Theoretical Particle Physics

Michael Ratz A S

Lunch Seminar, 10/1/2021

severadl pictures adapted from
http://www.particleadventure.org/


http://www.particleadventure.org/

Building blocks of maftter

many different materials (wood, stone, ...)
Air

Y31e3



http://www.particleadventure.org/

Building blocks of matter

many different materials (wood, stone, ...)

elements (periodic table

[H | ! Big Large Super- He|
B Bang stars novae B
Li |Be - B N |O | F |Ne
clc Cosmic |:|S{na" Mag' clsifsufsui| v |su
Na|Mg rays SETE made Tal|si|P |S |[cCl|Ar
L L $ L[S L L S L L L
K [Ca|Sc| Ti |V |Cr|Mn|Fe|Co|Ni|Cu|Zn|Ga|Ge|As|Se|Br|Kr
L L L $LISL L L $ L $ $ L L $ $ L $ $ $
Rb|Sr|Y |Zr |Nb|Mo| Tc |Ru|Rh|Pd|{Ag|Cd|In |Sn|Sb|Te| | |Xe
s | L o]l lsiefefsi|s |seistisifsifsi|s | s |s|s
Cs |Ba Hf | Ta|W |Re|Os| Ir | Pt |Au|Hg| Tl |Pb| Bi | Po| At |Rn
s | L sistlsi] s | s s s | s sifsi]s]|s|s|s|s
Fr |Ra D—L
$ |'s 1La Ce| Pr |Nd|Pm|Sm|Eu|Gd| Tb |Dy|Ho| Er [Tm|Yb | Lu
Lt sifsifsilsil s | s s | s|s|s|s|si]s
Ac|Th|Pa /U |Np|Pu|/Am|Cm|Bk| Cf | Es [Fm|Md|No| Lr
$ $ $ $ $ $ M M M M M M M M M



www.wikipedia.org

Building blocks of mafter

many different materials (wood, stone, ...)————

elements (periodic table

nuclei are built of protons and neutrons




Building blocks of matter

many different materials (wood, stone, ...)————

elements (periodic table

nuclei are built of p

rotons and neutrons

y
rotons and neutrons are made of quarks




Building blocks of matter

many different materials (wood, stone, ...)————

elements (periodic table

nuclei are built of p

rotons and neutrons

y
rotons and neutrons are made of quarks

2?7



The standard model of particle physics Particle physics
Standard model
Standard model vs. experiments

From large tfo small scales

> molecules are made of atoms







The standard model of particle physics Particle physics
Standard model
Standard model vs. experiments

From large to small scales

= nucleons are made of protons and neutrons




The standard model of particle physics Particle physics
Standard model
Standard model vs. experiments

From large to small scales

= protons and neutrons are made of quarks




The standard model of particle physics Particle physics
Standard model
Standard model vs. experiments

From large tfo small scales

size in atoms and in meters

1 1{]—10

1 14
e 10
10,000 @

; d)
100,000 (
1

) - 18
100000000 'V € h


http://www.particleadventure.org/

From large to small scales
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Exploring small structures

1< N |
< A >l E =he/A
= resolving small scales requires high energies

= particle accelerators
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Standard model vs. experiments
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Standard model
Standard model vs. experiments

Why physics beyond the standard model?

= UCI theorists working on particle physics beyond the
standard model

iz standard model alone cannot explain astrophysical data
iz structure of the standard model hints at unification

. gravitation cannot be described in the language of the
standard model
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Questions

open questions include:
@ what are the properties of the field that drives inflation?
@ what is the origin of the baryon asymmetry?
© what is cold dark matter made of?

answering these questions requires

physics beyond

the standard model
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Why inflation?

temperature after subtraction of dipol and galaxy

... temperature fluctuations ~ 1072 ... why?
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How does inflation work?

Past light cone

Some time
in our past

Paosition

Position

regions causally disconnected ~ why are they isotropic?
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How does inflation work?

I_ slow roll ‘I I— oscillation ﬁ(ﬁl

new particle required

the ‘inflaton’
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Back to the early history of our universe

inflation ends

before nucleosynthesis
an asymmetry is required:
for 101 antiparticles
we need 101° + 1 particles

nucleosynthesis

today (10/1/2021)
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Cosmology and particle physics Baryon asymmetry

Back to the early history of our universe

inflation ends

cryogenesis

particle—-antiparticle pairs
annihilate and the observed
matter originates from the

tiny asymmetry
dcleosynthesis

today (10/1/2021)
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particles

Mr. Dark
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Dark matter

i 80% of the matter of our universe is dark, i.e.

@ behaves like nonrelativisitic matter and
o has at most weak interactions with “ordinary matter”

i dark matter can not be comprised of standard model
particles

= standard model matter doesn’t contribute in a significant
way to the energy budget of our Universe

= physics beyond the standard model required
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Unification of all forces

|(— experimentally confirmed —)l(— speculations —)l
= magnetism

electro-
UEW ~ 100 GeV

magnetism | SU©2), x Uy

= clectricity

weak
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strong Mpianck
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terrestrial
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gravity o
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local SU(3) rotation : e.g. quark
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Intferactions

local SU(2) rotation : e.g. lepton
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Intferactions

local SU(5) rotation

g//q %ok % S ll/q
Yy * k% * ok Yy
Yy - * ok % * ok Wq
/s * ok % * % /e
Ve * ok % * % Ye

= all known (gauge) interactions can be unified in SU(5)

2?7 possible concern: strength of interactions differs
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Running couplings

= naive picture: virtual particle-antiparticle—pairs screen
charge

iz distance inversely proportional to energy

= couplings depend on energy/distance
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= qualitatively nice: couplings approach each other

= however: no (precision) unification
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Running couplings in the MSSM

gauge coupling unification in the (minimal) supersymmetric
standard model
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= interpretation: there is only one coupling at the
fundamental level, the numerical difference between the
couplings is due to quantum effects
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Unification of forces
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Pressing questions Going beyond the standard model

Why supersymmetry?

= gauge coupling unification

= supersymmetry stabilizes the electroweak scale against the
GUT scale Mgyt ~ solution of the hierarchy problem

i supersymmetry is the unique extension of the (Poincaré)
symmetry of our space-time

iz supersymmetry provides the so-called lightest superpartner
(LSP), a plausible candidate for cold dark matter
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What is supersymmetry?

Particles

Supersymmetric “shadow” particles
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Is supersymmetry for real?

...we may see ...
Large Hadron Collider

m

...Oor maybe not @
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ez unification of quarks and leptons may give rise 1o new
signals

= transitions between quarks and leptons possible
w proton not absolutely stable (e.g. p — e* + %)
= proton lifetime inversely proprtional to MéUT

w for Mqur ~ 2 - 101 GeV expect lifetime of the order of 10%
years

== UCI actively involved in the search for proton decay

= SuperKamiokaNDE: initially: Nucleon Decay Experiment
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Pressing questions Going beyond the standard model

Proton decay

ez unification of quarks and leptons may give rise 1o new
signals

= transitions between quarks and leptons possible
w proton not absolutely stable (e.g. p — e* + %)
= proton lifetime inversely proprtional to MéUT

w for Mqur ~ 2 - 101 GeV expect lifetime of the order of 10%
years

== UCI actively involved in the search for proton decay

9 SuperKamiokaNDE: after 1998: Neutrino Detection
Experiment
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Matter in SO(10) theories

iz group theory: SU(3) x SU(2) x U(1) c SU(5) c SO(10)
= one generation of standard model matter corresponds to a
SO10) 16-plet
SO(10) — SU@B)xSU2) x Ul)y = Gsu
16 — (3,2)16®(3,1) 2303, 1)13
(1,118 (1,2)_1pe1,1)

= Extra (1, 1)y right-handed neutrino
~ required in order to explain neutrino masses!

w ypshot: instead of 5 standard model representations (or 2
SU(5) representation) matter from a single representation!

. seems to be oo good to be true
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Going beyond the standard model

= nature of neutrino masses, dark matter, baryogenesis etfc.
= put do we really undersfand the standard model?

= parameters of the SM:
@ 3 gauge couplings (grand unification?)
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Going beyond the standard model

= nature of neutrino masses, dark matter, baryogenesis etc.
= but do we redlly understand the standard model?

= parameters of the SM:
3 gauge couplings
1 additional QCD parameter: 6qcp
2 Higgs parameters

12 masses

8 + 2 mixing parameters

} 20 + 2 flavor parameters

= the bulk of the (ununderstood) parameters of the standard
model resides in the flavor sector

= new game in town: modular flavor symmetries
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Modular flavor sysmmetries

iz, ., can fix the couplings that give rise to fermion masses
and mixing parameters

=, can arise fromn magnetized tfori

Y. Almumin, M.-C. Chen, V. Knapp-Pérez, S. Ramos-Sdnchez, M.R., S. Shukla

A= ICIn(lIabl, 12 cal, |Ibc|)

T/ A
.. — 19 2 0’/1
i) [ 0 ]( i Euler—¢
- ’ . , ’ , \¢(L.D ..
jp =L i -1, j+ 1, (Iab) /] (B—i-j) mod A

flux parameters
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Modular flavor symmetries

ww ., can fix the couplings that give rise to fermion masses
and mixing parameters

=, can arise fromn magnetized fori
Y. Almumin, M.-C. Chen, V. Knapp-Pérez, S. Ramos-Sdnchez, M.R., S. Shukla
iz, Utilize so—called modular forms, which appear in
mathematics (e.g. number theory), condensed matter
physics and string theory
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String model building

iz physicists have been playing with strings for quite some time
iz string theories are perturbative limits of some mysterious
theory

[heterotic E ]\ [ 11D SUGRA]

heterotic O |

(o)
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String model building

= physicists have been playing with strings for quite some time

= string theories are perturbative limits of some mysterious
theory which we are ultimately interested in

i string theory is believed to provide us with a consistent
description of quantum gravity

= Ultimately, it is hoped that string/M-theory provides us with
a theory of everything

wr superstring theory requires 10 space-time dimensions
= 6 dimensions need to be compact

= there are string models which come reasonably close to
the standard model
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Where to go from here?

(1=

neutrinos (not only because of Reines legacy):

e Dirac or Majorana?
@ CP violation?
@ absolute v mass scale?

is the proton stable?
dark matter (nature, role in very early universe)

was there a stage of inflation, and if so, what is the nature
of the inflaton?

is our world supersymmetric?

mMmany more questions
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Outlook

stqy tuned

exciting times lay ahead
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