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An improved model for droplet solidification
on a flat surface
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An existing model of the deformation and solidification of a single droplet impinging on

a cold surface has been revised and improved. The original model is based on a two-

dimensional axisymmetric flow approximation of the velocity field, the Neumann solution to

the one-dimensional Stefan solidification problem, and an integral mechanical energy

balance. The improved model features a more appropriate velocity field which satisfies the

no-shear boundary condition at the free surface, and an accurate derivation of the

dissipation term from the mechanical energy equation. This equation has been solved

numerically. Comparisons of the original and the improved models have been performed.

Results show that the original model over-estimates the final splat size by about 10%. The

discrepancy is more pronounced at larger Weber numbers, where viscous effects dominate.

The effects of the Weber number, We, the Reynolds numbers, Re, and the solidification

parameter have been investigated through detailed numerical calculations. Two regimes of

spreading/solidification have been identified. If Re/We is small, the process is one of

dissipation of the incident droplet kinetic energy; whereas for large values of Re/We the

process can rather be characterized as a transfer between kinetic and potential energy. In the

latter case, the variations of the final splat size versus the solidification constant exhibit

a non-monotonic behaviour. This indicates that, for a given material, the deposition process

can be optimized. Correlations relating the final splat size to the process parameters are

given.
Nomenclature
A area covered by the disc
b thickness of the liquid layer
c specific heat
D initial droplet diameter
E
$
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potential energy
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latent heat of fusion
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wD/l, Reynolds number

R radius of the solid disc
r radial coordinate
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, Stefan number
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substrate temperature
t dimensionless time
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total spreading time of the disc
º solidification constant
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volume of solidified part of the splat

» volume of the droplet

w impact velocity of the droplets
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Dw2/r, Weber number

w
3

velocity component in radial direction
w
9

velocity component in axial direction
x axial coordinate
y solid layer thickness
a thermal diffusivity
e initial disc radius to droplet diameter ratio
h
%

contact angle of the liquid with the substrate
k thermal conductivity
l viscosity
q density of the solid
q
-

density of the liquid
n dimensionless radius of the disc
n0 "dn/dt, rate of disc expansion
r surface tension
s7 viscous stress tensor
/ dimensionless thickness of the liquid layer
@ dimensional quantity

1. Introduction
There is a variety of spray-based materials synthesis
methods currently available, including low-pressure
plasma deposition [1], modified gas-welding tech-
niques [2], high-velocity oxyfuel thermal spraying [3]

and spray atomization and deposition processing
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[4]. Recently, new applications, such as self-standing
structures, have attracted more attention [5]. Plasma
spraying has been extensively developed as a cost-
effective method of producing metallic coatings on
pre-shaped parts and improving the resistance to wear
and corrosion of a substrate.

There are two physical stages in a typical plasma-
spraying process: (i) melting and travelling — metal
powders are fed into a high-temperature plasma-flame
region, melted and accelerated toward a target sub-
strate; (ii) impact and solidification — droplets impact
on the substrate and consolidate into a deposit. A sig-
nificant amount of the published literature focuses on
the melting and travelling stage. However, in a typical
plasma-spraying process, the deformation and solidifi-
cation of a single droplet plays a fairly important role.
Indeed, a thorough understanding of the physical
mechanisms involved in the deformation and solidifi-
cation of each droplet must be acquired in order to
identify the processes controlling the properties of
a coating.

The general subject of liquid-drop impact on to
a solid surface has been studied from a variety of
points of view. A complete review of the literature has
been conducted by Poulikakos and co-workers [6, 7].
The solidification of a liquid-metal drop falling on to
a solid surface is a complex fluid dynamics and heat-
transfer problem. When the drop impinges on the
substrate, it simultaneously starts to spread and solid-
ify. Therefore, the resulting coupled heat and mo-
mentum transfers, including phase change, occur on
a time-dependent geometry. This moving boundary
problem, caused by the liquid/solid interface motion,
is a major issue. Mathematically, a moving boundary
problem requires the solution of the governing equa-
tion in a region which has also to be determined as
part of the problem. There are a few exact solutions of
moving-boundary problems. For the problem con-
sidered here, the physically relevant exact solution is
the solution proposed by Neumann to the Stefan
solidification problem in which the thickness of the
solid phase is proportional to the square root of time.
This solution is used in several models [8, 9] dealing
with droplet solidification to determine the thickness
of the solid part of the droplet. The shortcomings of
employing such a solution are described by Rangel
and Bian [10, 11].

An interesting analysis of the droplet deformation
and solidification process was presented by Madejski
[8, 12]. This model assumes an initially spherical
droplet which takes the shape of a cylindrical disc after
it strikes the flat substrate. Viscous energy dissipation
and surface-tension effects on the splat spreading and
solidification are included. The onset of solidification
is assumed simultaneous with the impact, and the
Neumann solution to the Stefan one-dimensional so-
lidification problem is adopted to solve the moving
boundary problem. The motion of the spreading fluid
is modelled by a mechanical energy conservation
equation using a simple velocity field which satisfies
only the continuity equation. Madejski’s investigation
yielded analytical expressions relating the final splat

size to Reynolds number, the Weber number, and
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a solidification parameter in some special cases. No
attempt was made to solve the model equation in
the general case. Limited comparisons between the
model’s predictions and experimental data [8] show
a qualitative agreement, at best.

There are two major objections to Madejski’s
model. First, Markworth and Saunders [13] showed
that the velocity field used by Madejski does not
satisfy the no-shear condition at the upper free surface,
which results in a positive rate of change of viscous
energy over the droplet. Markworth and Saunders
[13] proposed an improved velocity field which
satifies the upper surface boundary condition and
correctly yields a negative integral rate of change of
viscous energy. Second, the approximation used by
Madejski to evaluate the viscous energy dissipation is
significantly inaccurate. These deficiencies could be at
the source of the discrepancies between the measured
final splat size and the predicted values [8].

Furthermore, this model’s assumptions are not con-
sistent with configurations more relevant to the spray
deposition processes. For instance, the possibility of
nucleation prior to impact, the time lapse between
impact and the start of solidification, and the possible
transition to turbulent flow at high Reynolds numbers
are not included in the analysis [6]. Consequently,
several modifications of the Madejski model have
been proposed, in order to relax some of the restricting
assumptions. San Marchi et al. [9] investigated the
effect of the partial in-flight solidification.

Bennet and Poulikakos [6] focused on the relative
importance of viscous dissipation and surface tension
on the maximum final splat size without solidification
using the initial surface tension energy formulation
proposed by Collings et al. [14]. However, to evaluate
the energy dissipated by viscous effects, they used the
expression derived by Madejski [8] based on an incor-
rect approximation and an unphysical velocity field
[13]. These shortcomings may impair the reliability of
their conclusions.

Numerical simulations of the fluid dynamics aspects
of droplet spreading using the full Navier—Stokes
equations, have also been conducted using finite ele-
ments [15] or finite differences [16—21]. Some of these
studies [18, 21] also included solidification and
yielded some insight regarding porosity formation.
These more detailed approaches are more appropriate
to yield a fundamental understanding of the physical
processes controlling liquid-metal droplet spreading
and solidification than a Madejski-type model. How-
ever, the pertinence of Madejski’s model should not be
overlooked. Because of its inherent simplicity, a model
based on Madejski’s analysis and using Markworth
and Saunders’ velocity field together with a proper
evaluation of the viscous dissipation, has the potential
to be a valuable tool in the simulation and prediction
of the behaviour of the overall spray-deposition
process.

It was the primary goal of the present work to
build such a model. Madejski’s approach was kept,
but a better velocity field [13] satisfying both the
continuity equation and the no-shear boundary con-

dition at the free surface was used. A second and more



important improvement was the correct derivation of
the viscous energy dissipation. Madejski expressed the
viscous energy dissipation in terms of the shear stress
obtained from the radial velocity gradient within the
spreading splat. Here, the viscous dissipation has been
carefully derived from the mechanical energy equa-
tion, assuming only negligible body force.

The resulting integro-differential equation has been
solved numerically, in the general case, using a modi-
fied Euler (Predictor—Corrector) scheme. This allows
an exhaustive and detailed parametric study, includ-
ing the effect of the Weber and Reynolds numbers,
and the solidification parameter. The temporal vari-
ation of the kinetic and potential energy and the
viscous dissipation of the splat during deformation
and solidification is also investigated. Previous
studied [6, 8, 12] were limited to special cases where
the integro-differential equation did not require nu-
merical integration and yielded approximate analyti-
cal expressions.

2. Model
A molten metal droplet strikes on a target surface,
then starts to solidify and deform (Fig. 1). At the time
of impact, the droplet has a diameter D and a velocity
w. The present model is based on that proposed by
Madejski [8]. As shown in Fig. 2, the shape of the
droplet as it impinges on the substrate is assumed to
be that of a cylindrical disc. The thickness of the liquid
layer is assumed uniform over the disc (independent of
r), but is a function of time. The liquid layer expands
radially, and the solidification begins at the time the
liquid touches the substrate. The solid layer grows
vertically and its thickness is a function of both t and r.

2.1. Solidification
Neumann’s solution to the classical Stefan problem
[22] was used. The solid front moves from the sub-
strate towards the upper free surface of the droplet.
The front position, which is the thickness of the solidi-
fied layer, y, in this model, can therefore be expressed
as

y"º[a(t@!s@ )]1@2 (1)

where º is a constant depending on the Stefan num-
ber, a is the thermal diffusivity of the solid phase, and
s@ is the time at which solidification begins at a given r.

As soon as the droplet touches the substrate, solidi-
fication starts and the splat radius, R, becomes larger
than the initial radius, R

0
, after deformation. In the

region inside the initial radius r(R
0
, s@"0 and the

thickness of the solidified layer, y
0
, is only a function

of time. The coordinate system used in this model is
that proposed by Madejski [8] and is illustrated in
Fig. 2. The initial height, b

0
"4R

0
/3, of the cylinder is

imposed by mass conservation. The volume of the
solidified layer is

» "pR2y #

s@"t@

2pR(s@)ydR(s@) (2)

4 0 0 Ps@"0
Figure 1 Schematic illustration of the problem.

Conservation of mass yields the thickness of the liquid
layer as a function of time
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(p/6)D3q

-
!q»

4
pR2q

-

(3)

2.2. Mechanical energy conservation
The liquid-disc deformation is described by the con-
servation of mechanical energy. The general form of
the mechanical energy differential equation is [23]

q
D

Dt A
1

2
w2B"!(w · +p)#[w · (+ · s7 )]#q (w · g) (4)

By assuming incompressible flow and neglecting body
forces, this equation becomes

D

Dt A
1

2
qw2B"+(!pw#s7 · w)!s7 : +w (5)

Integrating over the volume of the splat and applying
the divergence theorem yields

d

dt PV A
1

2
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A
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E

,
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dE

d
/dt@ (6a)

where A is the total surface area of the disc. The
Leibnitz formula for differentiating a triple integral
was used on the left-hand side term yielding

P
»

D

Dt A
1

2
qw2Bd»"

d

dt P
»
A
1

2
qw2Bd» (6b)

because the surface of the integration volume is mov-

ing with the local fluid velocity [23]. E

,
is the kinetic
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Figure 2 Coordinate system definition (after Madejski [8]). (a)
t@"0, (b) t@'0.
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where w
r
and w

x
are the radial and the axial compo-

nents of the velocity field, and x is the coordinate
measured perpendicular to the substrate. (I) is zero at
the solid/liquid interface because of the no-slip condi-
tion. If the outside pressure is chosen as the reference
pressure, the stress boundary condition on the free
surface can be written [24, 25]

(!pd2 #s7 ) · nL "rjnL (8a)

where j is the curvature of the free surface, j"+ · nL .
Because only the normal components of s7 are non-
zero on the free surface, (!pd2 #s7 ) is diagonal there,
and

[(!pd2 #s7 ) · w] · nL "[(!pd2 #s7 ) · nL ] · w"rjnL · w

(8b)

Therefore, after integration, (I ) reduces to the rate of
change of the surface tension forces on the free surface,
dE

1
/dt@, with

E
1
"r (pR2#2pRb) (9)

Finally, the rate of viscous dissipation, dE
$
/dt@, is (in

cylindrical coordinates)

dE
$
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l'd» (10)

where
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The conservation of mechanical energy is therefore
expressed as

d

dt@
(E

,
#E

1
#E

$
)"0 (12)

Madejski [8] approximated the viscous energy dis-
sipation in terms of the radial shear stress and the
average radial velocity within the spreading splat

dE
$

dt@
"P

R

0

(2prdr) sw
r

As will be seen in Section 3.1; this equation for viscous

dissipation misses an important term. Such an
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approach results in a reduced effect of viscous dis-
sipation, particularly in the initial stages of the
deformation.

2.3. Velocity field
The velocity field proposed by Markworth and Saun-
ders [13] is adopted here

w
x
"2C@ A

x3

3
!bx2B (13a)

w
r
"C@r(2xb!x2 ) (13b)

C@ is a time-dependent quantity. This velocity field
satisfies continuity, the no-slip condition at x"0, and
the boundary condition at the upper surface of the
disc. The velocity field proposed by Madejski [8]

w
x
"!Cx2 (14a)

w
r
"Cxr (14b)

satisfies continuity and the non-slip condition at the
solid front, but not the boundary condition at the free
surface. This is equivalent to artificially applying
a shear at the upper liquid surface. With this velocity
field (Equation 14a and b), the local volumetric rate of
change of viscous energy, E

7
"wl+2w, is positive

everywhere within the disc which means that energy is
effectively being transmitted to the disc [13]. On the
contrary, the velocity field proposed by Markworth
and Saunders (Equation 13a and b) yields a local
volumetric rate of change of viscous energy negative
everywhere except in a relatively small region around
the axis of symmetry.

3. Solution
3.1. Splat radius integro-differential

equation
The velocity field defined above is now used to de-
rive a workable form of the mechanical energy conser-
vation equation. The kinetic energy expression
becomes

E
k
(t@ )"

2

15
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-
C@2R2b4 AR2b#

11

7
b3B (15)

C@ can be expressed in terms of the disc expansion rate
dR/dt@, which is assumed equal to the average radial
velocity on the splat periphery

C@"
3

2Rb2

dR

dt@
(16)

hence

E
,
"

3
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dR
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2

AR2b#
11

7
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Substituting the velocity field in the viscous dissipa-
tion equation (Equation 11) yields
'"12C@2(2xb!x2 )#4C@2r2(b!x)2 (18)



The viscous energy dissipation rate is obtained by
integration (Equation 10)

dE
d
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Evaluation of dE
$
/dt@ using Madejski’s less-accurate

expressions yields
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"
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2

(20)

indicating a relative error of at least 50% on the
viscous dissipation rate. Bennet and Poulikakos [6]
used a simplified expression based on Equation 20 to
evaluate the relative effects of viscous dissipation and
surface tension. Therefore, their definition of the do-
mains, in the (Re, ¼e) plane, where either mechanism
prevails, is quantitatively inaccurate.

Equations 9, 12, 17, and 19 are then combined to
yield the mechanical energy conservation equation
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where the liquid thickness, b, is determined from
Equation 3. Initial conditions are R"R

0
, b"4R

0
/3

(from initial mass conservation), and dR/dt@(0)"
(dR/dt@)

0
. The last term is deduced from the initial

kinetic energy

E
,
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p

6
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Assuming that the initial disc radius is a fraction of
initial droplet diameter, e"R

0
/D the initial disc ex-

pansion can be written

dR

dt@
(0)"w C

5/3

1#(11/252e6)D
1@2

(23)

e is determined by enforcing the conservation of the
potential energy just before and just after impact

prD2"r (pR2
0
#2pR

0
b
0
) (24)

Note that mass conservation imposes b
0
"D3/6R2

0
.

The resulting cubic has two positive real roots. The
smallest root must be discarded because it corres-
ponds to a cylinder height larger than the droplet
diameter. Therefore, the only physically sound solu-
tion is eK0.74. Madejski [8] inaccurately stated that
it is impossible to find a value of e satisfying the
continuity of the potential energy at impact. Instead,
he chose e"0.5 which, as he duly notes, yields an 8%
error in the initial value of the potential energy. How-
ever, it is acknowledged that the value chosen for e has
little influence on the model. Therefore, the value of
0.5 was adopted in the present work in order to keep
the comparison between Madejski’s original model
and the improved model as unambiguous as possible.

Finally, the equation system and the boundary con-

ditions are normalized using R

0
as reference length
and w as reference velocity. The non-dimensional vari-
ables are

n"R/R
0
, (25a)

/"b/R
0
, (25b)

t"wt@/R
0

(25c)

Equations 21 and 3 become

d
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7
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(n#2/)D
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n2n0 2
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1
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t
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n (t@) n0 (t@)J(t!t@) dtDH (27)

¼e, Re, and Pe are the Weber, Reynolds, and Peclet
numbers, and K is the solidification parameter,

K"6e2º
q

q
-
A

e

PeB
1@2

(28)

The non-dimensional initial conditions for these equa-
tions are

n (0)"1, (29a)

/ (o)"
1

6e3
, (29b)

n0 (0)"C
5/3

1#(11/252e6)D
1@2

(29c)

Henceforth, Equations 26, 27, and 29a, b and c will be
referred to as the improved velocity improved dissipa-
tion (IVID) model. The choice of velocity field affects
the kinetic energy and dissipation terms, whereas the
form of the dissipation formula affects only the dissi-
pation term. In order to evaluate the relative effect of
each modification (improved velocity field and correct
viscous energy dissipation term) to Madejski’s original
model, three additional equation systems, similar to
IVID are defined: Madejski velocity Madejski dissipa-
tion (MVMD), improved velocity Madejski dissi-
pation (IVMD), and Madejski velocity improved
dissipation (MVID). These equation systems are de-
tailed in Table I.

3.2. Numerical solution
The dimensionless splat radius, n, is evaluated numer-
ically using finite differences. First, an equation for n0 (t)
is obtained by integrating the non-dimensional mech-
anical energy equation once from 0 to t

3e

10 A
dn

dtB
2
/An2#

11

7
/2B#

1

¼e
n (n#2/)

t dn 2 3 72 /2

#P

0
Cn2Adt@B N/ReD A2# 5 n2B dt@"
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TABLE I Model equations and corresponding initial conditions

Model Equation n (0) / (0) n0 (0)

MVMD
d

dt C
e

3
n0 2/An2#

6

5
/2B#

n

¼e
(n#2/)D#
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d
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d

dt C
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7
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¼e
n (0)[n(0)#2/(0)] (30)

After substitution of the initial conditions (Equation
29 with e"0.5), Equation 30 can be recast as

n0 "GC
1

3 A1#
11

¼e
!

1

¼e
n (n#2/)
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,F(t, n, n0 ) (31)

A modified Euler predictor—corrector method is
used [26]. The predictor step yields a first estimation
of n

n`1
, from the known value of n

n
and n0

n
at t

n

nP
n`1

"n
n
#*tF (t

n
, n

n
, n0

n
) (32)

Then, this estimation of n
n`1

is improved using a cor-
rector step

nC
n`1

"n
n
#

*t

2
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n
, n

n
, n0

n
)

#F(t
n`1

, nP
n`1

, n0 P
n`1

)] (33)

Because Equation 31 defines n0 implicitly, it must be
solved iteratively to yield n0

n`1
. To this end, the inte-

gral containing n0 in Equation 31 is split into two terms
in order to improve the computational efficiency

P
t
n`1

0

n2n0 2
/Re A

3

2
#

72

5
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n2B dt@" (34)
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#P
t
n`1

t
n

n2n0 2
/Re A

3

2
#

72

5

/2

n2B dt@"I
1
#I

2

Then, at any given time t
n`1

, n0
n`1

can be calculated
once n

n`1
is known, as follows.

1. Approximate n0
n`1

by its previous value, n0
n
.

2. Compute I
2

by the Trapezoidal rule.
3. Obtain a new n0

n`1
from Equation 31.

4. Repeat 2 and 3 until a desired tolerance is met.
Note that I is evaluated only once during the iter-
1
ation cycle. Similarly, the evaluation of /

n`1
, as de-
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fined by Equation 27, does not require knowledge of
n0
n`1

, because the integrand vanishes at t.
The obtained corrected value of n

n`1
is then fed

back into Equation 33 as a predicted value. Calcu-
lations showed that three corrections were sufficient.

4. Results and discussion
Three phenomena compete for the control of the
spreading droplet behaviour: viscous dissipation,
surface tension forces, and solidification. As a non-
solidifying droplet spreads, some of its kinetic energy
is transformed to potential (surface) energy while the
rest is dissipated by viscous forces. Subsequently,
some of the energy stored by surface tension forces
may be transferred back to kinetic energy while the
rest is dissipated. Thus, the edge of the splat oscillates.
The oscillations stop when all the kinetic energy of the
incident droplet has been dissipated by viscous forces.
When solidification occurs, its effect on the final splat
size depends on the relation between the solidification
characteristic time and the characteristic spreading
time. In most cases, solidification significantly hinders
the oscillations observed in the non-solidifying case.
Therefore, the model presented here was not designed
to predict such oscillations. Computations are stop-
ped when the spreading rate reaches its first zero.

4.1. Model comparison
First, the improved model (IVID) presented in the
previous section is compared to Madejski’s original
model (MVMD). The intermediate models (IVMD
and MVID) are included in this comparison in order
to provide some insight into the particular effect of
each modification to the original model. The reference
case used for this comparison is ¼e"500, Re"400,
and K"0.02.

All the models considered here are based on the
conservation of mechanical energy (Equation 12).
Fig. 3 shows the history of each term of the mechan-
ical energy balance: kinetic energy, potential energy,
and viscous dissipation during the spreading and
solidification process. As the droplet spreads and
solidifies, part of its initial kinetic energy is dissipated
via viscous forces while the rest is stored as potential
energy. In the case considered here, the potential en-
ergy remains a small fraction of the total mechanical

energy of the droplet over the whole process. In fact,



Figure 3 Comparison of the various models. Histories of kinetic
(KE) and potential (PE) energies and dissipation rate (DE);
nd"non-dimensional. (---) Madejski’s model, (— - —) improved
dissipation, (— — —) improved velocity, ( ) improved dissipation
and velocity.

Fig. 3 shows that the droplet behaviour is dominated
by the viscous dissipation of its kinetic energy.

Fig. 3 confirms that, as indicated in Section 2.2,
Madejski’s approach underestimates the importance
of dissipation. Even more so in the initial stages of the
deformation. The velocity correction (IVMD) and the
dissipation modification (MVID) have opposite effects
on the estimation of the dissipation rate. The im-
proved dissipation expression yields higher dissipa-
tion rate (see also Equation 11) while Markworth and
Saunders’ velocity field results in a lower dissipation
rate (see also Equation 18). Fig. 3 shows that, quanti-
tatively, the dissipation modification has a more
important effect than the velocity field correction be-
cause the improved model (IVID) yields a higher dissi-
pation rate than Madejski’s model. As a consequence,
the improved dissipation models yield a smaller final
splat size, a slightly larger final liquid thickness, and
a smaller spreading rate (Fig. 4).

Madejski investigated several special cases to seek
approximate analytical expressions for his original
model. For completeness, the corresponding expres-
sions have been obtained for the improved model.
These correlations are listed in Table II together with
Madejski’s. Note that the ranges of validity of these
analytical expressions are more restricted for the im-
proved model. The case with no viscosity and no
K"0 3n2
.
/¼e#(n

.
/1.1625)5/Re"

solidification (K"0 and Re~1"0) corresponds to
Figure 4 Comparison of the various models. Splat radius, liquid
thickness, spreading rate, and solid fraction histories. (---)
Madejski’s model, (— — —) improved dissipation, (— -—) improved
velocity, ( ) improved model.

a reversible transfer of kinetic energy into potential
energy. Therefore, the same expression is obtained
with both models. In the case with no solidification
and no surface tension (K"0 and ¼e~1"0) the
relative error between the predictions of n

.
yielded by

both models is constant and equal to about 11%.
For the general case without solidification, only an
algebraic equation was obtained. The solutions of that
equation for 100(¼e(10 000 and 100(Re(
10 000 are plotted in Fig. 5a. At low Reynolds num-
bers, the final splat size is controlled by viscous dissi-
pation and, accordingly, the plot shows almost no
influence of the Weber number. For moderate to high
Reynolds numbers, the spreading is surface-tension-
controlled and smaller n

.
are expected at low ¼e.

However, in this regime, the final size is reached after
oscillations. As indicated above, such oscillations are
not described here: computations are stopped when
the spreading rate reaches its first zero. Therefore, the
predicted effect of ¼e at high Re is rather mild
(Fig. 5a). The relative error between the maximum
splat radius predictions of both models is plotted in
Fig. 5b. At large ¼e, the results of the case with no
surface tension are recovered: the error is independent
of Re and equal to about 11%. This value is the
maximum error for the domain covered because the
discrepancy between the model is larger at larger ¼e,

when the effects of dissipation are predominant.
TABLE II Correlations for special cases

Madejski’s Model
K"0 and Re~1"0 n

.
"(¼e/3)1@2 for ¼e'100

K"0 and ¼e~1"0 n
.
"1.2941Re0.2 for Re'100

K"0 3n2
.
/¼e#(n

.
/1.2941)5/Re"1 for ¼e'100 and Re'100

Improved Model
K"0 and Re~1"0 n

.
K(¼e/3)1@2 for ¼e'100

K"0 and ¼e~1"0 n
.
"1.1626Re0.2 for Re'140
1 for ¼e'670 and Re'140
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Figure 5 (a) Correlation of the final splat size with Re and ¼e as
derived from the improved model in the non-solidifying case
(K"0). (b) Relative error between the final splat size predicted in
the non-solidifying case (K"0) by Madejski’s model and that
obtained with the improved model.

4.2. Parametric study
An extensive parametric study was conducted, with
Weber numbers ranging from 5 to 500, Reynolds
numbers from 400 to 400 000, and solidification para-
meters from 10~3 to 1. These values cover the possible
applications of this model as listed by Madejski [12]:
thermal spraying, mist flow in boiler tubes and last
stages of steam turbines, rain erosion and icing on
aircrafts, and alloy splat quenching.

Intuitively, it seems clear that increasing the Weber
or the Reynolds numbers, or decreasing the solidifi-
cation parameter will result in a larger final splat size.
This general behaviour was confirmed by Madejski’s
results [8, 12]. This assertion is, however, a mere de-
scription of the spreading droplet behaviour, and fails
to identify the actual mechanisms controlling this be-
haviour. Furthermore, the influence of each parameter
cannot realistically be examined independently, be-
cause their effects are closely interrelated.

Fig. 6 shows that the energy transfer history for a

solidifying droplet with ¼e of 5, 50, and 500. At low

1526
Figure 6 Energy distribution history. Effect of ¼e (Re"400 and
K"0.02): (a) ¼e"5, (b) ¼e"50, (c) ¼e"500. ( ) KE, (---)
DE, (— — —) PE, (— ——) DE#PE.

¼e, the potential energy is dominant, much larger
than the energy dissipated by viscous forces. This case
would correspond to a highly oscillatory spreading
process if the droplet were not solidifying. On the con-
trary, at large ¼e, dissipation dominates and the
spreading would undergo negligible oscillations. The
parameter defining these two regimes can be evaluated
by comparing the kinetic energy per unit volume,
E
k
Kq»2/2, the potential energy per unit volume,

E
1
K6r/D, and the energy dissipated per unit

volume, E
$
Kl»/D. The ratio of the potential energy

to the energy dissipated by viscous effects can be
expressed as:

E
1

E
$

KA
rD

l»D

KB
Re

¼e
(35)

where A and B are proportionality constants that
cannot be determined through this order of magnitude
analysis. If Re/¼e is large, the spreading process is
surface-tension-dominated and oscillatory, while for
small values of Re/¼e, most of the incident droplet
kinetic energy is dissipated by viscous forces and the
spreading stops with few or no oscillations. This con-
firms, a posteriori, the assertions made above in the
interpretation of Fig. 5a.

Figs 7—9 show the influence of ¼e, Re, or K when
the two other parameters are kept constant on the
history of n, /, n0 , and the solid fraction, f

4
. The solid

fraction of the disc is the ratio of the solid volume to
the total volume. Hence (cf. Equation 3)

f
4
"

»
4

»
4
#pR2b

"1!
3

4
n2/ (36)

As mentioned above, computations are stopped when
the expansion rate reaches its first zero. Therefore, it is
possible that, in some cases, only a small portion of the
disc is solidified at the end of the computation.

Fig. 7 shows a log/linear dependence of the final
splat size on the Weber number. Increasing ¼e results
in larger final splat size, smaller liquid thickness and

higher final solid fraction. In all cases, the final solid



Figure 7 Splat radius, n, spreading rate, n0 , liquid thickness, /, and
solid fraction, f

4
, histories. Effect of the Weber number, ¼e: (---) 5,

(———) 20, (— -—) 50, (——) 100, ( ) 500.

Figure 8 Splat radius, n, spreading rate, n0 , liquid thickness, /, and
solid fraction, f

4
, histories. Effect of the Reynolds number, Re: ( )

400, (— -—) 4000, (— — —) 40 000, (——) 400 000.

fraction is less than 0.4. The spreading stops before
solidification is completed because of the relatively
small value of K. At low ¼e (¼e(50) the spreading

process is surface-tension-dominated, the spreading
Figure 9 Splat radius, n, spreading rate, n0 , liquid thickness, /, and
solid fraction, f

4
, histories. Effect of the solidification parameter,

K: (——) 0.5, (— - —) 0.05, ( ) 0.02, (— — —) 0.005.

rate reaches zero with a finite slope thereby indicating
that computations were stopped at the first extremum
of n. At higher values of ¼e, the spreading process is
dissipation-controlled and n0 asymptotes to zero. This
is consistent with the energy balances discussed above
(cf. Fig. 6).

Increasing the Reynolds number also results in
larger splats and higher final solid fractions (Fig. 8). In
the domain covered, the final solid fraction goes from
about 0.4 (Re"400) to 1.0 (Re"400 000) even
though K is still at 0.02. This is due to the fact that at
very high Re, the splat is much thinner than at low Re
and thus solidifies in a shorter time for a given value of
K. At low Re, the spreading process is controlled by
dissipation, and the splat asymptotes to its final size.
At higher values of Re, the spreading process is sur-
face-tension-dominated and the computations were
stopped when the first extremum of n was reached.
These results indicate the importance of the Re/¼e
ratio on the spreading regime. For Re"40 000 and
400000 (cf. Fig. 8), the expansion stops before n0
reaches zero because solidification was completed.

The solidification parameter is an indicator of the
solidification speed. Varying K while keeping both Re
and ¼e constant is tantamount to investigating the
influence of the Prandtl number on the spreading and
solidification process. Low Prandtl numbers corres-
pond to large values of K and thus faster solidifi-
cation. Fig. 9 confirms that as K increases the liquid
thickness decreases, the solid fraction increases with
a final value significantly closer to unity, and the final

splat size decreases. The spreading rate histories show
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Figure 10 Final splat size parametric study. n
.

versus ¼e and K for
Re"400 and 400000.

Figure 11 Final splat size parametric study. n
.

versus Re and K for
¼e"5 and 500.

that for larger values of K the solidification process
controls the final splat size.

Figs 10—12 focus on the combined effects of ¼e, Re
and K on the final splat size. Both Figs 10 and 11
corroborate the previously established significance of
the Re/¼e ratio in determining the spreading regime.
There is a significant effect of ¼e (or respectively Re)
on the final splat size only for higher values of Re
(or respectively ¼e), when the spreading process is
surface-tension (or respectively dissipation)-control-
led. These two figures also show how the spreading
process is affected by solidification. Higher values of
K substantially reduce the effect of ¼e (or respecitvely
Re) on the final splat size at high Re (or respectively
¼e).

Another feature of interest illustrated by Figs 10
and 11 is the non-monotonic behaviour of the final
splat size versus K at low ¼e (¼e(50) for all values
of Re. For ¼e"5, n

.
is nearly constant for small

values of K up to about 0.02, then increases and
reaches a maximum for KK0.2, and finally decreases.
This is unexpected because higher values of K (faster
solidification) yield smaller final splat size in all other
cases. This feature is better seen in Fig. 12. It was
demonstrated in the previous paragraphs that at such
small Weber numbers the spreading process is surface-
tension-controlled (see also Fig. 6). For very small
values of K solidification has a negligible influence

and the final splat size is determined by the value of
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Figure 12 Final splat size non-monotonic behaviour at low ¼e:
(a) Re"400, ¼e: (——) 5, (---) 20, (— — —) 50, (— - —) 100, ( ) 500.
(b) ¼e"5, Re: (——) 4]102, (---) 4]103, (— — —) 4]104, ( )
4]105.

¼e only. As K increases, the liquid mass decreases
thus causing the liquid velocity to increase in order to
conserve kinetic energy. This mechanism enhances the
spreading process, resulting in a larger final splat size.
In this phase, solidification becomes less negligible but
still does not control the final splat size. This trend is
reversed when K is large enough to directly control
the final splat size. Note that the values of K delimit-
ing this behaviour depend on ¼e.

4.3. Some practical examples
The results presented above show that the effects of
Re, ¼e, and K on droplet spreading and solidification
should not be evaluated separately. Indeed, in practi-
cal cases, the values of Re, ¼e and K cannot be varied
independently. Two practically relevant questions can
be formulated. How do the operating conditions
(droplet size, temperature, and impact velocity) affect
the final splat size for a given metal, and how does the
final splat size change when, for given operating con-
ditions, the metal is changed? In order to provide
limited answers to these questions, the present model
was applied to the cases of various metals: Alumi-
nium (¹

.1
"933 K), titanium (¹

.1
"1958 K), nickel

(¹
.1

"1727 K), copper (¹
.1

"1356 K), and tungsten
(¹

.1
"3650 K). The corresponding properties are

listed in Table III. The operating conditions con-
sidered include liquid temperatures at the melting
point and 100 K above the melting point, initial vel-
ocities of 1, 10 and 100 m s~1 and initial disc diameters
of 0.1, 1, and 10 mm. The substrate is at room temper-
ature (300 K). The solidification constant, º, was cal-
culated for each metal and temperature.

For a given metal, the effect of a droplet size or

impact velocity increase is consistent with the resulting



TABLE III Metal properties used

¹
.1

¹
.1

#100 K

q r l q r l
(kg m~3) (N m~1) (kg m~1 s~1) (kg m~3) (N m~1) (kg m~1 s~1)

Al 2385 0.914 1.50]10~4 2357 0.879 1.50]10~4

Ti 4110 1.650 5.20]10~3 4040 1.624 5.20]10~3

Ni 7905 1.778 1.67]10~4 7789 1.740 1.67]10~4

Cu 8000 1.285 3.02]10~4 7920 1.272 3.02]10~4

W 17600 2.500 3.00]10~3 17450 2.471 3.00]10~3

TABLE IV Final disc diameter (mm) for selected metals: aluminium (¹
.1

"933 K), titanium (¹
.1

"1958 K), nickel (¹
.1

"1727 K),
copper (¹

.1
"1356 K), tungsten (¹

.1
"3650 K). The substrate is at 300 K.

Final disc diameter (mm)

D » Al Cu W Ni Ti
(mm) (m s~1)

¹
.1

0.1 1 0.1438 0.1639 0.1550 0.1665 0.1767
10 0.1748 0.1685 0.1820 0.1987 0.2145

100 0.2558 0.2626 0.2880 0.3133 0.3411
1 1 1.7166 1.7889 1.9280 2.0619 2.0618

10 2.5579 2.6234 2.8730 3.1075 3.3727
100 4.0979 4.3209 4.5130 4.9589 5.3911

10 1 25.412 25.992 28.005 30.648 31.467
10 40.585 42.968 45.006 49.302 53.910

100 63.836 65.520 71.258 79.365 85.390

¹
.1

#100 K 0.1 1 0.1481 0.1443 0.1460 0.1693 0.1772
10 0.1749 0.1849 0.1860 0.2087 0.2206

100 0.2719 0.2935 0.2900 0.3240 0.3499
1 1 1.8036 1.8624 1.9220 2.0683 2.0650

10 2.7079 2.9177 2.8950 3.2079 3.4805
100 4.3072 4.5498 10.278 5.2246 5.5335

10 1 26.127 28.013 29.25 32.444 31.996
10 42.668 45.062 45.745 52.214 55.291

100 67.286 72.172 70.525 82.240 87.571
increases of both Re and ¼e, and decrease of K:
a larger final splat is obtained (cf. Table IV). Increas-
ing the liquid temperature results in lower values of
º and thus of K which, in turn, yields slightly larger
final splats.

The results also show that titanium yields the
largest final splat size under most conditions (cf. Table
IV). Titanium has a much larger (kinematic) viscosity
than the other metals considered here (one to two
orders of magnitude), and its surface tension coeffic-
ient is average (cf. Table III). Therefore, one would
expect titanium to yield smaller splat sizes than the
other metals, at given operating conditions. However,
the thermal diffusivity of titanium is almost one order
of magnitude smaller than that of the other metals (cf.
Table III) which causes the corresponding value of the
solidification parameter, K, to be smaller for titanium
in all cases considered (the value of º does not vary
significantly for the metals and temperatures con-
sidered, the average value is about 1.6). These results
show the predominance of solidification on the value

of the final splat size.
5. Conclusion
The model proposed by Madejski [8] for the spread-
ing and solidification of a liquid metal droplet imping-
ing on a flat surface has been improved. Markworth
and Saunders’ velocity field was used, thus providing
a more accurate evaluation of the shear stress field
[13]. Viscous dissipation was derived from the mech-
anical energy equation rather than using Madejski’s
assumption.

The improved model predicts a smaller (+10%)
final splat size than the original model. The discrep-
ancy is more pronounced at larger Weber numbers,
where viscous effects dominate. A detailed parametric
study permitted the identification of two regimes of
spreading/solidification delimited by the Reynolds to
Weber ratio. For small values of Re/¼e (Re/¼e(8),
the process is controlled by dissipation; whereas for
large values of Re/¼e (Re/¼e'8) the process sur-
face tension dominates. In both cases solidification
takes over for large values (K'0.1) of the solidifi-
cation parameter. The final splat size is therefore de-

termined by the value of Re/¼e and that of K. For
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small Weber numbers (below 20), the variations of the
final splat size versus the solidification constant ex-
hibit a non-monotonic behaviour. This indicates that,
for a given material, the deposition process can be
optimized.
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