta, m^{(j)} e_{1}\right)\right\rangle$ only allowed if

$$
n=3 \times(\text { integer }) \quad \wedge \sum_{j=1}^{n} m_{1}^{(j)}=0 \bmod 3
$$

$\mathbb{T}^{2} / \mathbb{Z}_{3}$ orbifold

Kobayashi, Nilles, Plöger, Raby \& M.R. [2007]

Dixon, Friedan, Martinec \& Shenker [1987]
coupling between n localized states $\left|\left(\theta, m^{(j)} e_{1}\right)\right\rangle$ only allowed if

$$
n=3 \times(\text { integer }) \wedge \sum_{j=1}^{n} m_{1}^{(j)}=0 \bmod 3
$$

$\mathbb{T}^{2} / \mathbb{Z}_{3}$ orbifold

coupling between n localized states $\left|\left(\theta, m^{(j)} e_{1}\right)\right\rangle$ only allowed if

$$
n=3 \times(\text { integer }) \quad \wedge \sum_{j=1}^{n} m_{1}^{(j)}=0 \bmod 3
$$

\Rightarrow flavor symmetry

$$
S_{3} \cup\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)=S_{3} \ltimes\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)=\Delta(54)
$$

$\Delta(54)$ from a \mathbb{Z}_{3} orbifold plane

(\mathbb{Z}_{3} orbifold plane without Wilson lines leads to a $\Delta(54)$ flavor symmetry

Kobayashi, Nilles, Plöger, Raby \& M.R. [2007] ; Olguin-Trejo, Pérez-Martínez \& Ramos-Sánchez [2018]

localized strings tansform as 3or $\overline{3}$-plets

$\Delta(54)$ from a \mathbb{Z}_{3} orbifold plane

(\mathbb{Z}_{3} orbifold plane without Wilson lines leads to a $\Delta(54)$ flavor symmetry

Kobayashi, Nilles, Plöger, Raby \& M.R. [2007] ; Olguin-Trejo, Pérez-Martínez \& Ramos-Sánchez [2018]
explicit model
Carballo-Perez, Peinado \& Ramos-Sánchez [2016]

$\#$	irrep	$\Delta(54)$	label
3	$(\mathbf{3}, \mathbf{2})_{\frac{1}{6}}$	$\mathbf{3}_{11}$	Q_{i}
3	$(\overline{\mathbf{3}}, \mathbf{1})_{-\frac{2}{3}}$	$\mathbf{3}_{11}$	\bar{u}_{i}
3	$(\overline{\mathbf{3}}, \mathbf{1})_{\frac{1}{3}}$	$\mathbf{3}_{11}$	\bar{d}_{i}
3	$(\mathbf{1}, \mathbf{2})_{-\frac{1}{2}}$	$\mathbf{3}_{11}$	L_{i}
3	$(\mathbf{1}, \mathbf{1})_{1}$	$\mathbf{3}_{11}$	\bar{e}_{i}
3	$(\mathbf{1}, \mathbf{1})_{0}$	$\mathbf{3}_{12}$	$\bar{\nu}_{i}$

$\Delta(54)$ from a \mathbb{Z}_{3} orbifold plane

\mathbb{Z}_{3} orbifold plane without Wilson lines leads to a $\Delta(54)$ flavor symmetry

Kobayashi, Nilles, Plöger, Raby \& M.R. [2007] ; Olguin-Trejo, Pérez-Martínez \& Ramos-Sánchez [2018]
explicit model
Carballo-Perez, Peinado \& Ramos-Sánchez [2016]
quarks and leptons transform as $\mathbf{3}$-plets (or $\overline{3}$-plets) of $\Delta(54)$

$\Delta(54)$ from a \mathbb{Z}_{3} orbifold plane

\mathbb{Z}_{3} orbifold plane without Wilson lines leads to a $\Delta(54)$ flavor symmetry

Kobayashi, Nilles, Plöger, Raby \& M.R. [2007] ; Olguin-Trejo, Pérez-Martínez \& Ramos-Sánchez [2018]
explicit model
Carballo-Perez, Peinado \& Ramos-Sánchez [2016]
quarks and leptons transform as 3 -plets (or $\overline{3}$-plets) of $\Delta(54)$
$\Delta(54)$ is type I group: $\curvearrowright \mathcal{C P}$ violation for free?

$\Delta(54)$ from a \mathbb{Z}_{3} orbifold plane

\mathbb{Z}_{3} orbifold plane without Wilson lines leads to a $\Delta(54)$ flavor symmetry

Kobayashi, Nilles, Plöger, Raby \& M.R. [2007] ; Olguin-Trejo, Pérez-Martínez \& Ramos-Sánchez [2018]
explicit model
Carballo-Perez, Peinado \& Ramos-Sánchez [2016]
quarks and leptons transform as 3 -plets (or $\overline{3}$-plets) of $\Delta(54)$
$\Delta(54)$ is type I group: $\curvearrowright \mathcal{C P}$ violation for free?
not that simple! if the representation content is very special, one can impose a $\mathcal{C P}$ transformation
\exists out $: \mathbf{3}_{i} \stackrel{\text { out }}{\longleftrightarrow} \overline{\mathbf{3}}_{i}$ and $\mathbf{1}_{i} \stackrel{\text { out }}{\longleftrightarrow} \overline{\mathbf{1}}_{i}$

$\Delta(54)$ from a \mathbb{Z}_{3} orbifold plane

\mathbb{Z}_{3} orbifold plane without Wilson lines leads to a $\Delta(54)$ flavor symmetry

Kobayashi, Nilles, Plöger, Raby \& M.R. [2007] ; Olguin-Trejo, Pérez-Martínez \& Ramos-Sánchez [2018]
explicit model
Carballo-Perez, Peinado \& Ramos-Sánchez [2016]
quarks and leptons transform as 3 -plets (or $\overline{3}$-plets) of $\Delta(54)$
$\Delta(54)$ is type I group: $\curvearrowright \mathcal{C P}$ violation for free?
not that simple! if the representation content is very special, one can impose a $\mathcal{C P}$ transformation
at the massless level, only 3- and 1-dimensional representations occur \curvearrowright a class-inverting outer automorphism exists \curvearrowright a $\mathcal{C P}$ candidate exists

CP violation

 in the\mathbb{Z}_{3} orbifold orpitold

CP violation from strings

-

\qquad

\qquad
 (

however, at the massive level $\Delta(54)$ 2-plets arise
Nilles, M.R., Trautner \& Vaudrevange [2018]

nes hower at the massive level Δ (54)
\qquad

.

CP violation from strings

戊 however, at the massive level $\Delta(54)$ 2-plets arise
Nilles, M.R., Trautner \& Vaudrevange [2018]
doublets $2_{1}, 2_{3}$ and 2_{4} correspond to linear combinations of strings that wind around two different fixed points in opposite directions

$\mathcal{C P}$ violation from strings

樶 however, at the massive level $\Delta(54)$ 2-plets arise
Nilles, M.R., Trautner \& Vaudrevange [2018]
doublets $2_{1}, 2_{3}$ and 2_{4} correspond to linear combinations of strings that wind around two different fixed points in opposite directions
doublet $\mathbf{2}_{2}$

$\mathcal{C P}$ violation from strings

doublets save the day

- we follow invariant approach
- super powerful tool: Susyno

CP violation from strings

doublets save the day
doublets save the day
physical $6 P$ in doublet decay
-
.
\qquad
\qquad -
physican

 R
(

$\mathcal{C P}$ violation from strings

doublets save the day
physical $\mathscr{C P}$ in doublet decay
phenomenological implications not worked out
des doublets save the day
physical CP in doublet decay
phes, M.R., Trautner \& Vaudrevange [2018]
phemenological implications not worked out
doublets save the day
physical $\mathcal{C P}$ in doublet decay
phenomenological implications not worked out Trautner \& Vaudrevange [2018]
doublets save the day
physical $\mathcal{C P}$ in doublet decay
phenomenological implications not worked out Trautner \& Vaudrevange [2018]

$\mathcal{C P}$ violation from strings

doublets save the day
Nilles, M.R., Trautner \& Vaudrevange [2018]
physical $\mathcal{E P}$ in doublet decay
phenomenological implications not worked out

bottom-line:

$\mathcal{C P}$ violation can come from group theory in UV complete settings in which the origin of the flavor group is fully understood

Summary 2nlwwgl入

 and outlook
Summary

R symmetries play a major role in supersymmetric models of grand unification
(1) solution of the μ problem
(2) control the dimension-5 proton decay operators

Summary

\& symmetries play a major role in supersymmetric models of grand unification
(1) solution of the μ problem
(2) control the dimension-5 proton decay operators
R symmetries are not available in 4D GUTs

Summary

\& symmetries play a major role in supersymmetric models of grand unification
(1) solution of the μ problem
(2) control the dimension-5 proton decay operators
© R symmetries are not available in 4D GUTs
Higher-dimensional models of grand unification (with stringy completion) do come with R symmetries
(1) all symmetries, including discrete ones, are anomaly-free

Summary

\& symmetries play a major role in supersymmetric models of grand unification
(1) solution of the μ problem
(2) control the dimension-5 proton decay operators
R symmetries are not available in 4D GUTs
Higher-dimensional models of grand unification (with stringy completion) do come with R symmetries
(1) all symmetries, including discrete ones, are anomaly-free
(2) no "interesting" representations such as $\overline{\mathbf{1 2 6}}$ of $\mathrm{SO}(10)$
e.g. Dienes \& March-Russell [1996]

Summary

\& symmetries play a major role in supersymmetric models of grand unification
(1) solution of the μ problem
(2) control the dimension-5 proton decay operators
R symmetries are not available in 4D GUTs
Higher-dimensional models of grand unification (with stringy completion) do come with R symmetries
(1) all symmetries, including discrete ones, are anomaly-free
(2) no "interesting" representations such as $\overline{\mathbf{1 2 6}}$ of $\mathrm{SO}(10)$
(3) geometric interpretation of all symmetries:
(a) continuous symmetries: properties of compact dimensions

Summary

\& symmetries play a major role in supersymmetric models of grand unification
(1) solution of the μ problem
(2) control the dimension-5 proton decay operators
R symmetries are not available in 4D GUTs
Higher-dimensional models of grand unification (with stringy completion) do come with R symmetries
(1) all symmetries, including discrete ones, are anomaly-free
(2) no "interesting" representations such as $\overline{\mathbf{1 2 6}}$ of $\mathrm{SO}(10)$
e.g. Dienes \& March-Russell [1996]
(3) geometric interpretation of all symmetries:
(a) continuous symmetries: properties of compact dimensions
(D) R symmetries: (discrete) remnants of Lorentz symmetry of compact dimensions

Summary

\& symmetries play a major role in supersymmetric models of grand unification
(1) solution of the μ problem
(2) control the dimension-5 proton decay operators
R symmetries are not available in 4D GUTs
Higher-dimensional models of grand unification (with stringy completion) do come with R symmetries
(1) all symmetries, including discrete ones, are anomaly-free
(2) no "interesting" representations such as $\overline{\mathbf{1 2 6}}$ of $\mathrm{SO}(10)$
e.g. Dienes \& March-Russell [1996]
(3) geometric interpretation of all symmetries:
(a) continuous symmetries: properties of compact dimensions
(b) R symmetries: (discrete) remnants of Lorentz symmetry of compact dimensions
(C) flavor symmetries: 'crystallography' of compact space

$\mathcal{C P}$ violation from strings

Certain finite groups clash with $\mathcal{C P}$
\qquad
\qquad
\qquad
\qquad

$\mathcal{C P}$ violation from strings

Certain finite groups clash with $\mathcal{C P}$
Even the very first string models of particle physics have $\mathcal{C P}$ violating flavor symmetries

violating flavor symmetries

-

odels of particle physics have $\mathcal{C P}$
-
-
.

[^4]

\square
-

$\mathcal{C P}$ violation from strings

Certain finite groups clash with $\mathcal{C P}$
Even the very first string models of particle physics have $\mathcal{C P}$
violating flavor symmetries
This mechanism is vastly unexplored so far

This mechanism is vastly unexplored so far

Outlook

0 More insights by analyzing known heterotic constructions using by other means (heterotic M-theory, F-theory, ...)

Outlook

More insights by analyzing known heterotic constructions using by other means (heterotic M-theory, F-theory, ...)
More realistic models with $\mathcal{C P}$ violation from finite groups?

Thank you very much! I JSINK入on ^Gr入 IUNCI i

Anomaly freedom
w/ or who
Anomaly freedom
w/ or who
Anomaly freedom
W/ or who

Anomaly freedom
W/ or who
Anomaly freedom
w/ or who

-
-
-
-
$-$
\square

$$
\square
$$

$+$
 \square

Anomaly freedom
w/ or who
Green-Schwarz
Gauge unification
Anomaly freedom
w/ or who
Green-Schwarz
Gauge unification

\qquad

Anomaly cancellation

Anomaly cancellation

Example: anomaly coefficients for \mathbb{Z}_{N} symmetry

$$
\begin{aligned}
A_{G^{2}-\mathbb{Z}_{N}} & =\sum_{f} \ell^{(f)} \cdot q^{(f)} \\
A_{\mathrm{grav}^{2}-\mathbb{Z}_{N}} & =\sum_{m} q^{(m)}
\end{aligned}
$$

Anomaly cancellation

sum over all
Example: anomaly coffepresentations of G
symmetry

$$
\begin{aligned}
A_{G^{2}-\mathbb{Z}_{N}}= & \sum_{f} \ell^{(f)} \cdot q^{(f)} \\
A_{\operatorname{grav}^{2}-\mathbb{Z}_{N}}= & \sum_{m} q^{(m)} \\
& \text { sum over all fermions }
\end{aligned}
$$

Anomaly cancellation

Example: anomaly coefficieDynkin index symmetry

$$
\begin{aligned}
A_{G^{2}-\mathbb{Z}_{N}} & =\sum_{f} \ell^{(f)} \cdot q^{(f)} \\
A_{\mathrm{grav}^{2}-\mathbb{Z}_{N}} & =\sum_{m} q^{(m)}
\end{aligned}
$$

> discrete charges

Anomaly cancellation

traditional constraint:

all A coefficients vanish

Example: anomaly coefficients for \mathbb{Z}_{N} symmetry

$$
\begin{aligned}
A_{G^{2}-\mathbb{Z}_{N}} & =\sum_{f} \ell^{(f)} \cdot q^{(f)} \stackrel{!}{=} 0 \bmod \eta \\
A_{\mathrm{grav}^{2}-\mathbb{Z}_{N}} & =\sum_{m} q^{(m)} \stackrel{!}{=} 0 \bmod \eta
\end{aligned}
$$

Anomaly cancellation

Anomaly freedom
$w /$ or w / o
Green-Schwarz
+
Gauge unification

$$
\rightarrow \text { "Anomaly universality" }
$$

shift due to

traditional constraint:

all A coefficients vanish

anomaly "universality":

$$
\begin{aligned}
& A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{N}}= \\
& A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{N}} \\
& \text { if } \mathrm{SU}(3) \times \mathrm{SU}(2) \\
& \subset \mathrm{SU}(5) \ldots \mathrm{E}_{8}
\end{aligned}
$$

It has to be an R symmetry

Hall, Nomura \& Pierce [2002] ; Lee, Raby, M.R., Ross, Schieren,

> charge of

Anomaly coefficients for non $-R$ sy

$g^{\text {th }} 5$-plat

 matter charges$$
\begin{gathered}
A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{N}}=\frac{1}{2} \sum_{g=1}^{3}\left(3 q_{10}^{g}+q^{\frac{g}{5}}\right) \\
A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{N}}=\frac{1}{2} \sum_{g=1}^{3}\left(3 q_{10}^{g}+q_{\frac{g}{5}}^{g}\right)+\frac{1}{2}\left(q_{H_{u}}+q_{H_{d}}\right) \\
\text { charges charges } \\
g^{\text {th } 10 \text {-plat }}
\end{gathered}
$$

It has to be an R symmetry

Hall, Nomura \& Pierce [2002] ; Lee, Raby, M.R., Ross, Schieren, et al. [2011a] ; Lee, Raby, M.R., Ross, Schieren, et al. [2011b]
Anomaly coefficients for non- R symmetry with $\operatorname{SU}(5)$ relations for matter charges

$$
\begin{aligned}
A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{N}} & =\frac{1}{2} \sum_{g=1}^{3}\left(3 q_{10}^{g}+q^{g}\right) \\
A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{N}} & =\frac{1}{2} \sum_{g=1}^{3}\left(3 q_{10}^{g}+q_{\overline{5}}^{g}\right)+\frac{1}{2}\left(q_{H_{u}}+q_{H_{d}}\right)
\end{aligned}
$$

Anomaly universality: $A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{N}}-A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{N}}=0$

$$
\curvearrowright \frac{1}{2}\left(q_{H_{u}}+q_{H_{d}}\right)=0 \bmod \begin{cases}N & \text { for } N \text { odd } \\ N / 2 & \text { for } N \text { even }\end{cases}
$$

It has to be an R symmetry

Hall, Nomura \& Pierce [2002] ; Lee, Raby, M.R., Ross, Schieren, et al. [2011a] ; Lee, Raby, M.R., Ross, Schieren, et al. [2011b] Anomaly coefficients for non- R symmetry with $\operatorname{SU}(5)$ relations for matter charges

$$
\begin{aligned}
A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{N}} & =\frac{1}{2} \sum_{g=1}^{3}\left(3 q_{10}^{g}+q^{g}\right) \\
A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{N}} & =\frac{1}{2} \sum_{g=1}^{3}\left(3 q_{10}^{g}+q_{\overline{5}}^{g}\right)+\frac{1}{2}\left(q_{H_{u}}+q_{H_{d}}\right)
\end{aligned}
$$

Anomaly universality: $A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{N}}-A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{N}}=0$
$\curvearrowright \frac{1}{2}\left(q_{H_{u}}+q_{H_{d}}\right)=0 \bmod \begin{cases}N & \text { for } N \text { odd } \\ N / 2 & \text { for } N \text { even }\end{cases}$

bottom-line:

non- $R \mathbb{Z}_{N}$ symmetry cannot forbid μ term

Only discrete R symmetries may do the job

Obvious: if anomaly-free discrete non- R symmetries cannot forbid the μ term, this also applies to continuous non $-R$ symmetries

There are no anomaly-free continuous R symmetries in the MSSM
\Rightarrow Only remaining option: discrete R symmetries

't Hooft anomaly matching for R symmetries

\author{ Powerful tool: anomaly matching

}

號

Abstract

\square

\square

[^5]

't Hooft anomaly matching for R symmetries

Powerful tool: anomaly matching
At the $\mathrm{SU}(5)$ level: one anomaly coefficier. extra
$A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}=A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}^{\text {matter }}+A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}^{\text {extr }}+5 q_{\theta}$

't Hooft anomaly matching for R symmetries

Powerful tool: anomaly matching
At the $\operatorname{SU}(5)$ level: one anomaly coefficient

$$
A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}=A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}^{\operatorname{matter}}+A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}^{\operatorname{extra}}+5 q_{\theta}
$$

Consider the $\operatorname{SU}(3)$ and SU universal ups
SM gauginos

$$
\begin{aligned}
A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{SU}()^{2}} & =A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{M}^{R}}^{\text {matter }}+A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{ettr}}+3 q_{\theta}-\frac{1}{2} \cdot 2 \cdot 2 \cdot q_{\theta} \\
A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{SU}(5)} & =A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{M}^{R}}^{\operatorname{matter}}+A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{extra}}+2 q_{\theta}+\frac{1}{2} \cdot 2 \cdot 3 \cdot q_{\theta}
\end{aligned}
$$

extra gauginos from X, Y
bosons

't Hooft anomaly matching for R symmetries

Powerful tool: anomaly matching
At the $\mathrm{SU}(5)$ level: one anomaly coefficient

$$
A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}=A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}^{\operatorname{matter}}+A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}^{\operatorname{extra}}+5 q_{\theta}
$$

Consider the $\mathrm{SU}(3)$ and $\mathrm{SU}(2)$ subgroups

$$
\begin{aligned}
& A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{SU}(5)}=A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{M}^{R}}^{\text {matter }}+A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{extr}}+3 q_{\theta}+\frac{1}{2} \cdot 2 \checkmark 2 \cdot q_{\theta} \\
& A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{SU}(5)}=A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{M}^{R}}^{\operatorname{matte}}+A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{extra}}+2 q_{\theta}+\frac{1}{2} \cdot 2 \wedge-3 \cdot q_{\theta}
\end{aligned}
$$

Assume now that some mechanism eliminates the extra gauginos

't Hooft anomaly matching for R symmetries

Powerful tool: anomaly matching
At the $\mathrm{SU}(5)$ level: one anomaly coefficient

$$
A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}=A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}^{\operatorname{matter}}+A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{exta}}+5 q_{\theta}
$$

Consider the $\mathrm{SU}(3)$ and $\mathrm{SU}(2)$ subgroups

Assume now that some mechanism eliminates the extra gauginos
\Rightarrow Extra stuff must be non-universal (split multiplets)

't Hooft anomaly matching for R symmetries

Powerful tool: anomaly matching
At the $\mathrm{SU}(5)$ level: one anomaly coefficient

$$
A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}=A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}^{\operatorname{matter}}+A_{\mathrm{SU}(5)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{exta}}+5 q_{\theta}
$$

Consider the $\mathrm{SU}(3)$ and $\mathrm{SU}(2)$ subgroups

$$
\begin{aligned}
& A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{SU}(5)}=A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{M}^{R}}^{\text {matter }}+A_{\mathrm{SU}(3)^{2}-\mathbb{Z}_{M}^{R}}^{\text {extra }}+3 q_{\theta}+\frac{1}{2} \cdot 2 \curvearrowright 2 \cdot q_{\theta} \\
& A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{SU}(5)}=A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{M}^{R}}^{\operatorname{matte}}+A_{\mathrm{SU}(2)^{2}-\mathbb{Z}_{M}^{R}}^{\mathrm{extra}}+2 q_{\theta}+\frac{1}{2} \cdot 2 \checkmark 3 \cdot q_{\theta}
\end{aligned}
$$

bottom-line:

't Hooft anomaly matching for (discrete) R symmetries implies the presence of split multiplets below the GUT scale!

An example HU examble

$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ orbifold example

? ; Kappl, Petersen, Raby, M.R., Schieren \& Vaudrevange [2011]

(1) step: 6 generation $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ model with $\mathrm{SU}(5)$ symmetry

$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ orbifold example

? ; Kappl, Petersen, Raby, M.R., Schieren \& Vaudrevange [2011]

(1) step: 6 generation $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ model with $\mathrm{SU}(5)$ symmetry
(2) step: mod out a freely acting \mathbb{Z}_{2} symmetry which:

- breaks $\mathrm{SU}(5) \rightarrow \mathrm{SU}(3)_{C} \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{Y}$
- reduces the number of generations to 3

Main features

(1) GUT symmetry breaking non-local
\curvearrowright (almost) no 'logarithmic running above the GUT scale'

Main features

(1) GUT symmetry breaking non-local
(2) No localized flux in hypercharge direction
\curvearrowright complete blow-up without breaking SM gauge symmetry in principle possible

Main features

(1) GUT symmetry breaking non-local
(2) No localized flux in hypercharge direction
(3) 4D gauge group:
$\mathrm{SU}(3)_{C} \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{Y} \times\left[\mathrm{SU}(3) \times \mathrm{SU}(2)^{2} \times \mathrm{U}(1)^{8}\right]$

Main features

(1) GUT symmetry breaking non-local
(2) No localized flux in hypercharge direction
(3) 4D gauge group:
$\mathrm{SU}(3)_{C} \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{Y} \times\left[\mathrm{SU}(3) \times \mathrm{SU}(2)^{2} \times \mathrm{U}(1)^{8}\right]$
(4) massless spectrum

$\#$	representation	label
3	$(3,2 ; \mathbf{1}, \mathbf{1}, \mathbf{1})_{1 / 6}$	Q
3	$(\overline{3}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1})_{1 / 3}$	\bar{D}
3	$(1, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1})_{1}$	\bar{E}
6	$(1, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1})_{-1 / 2}$	h
3	$(\overline{3}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})_{1 / 3}$	$\bar{\delta}$
3	$(1, \mathbf{1} ; \mathbf{3}, \mathbf{1}, \mathbf{1})_{0}$	x
6	$(1,1 ; \mathbf{1}, \mathbf{1}, \mathbf{2})_{0}$	y

$\#$	representation	label
3	$(\overline{3}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1})_{-\frac{2}{3}}$	\bar{U}
3	$(1, \mathbf{2} \mathbf{1}, \mathbf{1}, \mathbf{1})_{-\frac{1}{2}}$	L
37	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1})_{0}$	s
6	$(\mathbf{1}, \mathbf{2} \mathbf{1} \mathbf{1}, \mathbf{1}, \mathbf{1})_{1 / 2}$	\bar{h}
3	$(\mathbf{3}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1})_{-1 / 3}$	δ
5	$(1,1 ; \mathbf{3}, \mathbf{1}, \mathbf{1})_{0}$	\bar{x}
6	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{2}, \mathbf{1})_{0}$	z

Main features

(1) GUT symmetry breaking non-local
(2) No localized flux in hypercharge direction
(3) 4D gauge group:
$\mathrm{SU}(3)_{C} \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{Y} \times\left[\mathrm{SU}(3) \times \mathrm{SU}(2)^{2} \times \mathrm{U}(1)^{8}\right]$
(4) massless spectrum

$$
\text { spectrum }=3 \times \text { generation }+ \text { vector-like }
$$

Spectrum and \mathbb{Z}_{4}^{R}

$\#$	representation	label
3	$(\mathbf{3}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1})_{1 / 6}$	Q
3	$(\overline{3}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1})_{1 / 3}$	\bar{D}
3	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1})_{1}$	\bar{E}
6	$(1, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1})_{-1 / 2}$	h
3	$(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1})_{1 / 3}$	$\bar{\delta}$
5	$(1, \mathbf{1} ; \mathbf{3}, \mathbf{1}, \mathbf{1})_{0}$	x
6	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{2})_{0}$	y

$\#$	representation	label
3	$(\overline{\mathbf{3}}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1})_{-2 / 3}$	\bar{U}
3	$(\mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1})_{-1 / 2}$	L
37	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1})_{0}$	s
6	$(\mathbf{1}, \mathbf{2} ; \mathbf{1}, \mathbf{1}, \mathbf{1})_{1 / 2}$	\bar{h}
3	$(\mathbf{3}, \mathbf{1} ; \mathbf{1}, \mathbf{1}, \mathbf{1})_{-1 / 3}$	δ
5	$(\mathbf{1}, \mathbf{1} ; \overline{\mathbf{3}}, \mathbf{1}, \mathbf{1})_{0}$	\bar{x}
6	$(\mathbf{1}, \mathbf{1} ; \mathbf{1}, \mathbf{2}, \mathbf{1})_{0}$	z

Many other good features:

- no fractionally charged exotics (ie. all SM fieds come from SU(5) reperesentations)
- non-trivial full-rank Yukawa couplings
- gauge-top unification
- $\operatorname{SU}(5)$ relation $y_{\tau} \simeq y_{b}$ (but aso for light generations)

\mathbb{Z}_{4}^{R} summarized

Yukawa couplings \checkmark

$$
\begin{aligned}
& \mathscr{W}_{\text {gauge invariant }}=\mu \boldsymbol{h}_{d} \boldsymbol{h}_{u}+\kappa_{i} \boldsymbol{\ell}_{i} \boldsymbol{h}_{u} \\
& \quad+Y_{e}^{g f} \boldsymbol{\ell}_{g} \boldsymbol{h}_{d} \boldsymbol{e}^{\mathcal{C}}{ }_{f}+Y_{d}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{d} \boldsymbol{d}^{\mathcal{C}}{ }_{f}+Y_{u}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{u} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \\
& \quad+\lambda_{g f k} \boldsymbol{\ell}_{g} \boldsymbol{\ell}_{f} \boldsymbol{e}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime} \boldsymbol{\ell}_{g} \boldsymbol{q}_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime \prime} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{d}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \\
& \quad+\kappa_{g f} \boldsymbol{h}_{u} \boldsymbol{\ell}_{g} \boldsymbol{h}_{u} \boldsymbol{\ell}_{f}+\kappa_{g f k \ell}^{(1)} \boldsymbol{q}_{g} \boldsymbol{q}_{f} \boldsymbol{q}_{k} \boldsymbol{\ell} \ell \ell+\kappa_{g f k \ell}^{(2)} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \boldsymbol{e}^{\mathcal{C}} \ell^{2}
\end{aligned}
$$

effective neutrino mass operator
allowed superpotential terms have R charge $2 \bmod 4$

\mathbb{Z}_{4}^{R} summarized

$$
\begin{aligned}
& \mathscr{W}_{\text {gauge invariant }}=\mu \boldsymbol{h}_{d} \boldsymbol{h}_{u}+\kappa_{i} \boldsymbol{\ell}_{i} \boldsymbol{h}_{u} \\
& \quad+Y_{e}^{g f} \boldsymbol{\ell}_{g} \boldsymbol{h}_{d} \boldsymbol{e}^{\mathcal{C}}{ }_{f}+Y_{d}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{d} \boldsymbol{d}^{\mathcal{C}}{ }_{f}+Y_{u}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{u} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \\
& \quad+\lambda_{g f k} \boldsymbol{\ell}_{g} \boldsymbol{\ell}_{f} \boldsymbol{e}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime} \boldsymbol{\ell}_{g} \boldsymbol{q}_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime \prime} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{d}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \\
& \quad+\kappa_{g f} \boldsymbol{h}_{u} \boldsymbol{\ell}_{g} \boldsymbol{h} \boldsymbol{\ell}_{f}+\kappa^{(1)}{ }_{f k \ell} \boldsymbol{q}_{g} \boldsymbol{a}_{j} \boldsymbol{q}_{k} \boldsymbol{\ell} \ell \ell+\kappa_{g f k \ell}^{(2)} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \boldsymbol{e}^{\mathcal{C}} \ell_{\ell}
\end{aligned}
$$ forbidden by \mathbb{Z}_{4}^{R}

\mathbb{Z}_{4}^{R} has an unbroken \mathbb{Z}_{2} matter parity subgoup

\mathbb{Z}_{4}^{R} summarized

$$
\mathcal{O}\left(m_{3 / 2}\right)
$$

$$
\begin{aligned}
& \mathscr{W}_{\text {gauge invariant }}=\mu \boldsymbol{h}_{d} \boldsymbol{h}_{u}+\kappa_{i} \boldsymbol{\ell}_{i} \boldsymbol{h}_{u} \\
& \quad+Y_{e}^{g f} \boldsymbol{\ell}_{g} \boldsymbol{h}_{d} \boldsymbol{e}^{\mathcal{C}}{ }_{f}+Y_{d}^{g f} \boldsymbol{q}_{g} \boldsymbol{H} \mathcal{O}\left(\frac{m_{3 / 2}}{M_{\mathrm{P}}^{2}}\right)^{f} \boldsymbol{q}_{g} \boldsymbol{h}_{u} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \\
& \quad+\lambda_{g f k} \boldsymbol{\ell}_{g} \boldsymbol{\ell}_{f} \boldsymbol{e}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime} \boldsymbol{\ell}_{g} \boldsymbol{q}_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}{ }^{\mathcal{C}} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{d}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \\
& \quad+\kappa_{g f} \boldsymbol{h}_{u} \boldsymbol{\ell}_{g} \boldsymbol{h}_{u} \boldsymbol{\ell}_{f}+\kappa_{g f k \ell}^{(1)} \boldsymbol{q}_{g} \boldsymbol{q}_{f} \boldsymbol{q}_{k} \boldsymbol{\ell} \ell \ell+\kappa_{g f k \ell}^{(2)} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \boldsymbol{e}^{\mathcal{C}} \ell_{\ell}
\end{aligned}
$$

ner R parity violating couplings forbidden
(1) μ term of the right size
order parameter of R symmetry breaking $=\langle\mathscr{W}\rangle \simeq m_{3 / 2}$

10 proton decay under control

\mathbb{Z}_{4}^{R} summarized

Yukawa couplings \checkmark

$$
\begin{aligned}
& \mathscr{W}_{\text {gauge invariant }}=\mu \boldsymbol{h}_{d} \boldsymbol{h}_{u}+\kappa_{i} \boldsymbol{\ell}_{i} \boldsymbol{h}_{u} \\
& \quad+Y_{e}^{g f} \boldsymbol{\ell}_{g} \boldsymbol{h}_{d} \boldsymbol{e}^{\mathcal{C}}{ }_{f}+Y_{d}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{d} \boldsymbol{d}^{\mathcal{C}}{ }_{f}+Y_{u}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{u} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \\
& \quad+\lambda_{g f k} \boldsymbol{\ell}_{g} \boldsymbol{\ell}_{f} \boldsymbol{e}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime} \boldsymbol{\ell}_{g} \boldsymbol{q}_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime \prime} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{d}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \\
& \quad+\kappa_{g f} \boldsymbol{h}_{u} \boldsymbol{\ell}_{g} \boldsymbol{h}_{u} \boldsymbol{\ell}_{f}+\kappa_{g f k \ell}^{(1)} \boldsymbol{q}_{g} \boldsymbol{q}_{f} \boldsymbol{q}_{k} \boldsymbol{\ell} \ell \ell+\kappa_{g f k \ell}^{(2)} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \boldsymbol{e}^{\mathcal{C}} \ell^{2}
\end{aligned}
$$

effective neutrino mass operator
allowed superpotential terms have R charge $2 \bmod 4$

\mathbb{Z}_{4}^{R} summarized

$$
\begin{aligned}
& \mathscr{W}_{\text {gauge invariant }}=\mu \boldsymbol{h}_{d} \boldsymbol{h}_{u}+\kappa_{i} \boldsymbol{\ell}_{i} \boldsymbol{h}_{u} \\
& \quad+Y_{e}^{g f} \boldsymbol{\ell}_{g} \boldsymbol{h}_{d} \boldsymbol{e}^{\mathcal{C}}{ }_{f}+Y_{d}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{d} \boldsymbol{d}^{\mathcal{C}}{ }_{f}+Y_{u}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{u} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \\
& \quad+\lambda_{g f k} \boldsymbol{\ell}_{g} \boldsymbol{\ell}_{f} \boldsymbol{e}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime} \boldsymbol{\ell}_{g} \boldsymbol{q}_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime \prime} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{d}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \\
& \quad+\kappa_{g f} \boldsymbol{h}_{u} \boldsymbol{\ell}_{g} \boldsymbol{h} \boldsymbol{\ell}_{f}+\kappa^{(1)}{ }_{f k \ell} \boldsymbol{q}_{g} \boldsymbol{a}_{j} \boldsymbol{q}_{k} \boldsymbol{\ell} \ell \ell+\kappa_{g f k \ell}^{(2)} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \boldsymbol{e}^{\mathcal{C}} \ell_{\ell}
\end{aligned}
$$ forbidden by \mathbb{Z}_{4}^{R}

\mathbb{Z}_{4}^{R} has an unbroken \mathbb{Z}_{2} matter parity subgoup

\mathbb{Z}_{4}^{R} summarized

$$
\mathcal{O}\left(m_{3 / 2}\right)
$$

$$
\begin{aligned}
& \mathscr{W}_{\text {gauge invariant }}=\mu \boldsymbol{h}_{d} \boldsymbol{h}_{u}+\kappa_{i} \boldsymbol{\ell}_{i} \boldsymbol{h}_{u} \\
& \quad+Y_{e}^{g f} \boldsymbol{\ell}_{g} \boldsymbol{h}_{d} \boldsymbol{e}^{\mathcal{C}}{ }_{f}+Y_{d}^{g f} \boldsymbol{q}_{g} \boldsymbol{H} \mathcal{O}\left(\frac{m_{3 / 2}}{M_{\mathrm{P}}^{2}}\right)^{f} \boldsymbol{q}_{g} \boldsymbol{h}_{u} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \\
& \quad+\lambda_{g f k} \boldsymbol{\ell}_{g} \boldsymbol{\ell}_{f} \boldsymbol{e}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime} \boldsymbol{\ell}_{g} \boldsymbol{q}_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}{ }^{\mathcal{C}} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{d}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \\
& \quad+\kappa_{g f} \boldsymbol{h}_{u} \boldsymbol{\ell}_{g} \boldsymbol{h}_{u} \boldsymbol{\ell}_{f}+\kappa_{g f k \ell}^{(1)} \boldsymbol{q}_{g} \boldsymbol{q}_{f} \boldsymbol{q}_{k} \boldsymbol{\ell} \ell \ell+\kappa_{g f k \ell}^{(2)} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \boldsymbol{e}^{\mathcal{C}} \ell_{\ell}
\end{aligned}
$$

ner R parity violating couplings forbidden
(1) μ term of the right size
order parameter of R symmetry breaking $=\langle\mathscr{W}\rangle \simeq m_{3 / 2}$

10 proton decay under control

\mathbb{Z}_{4}^{R} summarized

Yukawa couplings \checkmark

$$
\begin{aligned}
& \mathscr{W}_{\text {gauge invariant }}=\mu \boldsymbol{h}_{d} \boldsymbol{h}_{u}+\kappa_{i} \boldsymbol{\ell}_{i} \boldsymbol{h}_{u} \\
& \quad+Y_{e}^{g f} \boldsymbol{\ell}_{g} \boldsymbol{h}_{d} \boldsymbol{e}^{\mathcal{C}}{ }_{f}+Y_{d}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{d} \boldsymbol{d}^{\mathcal{C}}{ }_{f}+Y_{u}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{u} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \\
& \quad+\lambda_{g f k} \boldsymbol{\ell}_{g} \boldsymbol{\ell}_{f} \boldsymbol{e}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime} \boldsymbol{\ell}_{g} \boldsymbol{q}_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime \prime} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{d}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \\
& \quad+\kappa_{g f} \boldsymbol{h}_{u} \boldsymbol{\ell}_{g} \boldsymbol{h}_{u} \boldsymbol{\ell}_{f}+\kappa_{g f k \ell}^{(1)} \boldsymbol{q}_{g} \boldsymbol{q}_{f} \boldsymbol{q}_{k} \boldsymbol{\ell} \ell \ell+\kappa_{g f k \ell}^{(2)} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \boldsymbol{e}^{\mathcal{C}} \ell^{2}
\end{aligned}
$$

effective neutrino mass operator
allowed superpotential terms have R charge $2 \bmod 4$

\mathbb{Z}_{4}^{R} summarized

$$
\begin{aligned}
& \mathscr{W}_{\text {gauge invariant }}=\mu \boldsymbol{h}_{d} \boldsymbol{h}_{u}+\kappa_{i} \boldsymbol{\ell}_{i} \boldsymbol{h}_{u} \\
& \quad+Y_{e}^{g f} \boldsymbol{\ell}_{g} \boldsymbol{h}_{d} \boldsymbol{e}^{\mathcal{C}}{ }_{f}+Y_{d}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{d} \boldsymbol{d}^{\mathcal{C}}{ }_{f}+Y_{u}^{g f} \boldsymbol{q}_{g} \boldsymbol{h}_{u} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \\
& \quad+\lambda_{g f k} \boldsymbol{\ell}_{g} \boldsymbol{\ell}_{f} \boldsymbol{e}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime} \boldsymbol{\ell}_{g} \boldsymbol{q}_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime \prime} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{d}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \\
& \quad+\kappa_{g f} \boldsymbol{h}_{u} \boldsymbol{\ell}_{g} \boldsymbol{h} \boldsymbol{\ell}_{f}+\kappa^{(1)}{ }_{f k \ell} \boldsymbol{q}_{g} \boldsymbol{a}_{j} \boldsymbol{q}_{k} \boldsymbol{\ell} \ell \ell+\kappa_{g f k \ell}^{(2)} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \boldsymbol{e}^{\mathcal{C}} \ell_{\ell}
\end{aligned}
$$ forbidden by \mathbb{Z}_{4}^{R}

\mathbb{Z}_{4}^{R} has an unbroken \mathbb{Z}_{2} matter parity subgoup

\mathbb{Z}_{4}^{R} summarized

$$
\mathcal{O}\left(m_{3 / 2}\right)
$$

$$
\begin{aligned}
& \mathscr{W}_{\text {gauge invariant }}=\mu \boldsymbol{h}_{d} \boldsymbol{h}_{u}+\kappa_{i} \boldsymbol{\ell}_{i} \boldsymbol{h}_{u} \\
& \quad+Y_{e}^{g f} \boldsymbol{\ell}_{g} \boldsymbol{h}_{d} \boldsymbol{e}^{\mathcal{C}}{ }_{f}+Y_{d}^{g f} \boldsymbol{q}_{g} \boldsymbol{H} \mathcal{O}\left(\frac{m_{3 / 2}}{M_{\mathrm{P}}^{2}}\right)^{f} \boldsymbol{q}_{g} \boldsymbol{h}_{u} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \\
& \quad+\lambda_{g f k} \boldsymbol{\ell}_{g} \boldsymbol{\ell}_{f} \boldsymbol{e}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}^{\prime} \boldsymbol{\ell}_{g} \boldsymbol{q}_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k}+\lambda_{g f k}{ }^{\mathcal{C}} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{d}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \\
& \quad+\kappa_{g f} \boldsymbol{h}_{u} \boldsymbol{\ell}_{g} \boldsymbol{h}_{u} \boldsymbol{\ell}_{f}+\kappa_{g f k \ell}^{(1)} \boldsymbol{q}_{g} \boldsymbol{q}_{f} \boldsymbol{q}_{k} \boldsymbol{\ell} \ell \ell+\kappa_{g f k \ell}^{(2)} \boldsymbol{u}^{\mathcal{C}}{ }_{g} \boldsymbol{u}^{\mathcal{C}}{ }_{f} \boldsymbol{d}^{\mathcal{C}}{ }_{k} \boldsymbol{e}^{\mathcal{C}} \ell_{\ell}
\end{aligned}
$$

ner R parity violating couplings forbidden
(1) μ term of the right size
order parameter of R symmetry breaking $=\langle\mathscr{W}\rangle \simeq m_{3 / 2}$

10 proton decay under control

References I

K.S. Babu, Ilia Gogoladze \& Kai Wang. Natural R parity, mu term \& fermion mass hierarchy from discrete gauge symmetries. Nucl. Phys., B660:322-342, 2003. doi: 10.1016/S0550-3213(03)00258-X.
J. Bernabéu, G.C. Branco \& M. Gronau. CP RESTRICTIONS ON QUARK MASS MATRICES. Phys. Lett., B169:243-247, 1986. doi: 10.1016/0370-2693(86)90659-3.
J. D. Breit, Burt A. Ovrut \& Gino C. Segre. E(6) symmetry breaking in the superstring theory. Phys. Lett., B158:33, 1985.
Felix Brümmer, Rolf Kappl, Michael Ratz \& Kai Schmidt-Hoberg. Approximate R-symmetries \& the mu term. JHEP, 04:006, 2010. doi: 10.1007/JHEP04(2010)006.

Wilfried Buchmüller, Koichi Hamaguchi, Oleg Lebedev, Saul Ramos-Sánchez \& Michael Ratz. Seesaw neutrinos from the heterotic string. Phys. Rev. Lett., 99:021601, 2007.

References II

Brenda Carballo-Perez, Eduardo Peinado \& Saul Ramos-Sánchez. $\Delta(54)$ flavor phenomenology \& strings. JHEP, 12:131, 2016. doi: 10.1007/JHEP12(2016)131.

Mu-Chun Chen, Maximilian Fallbacher, K.T. Mahanthappa, Michael Ratz \& Andreas Trautner. CP Violation from Finite Groups. Nucl. Phys., B883:267, 2014.
Csaba Csáki \& Hitoshi Murayama. Discrete anomaly matching. Nucl. Phys., B515:114-162, 1998.
Keith R. Dienes \& John March-Russell. Realizing higher-level gauge symmetries in string theory: New embeddings for string guts. Nucl. Phys., B479:113-172, 1996.
S. Dimopoulos, S. Raby \& Frank Wilczek. Supersymmetry \& the scale of unification. Phys. Rev., D24:1681-1683, 1981.
Lance J. Dixon, Daniel Friedan, Emil J. Martinec \& Stephen H. Shenker. The Conformal Field Theory of Orbifolds. Nucl. Phys., B282:13-73, 1987.

References III

Renato M. Fonseca. Calculating the renormalisation group equations of a SUSY model with Susyno. Comput. Phys. Commun., 183:2298-2306, 2012. doi: 10.1016/j.cpc.2012.05.017.
G.F. Giudice \& A. Masiero. A Natural Solution to the mu Problem in Supergravity Theories. Phys. Lett., B206:480-484, 1988. doi: 10.1016/0370-2693(88)91613-9.

Lawrence J. Hall, Yasunori Nomura \& Aaron Pierce. R symmetry \& the mu problem. Phys. Lett., B538:359-365, 2002. doi: 10.1016/S0370-2693(02)02043-9.

Shahram Hamidi \& Cumrun Vafa. Interactions on Orbifolds. Nucl. Phys., B279:465, 1987.
Pierre Hosteins, Rolf Kappl, Michael Ratz \& Kai Schmidt-Hoberg. Gauge-top unification. JHEP, 07:029, 2009. doi: 10.1088/1126-6708/2009/07/029.

References IV

Luis E. Ibáñez, Jihn E. Kim, Hans Peter Nilles \& F. Quevedo. Orbifold compactifications with three families of $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)^{* *_{n}}$. Phys. Lett., B191:282-286, 1987.
Rolf Kappl, Hans Peter Nilles, Sául Ramos-Sánchez, Michael Ratz, Kai Schmidt-Hoberg \& Patrick K.S. Vaudrevange. Large hierarchies from approximate R symmetries. Phys. Rev. Lett., 102:121602, 2009. doi: 10.1103/PhysRevLett.102.121602.

Rolf Kappl, Bjoern Petersen, Stuart Raby, Michael Ratz, Roland Schieren \& Patrick K.S. Vaudrevange. String-derived MSSM vacua with residual R symmetries. Nucl. Phys., B847:325-349, 2011. doi: 10.1016/j.nuclphysb.2011.01.032.

Jihn E. Kim \& Hans Peter Nilles. The mu Problem \& the Strong CP Problem. Phys. Lett., B138:150, 1984.
Tatsuo Kobayashi, Hans Peter Nilles, Felix Plöger, Stuart Raby \& Michael Ratz. Stringy origin of non-Abelian discrete flavor symmetries. Nucl. Phys., B768:135-156, 2007.

References V

Sven Krippendorf, Hans Peter Nilles, Michael Ratz \& Martin Wolfgang Winkler. Hidden SUSY from precision gauge unification. Phys. Rev., D88:035022, 2013. doi: 10.1103/PhysRevD.88.035022.
Oleg Lebedev, Hans-Peter Nilles, Stuart Raby, Saúl Ramos-Sánchez, Michael Ratz, Patrick K. S. Vaudrevange \& Akin Wingerter. Low Energy Supersymmetry from the Heterotic Landscape. Phys. Rev. Lett., 98:181602, 2007a. doi: 10.1103/PhysRevLett.98.181602.
Oleg Lebedev, Hans Peter Nilles, Stuart Raby, Saúl Ramos-Sánchez, Michael Ratz, Patrick K. S. Vaudrevange \& Akin Wingerter. The heterotic road to the MSSM with R parity. Phys. Rev., D77:046013, 2007b.
Hyun Min Lee, Stuart Raby, Michael Ratz, Graham G. Ross, Roland Schieren, et al. A unique Z_{4}^{R} symmetry for the MSSM. Phys. Lett., B694:491-495, 2011a. doi: 10.1016/j.physletb.2010.10.038.

References VI

Hyun Min Lee, Stuart Raby, Michael Ratz, Graham G. Ross, Roland Schieren, et al. Discrete R symmetries for the MSSM \& its singlet extensions. Nucl. Phys., B850:1-30, 2011b. doi: 10.1016/j.nuclphysb.2011.04.009.

Hans Peter Nilles, Michael Ratz, Andreas Trautner \& Patrick K. S. Vaudrevange. $\mathcal{C P}$ Violation from String Theory. 2018.
Yessenia Olguin-Trejo, Ricardo Pérez-Martínez \& Saul Ramos-Sánchez. Charting the flavor landscape of MSSM-like Abelian heterotic orbifolds. 2018.
Stuart Raby, Michael Ratz \& Kai Schmidt-Hoberg. Precision gauge unification in the MSSM. Phys. Lett., B687:342-348, 2010. doi: 10.1016/j.physletb.2010.03.060.

Gerard 't Hooft. Symmetry Breaking Through Bell-Jackiw Anomalies. Phys. Rev. Lett., 37:8-11, 1976. doi: 10.1103/PhysRevLett.37.8.
Edward Witten. Symmetry breaking patterns in superstring models. Nucl. Phys., B258:75, 1985.

References VII

Edward Witten. Symmetry \& Emergence. Nature Phys., 14:116-119, 2018. doi: $10.1038 /$ nphys 4348.

[^0]: -

[^1]: －

[^2]:

[^4]:

[^5]: ```
 \(\square\)
    ```

