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Abstract

A heat transfer model for metal-droplet deposition and solidification is developed.
When a molten droplet arrives at the substrate, it undergoes deformation and solidifi-
cation. The rates of deformation and solidification are, in general, of the same order
of magnitude, so it is important to be able to predict the coupled behavior involving
fluid deformation, heat transfer, and solidification. Typical existing models have either
neglected the deformation by assuming that it takes place fast or have used prescribed
solutions of the solidification problem decoupled from the fluid dynamics. The present
work describes a model which includes a solution of the mechanical energy equation
containing kinetic and potential energy as well as viscous dissipation. In addition, the
transient, convective-diffusive energy equation including viscous dissipation is solved in
the deforming liquid phase by means of finite differences after appropriate coordinate
transformations. The solid-phase transient energy equation is also solved in a trans-
formed domain and the liquid and solid solutions are coupled to predict the actual
growth of the solidification front. Because the solid energy equation is solved in the
complete domain, which includes the substrate, it is possible to predict the behavior
when remelting of the substrate occurs. Parametric studies are presented for a variety
of relevant processing parameters.
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Nomenclature

o ratio of the liquid to solid-phase thermal diffusivity, a, = as/a;
ay ratio of the liquid to solid-phase thermal conductivity, a; = k¢/k;
b liquid disk height

c specific heat

ct transformation coefficient

d droplet diameter
2

FEe  Eckert number, Fec = c(TfiiTm)

Ey kinetic energy

E, potential energy

Es  dissipated energy

Pr Prandtl number, Pr = ozi

r radial coordinate (parallél to the substrate)
R splat radius

Re Reynolds number, Re = m:—d

s solid-front height

Spm  maximum remelting depth

t time

U, radial-velocity component (parallel to the substrate)

U, normal-velocity component (perpendicular to the substrate)
v volume

Vs solidified volume fraction

V... remelted volume fraction

w droplet impinging velocity

z spatial coordinate perpendicular to the substrate

Greek symbols



« thermal diffusivity

N transformed coordinate, n, = - arctan (5 — g)
s transformed coordinate, n, == . arctan[c:(Z — §)]
13 transformed coordinate, ¢ = %
o surface tension coefficient
p density
0} dissipation function
3 ratio of initial splat radius to droplet diameter
0 nondimensional temperature, § = (1" —T,,)/(T,,, — Tp)
T nondimensional time, 7 =
Subscripts
? initial

l liquid phase

0 substrate

m melting

P iteration index
s solid phase

Diacritical mark

~ nondimensional

1. Introduction

Thermal spray deposition is an efficient means of generating thin films for the purpose of
increasing surface corrosion resistance or developing a thermal barrier. In addition, metal
droplet deposition techniques have been applied in the manufacture of free-form, near net-

shape structures in the process of microcasting [1].



Various experimental and theoretical studies have been conducted to investigate the spray
deposition processes. An experimental study of the solidification of molten metal droplets
impinging on a cold surface was reported in the work of Inada and Yang [2] who described
the solidification behavior of molten lead droplets on a cold quatz or copper substrate. The
interfacial thermal resistance for molten metal solidification on a substrate was investigated
experimentally by Wang and Matthys [3] and Liu et al. [4]. El-Kaddah et al. [5] derived a
one-dimensional analytical solution to the plasma spray process based on the Stefan model
and obtained the two-dimensional profile of the spray solidification front numerically with
that solution. Madejski [6] proposed a splat deformation and solidification model for the
droplet deposition process in which the liquid phase of the splat assumes the shape of a
cylinder. Instead of solving the thermal energy equation, Madejski used the solution of
the Stefan solidification problem to predict the solid-front location. An improvement over
Madejski’s solution has been presented by Delplanque and Rangel [7] utilizing a more appro-
priate velocity profile suggested by Markworth and Saunders [8] and an accurate derivation
of the viscous energy dissipation. Numerical simulations utilizing the solution of the Stefan
solidification problem to study the droplet deposition processes can be found in the work of
Watanabe et al. [9], San Marchi et al. [10], Liu et al. [11], and Amon and Schmaltz [12]. A
disadvantage of applying the Stefan solution is due to the fact that it does not take into the
account the motion and the finite thickness of the liquid phase on the solid-liquid interface
evolution. Numerical studies of the solidification of a molten metal droplet impinging on a
solid substrate can also be found in the work of Waldvogel et al. [13] and Kang et al. [14] in
which the conductive thermal energy equations for the droplet and substrate were solved to
determine the thermal behavior of the droplet and substrate. In addition, reported investi-
gations of the droplet deposition process addressing the phenomena of substrate remelting
have not taken into the effect of liquid motion [12]-[15]. The effect of liquid motion on the

solidification behavior during deposition processes has been investigated by Rangel and Bian



[16] [17] through the study of the stagnation-flow solidification problem.

This work presents a droplet deformation and solidification model which includes a so-
lution of the mechanical energy equation (containing kinetic and potential energy as well as
viscous dissipation) based on the model of Madejski. In addition, the transient, convective-
diffusive energy equation including viscous dissipation is solved in the deforming liquid phase
by means of finite differences after appropriate coordinate transformations. The solid-phase
transient energy equation is also solved in a transformed domain, and the liquid and solid
solutions are coupled to predict the actual growth of the solidification front. In addition to
addressing the effect of liquid motion on the splat deformation and solidification process, the
model can be applied to study the mechanism of substrate remelting. Parametric studies are
presented for a variety of relevant processing parameters such as the initial droplet temper-
ature, the initial substrate temperature, the initial droplet diameter as well as the droplet

impinging velocity.

2. Physical and Mathematical Model

A liquid metal droplet with initial temperature T;, diameter d and velocity w impinges on a
flat substrate whose initial temperature is Ty. Based on Madejski’s original model [6], it is
assumed that at ¢ = 0, the incompressible liquid droplet assumes the shape of a cylindrical
disk of radius Ry and height by. The liquid splat then deforms by spreading radially with a
phase-change process (solidification or remelting) occurring at the splat-substrate interface.
The height of the liquid phase, while being a function of time, is assumed uniform in space. A
schematic plot of the model is shown in Fig. 1. Furthermore, properties are assumed constant
but different in each phase, except for the density which is assumed constant throughout.

The mechanical-energy equation governing the motion of the liquid disk is [7]

d dFg
(B + E) = -2 1
S(B+ B =22, 1)



where Fj, and FE, represent the kinetic energy and surface-tension potential energy, respec-

tively
R b1
E, = 27r/ / —p(u? +u)dz r dr (2)
0o Jo 2
E, = o(rR* + 27 Rb). (3)
while the rate of viscous dissipation is given by:

qu) / uddv, (4)

where

2 2 2
B ) ) e o

is the the viscous-dissipation function [18].
Within the liquid region, a velocity field which satisfies the continuity equation was
proposed by Madejski [6]. Later, Markworth and Saunders [8] proposed a better velocity

profile which, in addition to satisfying the equation of continuity, also satisfies the shear-free

condition on the free surface of the liquid

3

u, = Dr(2zb — 2%), wu. = ZD(% — b2%). (6)

where D is a function of time to be determined by assuming that the rate of increase of the

splat radius is equal to the average radial liquid velocity at the edge of the splat
/ (R, / DR(2:b — 2%)d= = 2DRY (7)
dt =5y bl =g TS

from which the function D is related to the spreading rate. Employing the velocity profile

(6), the kinetic energy Fj can be expressed as:

E — _bS 4 _b7 2 D2
= (Eh g )T (8)

while rate of viscous dissipation becomes

Ay _murt (AR (3 120 o)
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Incorporating Eqs. (3), (8), and (9) into the mechanical energy equation (1) and employing
dimensionless variables such that time, length and velocity are nondimensionalized with d/w,
d and w, respectively, yields:

[t

R? (dR\* (3 72 ¥
~— | —/= - — =~ _ :0 10
+bRe(dt) (2+5R2) (10)

The height of the liquid disk is determined from the mass conservation relation,

di |10\ di We

R
%d?’p = Fszp—I-/ 2rrspdr (11)
0
or, in dimensionless form
s 11 R
b= — —T/ 2rsdr (12)
612 RJo

At t = 0, the mass of the splat as well as its kinetic and potential energies are assumed equal

to the corresponding values for the droplet:

T
gd?’p = 7 Rbop (13)

1 7d® 2 22
Ey(0) = 597102 = [BbgRé + ﬁbgR(ZJ]WDSP (14)
E,(0) = 7d*0 = (TR + 21 Robo) o (15)

If the initial radius of the disk is expressed as a fraction of the droplet diameter, Ry = ed,

the initial conditions for this set of integral-differential equations are:

1
= —_— 16
=0 (% + 4210156 ) ( )

Equations (13) and (15) yield e = 0.74 whereas Madejski assumed ¢ = 0.5, apparently not

N -1 dR
R = b = — —=

recognizing that the exact solution ¢ = 0.74 exists [7].
The non-dimensional form of the liquid-phase thermal-energy equation, including all

previously noted assumptions and neglecting conduction in the radial direction, is

6(% . 6(% 6(% . 1 82(% Fe -
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in the domain 0 <7 < R, §< 2 <5+b, {> 0, and with boundary conditions §, = 0 at
00 N 00 .
s=3 L =0ati=0andi=R,and — =0at %=23+b
ar 0z
The neglect of radial conduction is justified on the basis that the initial temperature field
consists of isotherms which are parallel to the radial direction and the fact that the deforma-
tion results mostly in the formation of a nearly horizontal splat. Convection and radiation

from the liquid surface are also neglected. Under similar assumptions, the dimensionless

solid-phase thermal-energy equation is

00, 1 020,
ot a,RePr 032 (18)

with the corresponding solution domain: —co < 2 < &, £ > 0, and with boundary conditions:

00 . .
f, — —lasz— —oo,0,=0at 2=5and — =0 at ¥ =0 and ¥ = R.
T
The energy balance equation at the interface 7 = 3(7,7) yields an expression for the

variation of the dimensionless interface location with time

NOy[r]

The above system of equations can be solved numerically to obtain the shape of the solid

03 St

i RePr

and liquid domains, the motion of the solid-liquid interface, and the temperature distribu-

tions in the solid and liquid phases.

3. Numerical Method

The solution domains for this problem involve moving boundaries and the location of such
boundaries must be determined as part of the solution. It is advantageous to transform the
domains so that the problem is converted to a fixed-boundary problem. By introducing the
independent variables 7, ¢ and 7, defined in the nomenclature, the liquid-phase domain
becomes 0 < ¢ <1, 0 < 5y < 0.5. Furthermore, by introducing the independent variables
7, & and 7, the semi-infinite moving-boundary solid domain is mapped onto the finite region

0<¢E<1, =1 <5y £0. The moving interface location is transformed to a fixed location



ne = ns = 0. The metrics of the transformations as well as the transformed equations are
given in the Appendix.

Equations (A.9), (A.10) are solved by the ADI method [19] to obtain the time evolution
of the liquid- and solid-phase temperature fields with the liquid-phase velocity distribution
provided by equation (6). The time evolution of the solid-front location is obtained from
equation (A.11) by the modified Euler method. The time rate of change of the splat radius as
well as the time rate of change of the liquid disk thickness are obtained by coupling the above-
mentioned equations with equations (10) and (12). The radial coordinate transformation
(r — ¢) introduces a advective term in the energy balance equation [first term on the RHS
of equation (A.11)]. For numerical stability this term is written using an upwind scheme.
Other derivatives appearing in the energy equations are expressed with central difference
formulas. The numerical solution of equation (10) is described by Delplanque and Rangel
[7] while equation (12) is evaluated using the trapezoidal rule.

In all the calculations, 21 grid points are used in the ¢ (radial) direction, while 31 grid
points are used in the 1, direction (liquid) and 21 grid points are used in the 5, direction
(solid). The coefficient ¢; which clusters grid points near the solid-liquid interface is set to 20.
The time step A7 is 0.001 for the computation with the large (1mm) droplets and 0.0001 for
the computation with the small (0.1mm) droplets. Tests with larger numbers of grid points

yield essentially the same results.

4. Results and Discussion

4.1 Base-Case Calculation

As a base-case calculation, the model is applied to investigate the deformation and solidi-
fication behavior of a liquid aluminum droplet impinging on a substrate of aluminum with
an initially lower temperature. The base-case calculation corresponds to case 1 in Table 1

where the relevant parameters are listed.



The time evolution of the splat is displayed in Fig. 2 which illustrates the solidification
behavior including the disk size, the liquid thickness, the solid-front location along the radial
direction, as well as the relative ratio of the solid and liquid volume. Note that the scales
are different on the left and right frames of this figure and that for all frames, the vertical
scale exaggerates the actual thickness. During the final stages of solidification, the liquid
portion becomes very thin in the vertical direction and the expansion of the disk radius
diminishes correspondingly. The temperature distribution at selected times is shown in Fig.
3. The effect of heat penetration into the substrate is evident by the temperature gradient
in the solid phase. The numerical domain actually extends to —oo into the substrate. At
this low superheat (100K above the melting point, melting temperature of 933K), the liquid
quickly achieves a nearly uniform temperature while the upper part of the substrate is
heated significantly to several hundred degrees over the initial substrate temperature of
300K. It should be noticed that the isothermal lines in both the liquid and solid phase are
approximately horizontal (the vertical scale is exaggerated), which validates the neglect of
radial conduction. The velocity field at selected times is provided in Fig. 4. It can be
observed that as time increases and the thickness of the liquid phase decreases, the velocity
gradient % increases significantly, thus increasing the rate of dissipation of mechanical
energy. As will be shown later, viscous dissipation plays an important role in consuming
mechanical energy. However, at this impinging velocity, viscous dissipation plays a negligible

role in the thermal field.

4.2 Effect of Impinging Velocity and Droplet Size

The time evolution of a splat with a lower impinging velocity (case 2) is shown in Fig. 5.
The effect of the droplet impinging velocity on the deformation and solidification behavior
is studied by comparing the time evolution of the splat radius (a), the splat expansion
rate (b), the liquid thickness (c) and the solid-fraction (d) for cases 1 and 2 as shown

in Fig. 6. The predictions of Madejski’s model for these two cases are also included in
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Fig. 6 for comparison. As expected, the higher impinging velocity yields a larger solid
splat. Moreover, the solidification process is completed after a longer time for the low
velocity case. Madejski’s model underpredicts the solidification time and the thickness of
the liquid. It also overpredicts the solid fraction and generally overpredicts the expansion
rate, except at the lower impinging velocity (1 m/s). The reason for this can be understood
with the aid of Fig. 7, which shows the time evolution of the solid front along the axis of
the splat. Madejski’s model imposes a solidification rate given by the Neumann solution of
the stagnant Stefan solidification problem. Such a solution neglects the effect of the liquid
motion towards the substrate and this motion, which is similar to a stagnation flow, tends to
reduce the solidification rate [16] [17]. The Schwarz solution as given in [20] is better than the
Neumann solution because it accounts for the heat transfer into the substrate. Nevertheless,
it still overpredicts the solidification rate. The Neumann and Schwarz solutions also assume
a semi-infinite liquid which by itself would underpredict the solidification rate. However, the
velocity effect dominates the results. It is interesting to note, however, that the solidification
rates for cases 1 and 2 are almost identical along the splat axis. On one hand, a higher
impinging velocity has the effect of reducing the solidification rate. On the other hand,
a higher impinging velocity results in a thinner liquid which tends to solidify faster. The
two effects combine to yield an almost independent solidification rate although the velocity
effect dominates over the finite-liquid effect when comparing with the Neumann and Schwarz
solutions.

The time variation of the kinetic and potential energies as well as the time accumulation
of the dissipated energy for cases 1 and 2 are shown in Figs. 8(a) and 8(b), respectively.
As expected, kinetic energy decreases as potential energy increases with the increasing free-
surface area. Viscous dissipation is an important factor in case 1(higher velocity) but it is
negligible in case 2 (low velocity). In this second case, all kinetic energy is transformed into

potential energy of the free surface. At even higher velocities (not shown), most of the kinetic
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energy would be dissipated by friction. While viscous dissipation is an important factor in
consuming kinetic energy in case 1 (higher velocity), the thermal effect of this dissipated
energy is negligible in view of the low value of the Ec/Re ratio (see Table 1). Velocities in
excess of 100 m/s would be required for this ratio to be larger than 0.1 and for heating due
to viscous dissipation to become important.

The effect of droplet size is illustrated in Figs. 9-11 which present results for droplets
with an initial diameter of 100 gm (cases 3 and 4). The results shown in Figs. 9-11 should be
compared with those of Figs. 6-8, respectively. The results are qualitatively similar. Figure
9 shows that a factor of 10 reduction in the droplet diameter yields a factor of 20 reduction
in the solidification time for the higher (10 m/s) impinging velocity and a factor of about
70 reduction in the solidification time for the low (1 m/s) impinging velocity. Figure 10
shows the same trends referred to in reference to Fig. 6. The effect of varying the droplet
impinging velocity is less significant for smaller droplets.

Figure 11 shows the time variation of the kinetic, potential and dissipated energies for
cases 3 and 4. Similarly to cases 1 and 2, the only difference between cases 3 and 4 is
the impinging velocity. Thus the initial surface-tension potential energy is the same for
cases 3 and 4 while the initial kinetic energy for case 3 is 100 times larger than for case 4.
Again, viscous dissipation is negligible for the lower velocity (case 4), but this case shows an
interesting trend almost imperceptiblein case 2. During the initial stages of solidification, the
kinetic energy of the liquid actually increases briefly while the potential energy decreases.
A reduction in potential energy implies a reduction of the free surface. The free surface
initially decreases despite the fact that the liquid is spreading because solidification reduces
the amount of free surface and this effect initially dominates, particularly for smaller droplets

and lower velocities.
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4.3 Deposition with Substrate Remelting

Remelting of the substrate may play an important role in enhancing the bonding character-
istics of the deposit. The onset of remelting upon droplet landing may actually be predicted
using the Schwarz solution [20]. This is due to the fact that the onset of remelting is a local
phenomenon at the initial liquid/substrate interface and it is affected by local conditions
(temperature gradients). Over such a small length scale, the liquid and the substrate behave
as semi-infinite media for very small times. The motion of the interface beyond the onset
of remelting or solidification requires the solution of the thermal energy equations for the
actual geometry [equations (17)-(19)]. The criterion for remelting to occur when the liquid

initial temperature is T; and the substrate initial temperature is T is [20]:

Ti—Tm A/ Qa
_ 0 20
T — T an (20)

For an aluminum liquid droplet with an initial temperature of 1033K ( 100K over its melting
temperature), the initial substrate temperature must be above 880K for remelting to occur
upon droplet impingement.

To illustrate the various features of deposition with remelting, we consider cases 5-10
listed in Table 1. These cases show the effect of velocity and initial liquid and substrate
temperature on the remelting behavior. The time evolution of the splat shape is provided
in Fig. 12 for case 5. It can be observed that substrate remelting occurs during the early
stages of the process. Because remelting occurs near the central portion of the splat (under
the area covered by the initial disk) and not under the subsequent spreading, a depression of
the solid front develops near the center. The temperature distributions at selected times for
case b are provided in Fig. 13. It can be seen that the temperature profile is nearly parallel
to the substrate, and the region of the substrate close to the splat is significantly heated.
Because the substrate temperature is close to the metal melting point, the middle and later
stages of solidification occur at nearly isothermal conditions in this case.

The effect of impinging velocity on the remelting is shown in Fig. 14 (cases 5 and 6). At
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the lower velocity, a condition is reached in which the spreading rate (Fig. 14b) equals zero.
At this time, the liquid thickness (Fig. 14c) reaches a local minimum. This corresponds
to a condition of minimum surface area and implies that the liquid would recoil (negative
expansion rate) beyond this time. Remelting may still proceed under the contracting splat
but the present model cannot account for this behavior. Fig. 14d shows the time evolution
of the solidified and remelted volume fractions for these cases. The solidified volume fraction
V, is the ratio of the solidified volume above the initial surface of the substrate to the initial
droplet volume. Likewise, the remelted volume fraction V,,, is the ratio of the remelted
volume under the initial surface of the substrate to the initial droplet volume. For case 5,
the maximum remelted fraction is slightly larger than 2%. The overlapping of the V; and
V.m curves for case 5 indicates that the solid front is still under the initial substrate surface
near the center of the splat while it is above the initial substrate surface near the outer edge
of the splat. Comparing Figs. 6 and 14 (cases 1 and 5), it can be seen that remelting of the
substrate by an initially hotter liquid droplet considerably increases the total solidification
time, in this case by a factor of almost ten.

Figure 15 shows the effect of the initial liquid and substrate temperatures on the behavior
of the solid front along the axis of the splat (cases 7-10 in Table 1). This Figure shows that
the time to reach the maximum remelting depth is fairly insensitive to the initial liquid
temperature over a liquid temperature range of about 100-200K. Sensitivity of this time
to the initial substrate temperature is also small. The maximum remelting depth is more
sensitive to the initial liquid temperature and in fact increases by a factor of 3 when the
initial liquid temperature is increased by 100K for the case of a substrate at 883K. The
maximum remelting depth for both low (300K) and high (883K) substrate temperature is a
linear function of initial liquid temperature as illustrated in Fig. 16. The magnitude of the
shape of this linear relations increases with increasing substrate temperature or increasing

droplet size.
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5. Conclusions

A metal-droplet deformation and solidification model which includes the solution of the
thermal-energy equations in both the liquid and solid phases has been developed to study the
process of liquid metal droplet impinging on a flat substrate. Sample computations have been
performed for liquid aluminum droplets with different initial sizes and velocities impinging
on a colder substrate of the same material. Furthermore, the phenomenon of substrate
remelting is investigated. The time evolution of the process variables such as disk radius
expansion, the rate of expansion, the liquid phase thickness, as well as the solid-fraction
location are obtained. The time evolution of the splat mechanical energy is also investigated.
Increasing the impinging velocity will accelerate the deformation and solidification process
and increase the final disk radius while the final maximum solid-thickness, as measured
by the thickness along the axis of the splat, will be reduced. Increasing the droplet size
increases the solidification time and the ratio of the final disk radius to the initial droplet
diameter, while the ratio of the final centerline solid-thickness to the initial droplet diameter
is decreased. In the case of droplet deposition on a sufficiently hot substrate, remelting will
take place during the initial stages of the process, and the remelting depth for lower velocities
is larger when compared to that for the higher velocity cases. When remelting occurs, the
solidification time is increased significantly. In addition, for higher velocities (10 m/s), the
final splat radius is larger but the final centerline solid-thickness is less for the remelting case
as compared to the corresponding cold-substrate case. For lower velocities (1 m/s), liquid

recoiling may occur.
Appendix
The metrics of transformation for the liquid phase are:
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The metrics of transformation for the solid phase are:
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The transformed liquid-phase energy equation is
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The transformed solid-phase energy equation is
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The interface energy-balance equation is transformed into
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‘ case H d (mm) ‘ w (m/s) ‘ To(K) ‘ T:(K) ‘ 0; ‘ Qo ‘ ay, St ‘ Re ‘ We ‘ Ec Pr
1 1.0 10.0 300 | 1033 10.16 | 0.43 | 0.40 | 1.67 | 21215 | 265.88 | 0.92E-3 | 0.13E-1
2 1.0 1.0 300 | 1033 | 0.16 | 0.43 | 0.40 | 1.67 | 2121 2.66 | 0.92E-5 | 0.13E-1
3 0.1 10.0 300 | 1033 10.16 | 0.43|0.40 | 1.67 | 2121 26.59 | 0.92E-3 | 0.13E-1
4 0.1 1.0 300 | 1033 | 0.16 | 0.43 | 0.40 | 1.67 212 0.26 | 0.92E-5 | 0.13E-1
) 1.0 10.0 883 | 1033 | 2.0 10.52 | 0.43 | 0.15 | 21215 | 265.88 | 0.92E-3 | 0.13E-1
6 1.0 1.0 883 | 1033 20105210431 0.15 2121 2.66 | 0.92E-5 | 0.13E-1
7 1.0 10.0 300 | 1950 | 1.61 | 0.49 | 0.46 | 1.67 | 40105 | 322.10 | 0.91E-4 | 0.61E-2
8 1.0 10.0 300 | 2000 [ 1.68 | 0.50 | 0.46 | 1.67 | 41045 | 325.88 | 0.86FE-4 | 0.61E-2
9 1.0 10.0 883 | 1050 | 2.34 | 0.52 | 0.43 | 0.15 | 21583 | 266.74 | 0.79E-3 | 0.13E-1
10 1.0 10.0 883 | 1150 | 4.34 | 0.53 | 0.44 | 0.15 | 23745 | 271.91 | 0.42E-3 | 0.12E-1

Table 1. Parametric Data
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Figure Captions

Fig. 1. Schematic of the problem and coordinate system.

Fig. 2. Time evolution of the splat shape for case 1 (dark = solid, gray = liquid) (d=Imm,
w=10m/s).

Fig. 3. Temperature field in the liquid and upper substrate at selected times (case 1).

Fig. 4. Liquid velocity field at selected times (case 1).

Fig. 5. Time evolution of the splat shape for case 2 (dark = solid, gray = liquid) (d=Imm,
w=1m/s).

Fig. 6. Time evolution of (a) splat radius, (b) radius expansion rate, (¢) liquid thickness,
and (d) solid fraction for cases 1 and 2.

Fig. 7. Time evolution of the solid-front location along the splat axis for cases 1 (w=10m/s)
and 2 (w=1m/s).

Fig. 8. Time evolution of the liquid-phase mechanical energy: (a) case 1 (w=10m/s), (b)
case 2 (w=1Im/s).

Fig.9. Time evolution of (a) splat radius, (b) radius expansion rate, (c) liquid thickness, and
(d) solid fraction for cases 3 (w=10m/s) and 4 (w=1m/s).

Fig. 10. Time evolution of the solid-front location along the splat axis for cases 3 (w=10m/s)
and 4 (w=1m/s).

Fig. 11. Time evolution of the liquid-phase mechanical energy: (a) case 3 (w=10m/s), (b)
case 4 (w=Im/s).

Fig. 12. Time evolution of the splat shape for case 5 (dark = solid, gray = liquid) (d=Imm,
w=10m/s).

Fig. 13. Temperature field in the liquid and upper substrate at selected times (case 5).

Fig. 14. Time evolution of (a) splat radius, (b) radius expansion rate, (c) liquid thickness,
and (d) solid fraction for cases 5 (w=10m/s) and 6 (w=1m/s).

Fig. 15. Time-evolution of solid-front location (remelting front) along the splat axis: (a)
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cases 7 and 8, (b) cases 9 and 10.
Fig. 16. Variation of maximum remelting depth with initial droplet temperature: (a) depo-

sition on cold substrate (300K), (b) deposition on hot substrate (883K).
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