
Bias and Estimation under Misspecification of the Risk
Period in Self-Controlled Case Series Studies

Supplemental Information
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Appendix

Proof of the bias function (3). The relative incidence estimator (2) is

R̂∗ =

∑N

i=1 ñi1/
∑N

i=1 ñi0

ẽ1/ẽ0
=

n−1
..

∑N

i=1 ñi1/{1− n−1
..

∑N

i=1 ñi1}

(τ + u)/(e0 − u)

where n.. =
∑

ik nik. By the law of large numbers and Slutsky’s theorem, R̂∗ is consistent for

R∗ = {π̃1/(1 − π̃1)}/{(τ + u)/(e0 − u)}. Direct calculation yields π̃1 = (u + τR)/∆, where

∆ = e0 + τR; thus, R∗ = (u + τR)/τ̃ , which a linear function of the inverse of the specified

risk length, 1/τ̃ . Since u = τ̃ − τ , we can express R∗ as

R∗ = R + τ(R− 1)
(
τ̃−1 − τ−1

)
≡ γ0 + γ1

(
τ̃−1 − τ−1

)
, for τ̃ > τ

where γ0 = R and γ1 = τ(R− 1).

Next, consider the case when u < 0 (i.e., τ̃ < τ). Note that e0 = T − τ , where T is

the total follow-up time and also u = τ̃ − τ . Similar to the case with u > 0, application

of the the law of large numbers and Slutsky’s theorem, gives that R̂∗ is consistent for R∗ =

{π̃1/(1− π̃1)}/{τ̃ /(T − τ̃)}, where π̃1 = (τ +u)R/{(T − τ)−uR+ τR} and we have expressed

ẽ1/ẽ0 = τ̃ /(T − τ̃). Simplification gives R∗ = (e0 − u)R/(e0 − uR) and we can express this as

a nonlinear function of 1/τ̃ as follows:

R∗ = R +
(e0 − u)R

e0 − uR
−R = R +

uR(R− 1)

e0 − uR
=

(R− 1)− τ(R− 1)τ̃−1

T+τ(R−1)
R

τ̃−1 − 1

= R +
(R− 1)− τ(R− 1)τ−1 − τ(R− 1)(τ̃−1 − τ−1)

T+τ(R−1)
R

(τ̃−1 − τ−1) + T+τ(R−1)
R

τ−1 − 1

= R +
−τ(R− 1)(τ̃−1 − τ−1)

T+τ(R−1)
R

(τ̃−1 − τ−1) + T−τ
τR

≡ γ0 +
−γ1 (τ̃

−1 − τ−1)

γ2(τ̃−1 − τ−1) + γ3
,
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where γ2 = {T + τ(R− 1)}/R and γ3 = (T − τ)/(τR). Thus, combining the above expressions

for R∗ for both cases of u > 0 and u < 0, one obtains equation (3) in Section (2.1):

R∗ = γ0 + γ1
(
τ̃−1 − τ−1

)
−

+
−γ1 (τ̃

−1 − τ−1)+
γ2(τ̃−1 − τ−1)+ + γ3

,

where (x)+ = x if x > 0 and 0 otherwise and, similarly, (x)− = x if x < 0 and 0 otherwise. It

is clear that R∗ = γ0 = R when τ̃−1 = τ−1 (i.e., u = 0). This result for the functional form of

the bias due to risk length misspecification motivated our proposed estimation procedure.

Jacobian matrix for equation (8). For the Jacobian matrix J in (8), define hl = hl(β
∗,α∗),

for l = 0, . . . , J , π∗

ij· =
∑1

k=1 π
∗

ijk and π∗

i·k =
∑J

j=1 π
∗

ijk. With these simplifications, direct

calculations give the mth row of J as (∂hm/∂β
∗, ∂hm/∂α

∗

1, . . . , ∂hm/∂α
∗

J), where ∂h0/∂β
∗ =

−
∑N

i=1 ni··π
∗

i·1(1 − π∗

i·1), ∂h0/∂α
∗

j =
∑N

i=1 ni··(π
∗

ij1 − π∗

ij·π
∗

i·1) for j = 1, . . . , J , ∂hj/∂β
∗ =

−
∑N

i=1 ni··(π
∗

ij1 − π∗

ij·π
∗

i·1), ∂hj/∂α
∗

j = −
∑N

i=1 ni··π
∗

ij· (1 − π∗

ij·), for j = 1, . . . , J , ∂hj/∂α
∗

l =

∑N

i=1 ni··π
∗

ij·π
∗

il· for j 6= l. The above expressions are similar to the ones given in Mohammed

et al. (2013).
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Table S1: Summary of the 32 simulation experiments and study design parameters (i)-(iv).
For each experiment, the true relative incidence, R = exp(β), varies from 0.7 to 4.

Parameter Values
(i) Number of exposures (a) Single exposure, similar to MMR-ITP data or

(b) Multiple exposures: 1, 2 or 3 with probabilities
0.7, 0.2 and 0.1, respectively

(ii) Number of age groups, J No age group; 2 age groups; 3 age groups (J = 0, 1, 2)
Age group relative incidences, exp(αj) (eα0 , eα1) = (1, 1.35), (eα0 , eα1 , eα2) = (1, 1.35, 1.65)

(iii) Length of risk period, τ 15, 30, 45 days

(iv) Distribution of exposure times Uniform, Normal

Risk period relative incidences, exp(β) 0.7, 0.9, 1.2, 1.5, 2, 4

Sample size, N 100, 200, 400, 800 individuals
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