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1 Example and R Codes

1.1 Example Datasets

This supplementary materials document provides a tutorial on fitting the Poisson and negative

binomial profiling models with flagging/identification of outlier facilities (providers) based on

nominal p-values. Sample datasets analogous to the Poisson and negative binomial models

described in the main paper with 1,000 providers and a tutorial on the implementation along

with R codes are provided here. The example (simulated) dataset containing 1,000 providers

and 2 patient case-mix along with R functions and documentation for fitting the poisson and

negative binomial models can be downloaded at

http://faculty.sites.uci.edu/nguyenlab/supplement/.

(Note that the input dataset has been sorted by provider ID’s, namely fid.)

Load the datasets in R:

load("sampledata.RData")

ls()

[1] "ds.negb" "ds.pois"

Each dataset is a data frame with variables: facility ID’s (fid), outcome count (y), follow-up

time (t), and case-mix covariates, named in the sample data as z1 and z2:

head(ds.pois)

fid y t z1 z2

1 1 0 2.64 0 1.11651293

2 1 1 2.64 0 0.08436492

3 1 0 2.64 0 1.69733507

4 1 5 2.64 0 0.47171038

5 1 0 0.88 0 1.38912344

6 1 1 0.44 1 -0.64603955

dim(ds.pois)

[1] 78953 5

The sample dataset illustrating the Poisson model fit has 78,953 patients in 1,000 facilities.
Similarly, the sample data illustrating the NB model fit is a data frame with 76,946 patients

in 1,000 faciliities.
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head(ds.negb)

fid y t z1 z2

1 1 0 0.44 0 -0.08319949

2 1 1 2.64 0 0.84072866

3 1 1 0.88 0 0.86435909

4 1 2 2.64 1 -0.97581369

5 1 0 2.64 0 0.62968255

6 1 0 0.44 1 -1.45998774

dim(ds.negb)

[1] 76946 5

1.2 Fitting High-Dimensional Poisson and NB Profiling Models

The following usages fit the Poisson and NB models, respectively. Other optional input argu-

ments are available to specify the initial facility effect values, case-mix parameter values, the

number of resampling iterations for hypothesis testing of the equality of facility effects and the

median facility, convergence, and maximum number of iterations..

# Source needed functions for model fitting:

source("model_fit.R")

# Fit Poisson model:

case.mix.vars <- c("z1","z2")

fit.pois <- fit.poisson(ds.pois, case.mix.vars)

# Fit NB model:

fit.negb <- fit.nb(ds.negb, case.mix.vars)

The first input argument is the dataset name and second is the vector of patient case-mix

covariate names. The offset is taken to be the log of the follow-up time, log(t). See the function

headers for a more detailed documentation of required and optional input arguments.

1.3 Output Objects from Fitted Models

The output object is a list with seven elements. Elements are:

> names(fit.pois)

[1] "coefficients" "fac.effect.ests" "ser.ests" "p.vals"

[5] "od.est" "ser.labels" "num.iter"
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The coefficients contains the case-mix parameter estimates (r× 1 = 2× 1 in example),

fac.effect.ests contains the facility effect estimates (I×1 = 1000×1 in example), ser.ests

contains the facility SER estimates (I × 1), p.vals contains the facility nominal p-values in

testing equality of the facility effect and median effect, od.est contains the over-dispersion

estimate, ser.labels contains the classification (“B”,“ND”,“W”) for each facility (I×1), and

num.iterations contains the number of steps needed for convergence.

For the Poisson data, the (partial) results of the model fit are:

> print.summary(fit.pois)

ser.ests p.vals fac.effect.ests ser.labels

1 0.5727896 0 -0.5679981 B

2 0.5807295 0 -0.5542314 B

3 0.6101956 0 -0.5047370 B

4 0.5792725 0 -0.5567435 B

5 0.6141551 0 -0.4982689 B

6 0.5371637 0 -0.6322136 B

Number of Facilities Flagged:

B: 348

ND: 281

W: 371

Coefficient Estimates:

z1: 0.5088418

z2: -0.5003711

Overdispersion Estimate: 0.994329061853391

The output structure for the NB model fit is the same:

> print.summary(fit.negb)

ser.ests p.vals fac.effect.ests ser.labels

1 0.6128734 0.000 -0.4992100 B

2 0.6108527 0.000 -0.5025126 B

3 0.6081557 0.000 -0.5069374 B

4 0.6659223 0.004 -0.4161954 B

5 0.5284035 0.000 -0.6475082 B

6 0.6097260 0.000 -0.5043586 B
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Number of Facilities Flagged:

B: 266

ND: 440

W: 294

Coefficient Estimates:

z1: 0.5014649

z2: -0.5019854

Overdispersion Estimate: 2.95848387762615

2 Standard Error Estimates

We conducted a supplementary simulation study to examine whether the standard error es-

timates based on the square root of the diagonal elements of the inverse of the observed

information (SEOI) matrix at convergence targets the true variability of the estimators, β̂r,

i.e. SDr ≡ {V ar(β̂r)}0.5. Because the alternating one-step Newton-Raphson estimation algo-

rithm is not classical MLEs, these SE estimates generally may not target true variability of

the estimators (SD). Thus, we also examined bootstrap SE (SEboot) estimates as an alterna-

tive. Following the simulation setting described in the paper, we generated 500 Monte Carlo

(MC) data sets and for each simulated dataset, 200 bootstrap samples were taken based on

resampling facilities (to preserve correlation within facilities).

The results are summarized in Figure S1. The “true” SD’s are estimates based on the

sample SD over 500 MC simulation runs. Averages over the 500 simulated datasets shows that

SEOI do not target SD. In fact, the true SD is outside SEOI ± 1.96 × SDSEOI
, where SEOI

and SDSEOI
are the mean and the standard deviation over the 500 MC runs, respectively.

However, bootstrap SE estimates (SEboot target SD well; given in Figure S1 are bootstrap

mean plus/minus 1.96 times the standard deviation SEboot over the 500 MC runs.
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3 Excluded Extremely Low Information Facilities

As indicated in Section 4 of the paper, our analysis excluded 3.3% (213) of facilities with

< 10 patients. Among these, ∼ 37% had 1 or 2 patients and ∼ 56% had 5 or fewer patients.

Although reliable SER estimation is challenging in this sparse data context, for a descriptive

summary of these facilities, we “estimated” the SER for these excluded facilities by taking the

ratio of the observed event counts divided by the expected counts using the denominator in

equation (3) for each of these 213 facilities. Figure S2 displays the distribution of SER for these

very low volume providers with an average SER of 1.039 and standard deviation (SD) of 0.523.

Compared to the analysis of the 6,188 included facilities, we note that the SER distribution of

facilities flagged as “not different” from the national average had an average SER of 1.01 (SD

0.11). Thus, although these excluded facilities had SER average similar to the ND facilities,

the SD was nearly 5 times larger.
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Figure S1: (A) Standard error estimates based on observed information matrix (SEOI) and
(B) based on bootstrap SE estimates (SEboot), resampling facilities. Given are results for over
500 Monte Carlo datasets and for each simulated dataset, 200 bootstrap samples were taken
(mean = black circle, mean ±1.96SEboot; Estimate of true SD = diamond based on 500 Monte
Carlo replicates).



Table S1: Comparison of dialysis facility flagging between Poisson and negative binomial
regression models for 6,188 facilities based on empirical null distribution.

Poisson model
Negative binomial model Better Not different Worse Total
Better 220 280 0 500 (8.1%)
Not different 75 5121 116 5312 (85.8%)
Worse 0 198 178 376 (6.1%)
Total 295 (4.8%) 5599 (90.5%) 294 (4.8%) 6188



Table S2: Results of identifying extreme dialysis facilities using the negative binomial model
among all facilities and by facility size based on empirical null distribution (small: 10-55,
medium: 56-96, and large: 97-560 patients).
Facility size Worse Not different Better

Small 66 3.2% 1943 93.8% 62 3.0%
Medium 167 8.1% 1759 85.8% 124 6.0%
Large 267 12.9% 1610 77.9% 190 9.2%
Overall 500 8.1% 5312 85.8% 376 6.1%



SER for 213 excluded facilities
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Figure S2: Distribution of “SER” for 213 excluded facilities (mean 1.039, standard deviation
0.523).
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Figure S3: Observed and predicted/estimated rates on the log scale. Plotted are observed vs.
predicted (log) rates in 20 bins based on model-based predicted values (observed vs. average
predicted values in each bin).


