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Abstract

The stagnation-flow Stefan solidification problem is defined and investigated. By

applying the method of instantaneous similarity, the temperature field, the solid-liquid

interface location and its growth rate valid for the initial stages of solidification are

obtained. Furthermore, with the use of the quasi-steady approximation, a solution of

the problem valid for the final stages of solidification is obtained. The analysis reveals

a fundamental difference between the stagnation-flow solidification behavior and that

in the classical Stefan solidification problem. Both methods of solution are used to

show that the solidification front grows asymptotically to a finite maximum value as

time goes to infinity. For large values of time, both methods yield the same temperature

distribution and the same value of the solid phase thickness which are independent of

the Stefan number.
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Nomenclature

potential flow strain

ratio of the liquid to solid phase thermal diffusivity

ratio of the liquid to solid phase thermal conductivity

specific heat

latent heat of solidification

thermal conductivity

heat flux

solid phase thickness

Stefan number

temperature

time

velocity component of liquid phase in x direction

velocity component of liquid phase in y direction

spatial coordinate normal to the substrate

spatial coordinate parallel to the substrate

Greek symbols

thermal diffusivity

transformed coordinate

nondimensional temperature

density

solidification parameter

nondimensional time

Subscripts

initial

liquid phase

substrate

melting

solid phase

Superscript

nondimensional
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1. Introduction

Transient heat transfer problems involving melting or solidification are important in many

engineering applications such as processes of casting, welding and spray forming. The

last application offers the unique opportunity to combine the benefits associated with

fine-particulate technique with in situ processing. Mathematically, the problem of solid-

liquid phase change belongs to the class of moving boundary problems because of the

existence of a moving interface. In many situations involving phase change problems,

multidimensional variations are important, boundary conditions are complex, thermo-

physical properties vary with temperature and phase, and several mechanisms of heat

transfer may take place. Thus, analytical solutions have been obtained only in a limited

number of cases and investigations on phase change problems are usually conducted by

numerical methods.

Examples of analytical or semi-analytical solutions to phase change problems are

those of Cho and Sunderland [1] and Madejski [2]. An extensive review of analytical and

numerical techniques can be found in Alexiades and Solomon [3] and Salcudean and

Abdullah [4], and a review of the methods used in droplet solidification was presented

by Bennett and Poulikakos [5]. The most classical exact solution is probably the so

called Neumann solution of the Stefan problem [6]-[8] which predicts the temperature

distribution and rate of solidification ( or melting ) of a semi-infinite medium. A significant

number of numerical techniques has been developed to solve solid-liquid phase change

problems [9]-[17]. The numerical methods used can be conveniently divided into two

groups. In the first group, known as the enthalpy method, enthalpy and temperature are

used as dependent variables in the energy equation. The resulting equation is applicable

in both the solid and liquid regions as well as the solid-liquid interface. The location of the

phase change interface is determined from the calculated enthalpy rather than from the

solid-liquid interface energy equation [9]-[11]. In the second group, the temperature and

the solid-liquid interface location are the dependent variables and the energy conservation

equations are written separately for the solid and the liquid regions. The major difficulty

with this technique arises from the need to track a continuously moving phase change

interface. The rate of propagation of this boundary into the liquid region (solidification)

or into the solid (melting) region depends on the thermal properties of the solid and liquid

regions, and in addition, in the cases where there exists motion in the liquid phase, such

as metal droplet solidification in spray processes, it also depends on the fluid properties of
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the liquid region. Various procedures have been developed to deal with this problem [12],

[13], but most of them have addressed the cases in which there is no liquid motion, or they

simply have taken into account heat conduction as the sole heat transfer mechanism [14],

[5]. Inspection of those investigations which have included fluid motion, such as droplet

deformation and solidification during impingement on a cold substrate, indicates that

despite the significant results derived from their models, the studies mainly rely on the

classical Neumann solution of the Stefan solidification model to determine the solid-liquid

interface position [2], [15]-[18]. There are several shortcomings in employing the Stefan

solidification model in these cases. The most important of these is that the Stefan model

corresponds to a stagnant liquid phase. An appropriate heat transfer and solidification

model must account for convective effects due to fluid motion and in some cases for

viscous dissipation effects. In order to relax some of those limitations, the present study

reports an investigation of the effect of fluid motion in the solidification problem in a

half space. The solution should provide a more reasonable model for the solidification

behavior of the liquid in motion, and provide better insight into situations such as those

encountered during the deformation and solidification of a droplet impinging on a cold

substrate.

We investigate the effect of the liquid motion on its solidification behavior by consid-

ering the inviscid two-dimensional stagnation flow onto a cold substrate. We assume

that the physical properties are independent of temperature. By coupling the conductive-

convective liquid energy equation with the heat conduction equation in the solid region as

well as the energy balance equation at the interface, we set up the mathematical model

of the half space convective Stefan problem. An instantaneous similarity method and a

quasi-steady approximation are employed to solve the time depending system of equa-

tions. A parametric study is included in the discussion of the solidification behavior.

Temperature distributions are obtained, and the behavior of the solid-liquid interface

location is investigated. A numerical solution of the problem is given elsewhere [19].

2. Mathematical Formulation

2.1 The Classical Stefan Problem

The physical description of the classical Stefan solidification problem is given as follows: A

liquid at an initially uniform temperature which is higher than the melting temperature
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of the substance is confined to a half space . At , the boundary surface

at is lowered to a temperature below and maintained at that temperature

for times . As a result, solidification starts at the surface and the solid-liquid

interface moves in the positive direction. Fig.1 illustrates the problem and shows typical

temperature profiles.

The heat conduction equation for the solid phase is :

in (1)

with the boundary condition: at .

The heat conduction equation for the liquid phase is :

in (2)

with as , ,

and for and .

The coupling conditions at the interface are:

(3)

(4)

The Neumann solution of this problem is [6]-[8]

erf
erf

(5)

erfc
erfc

(6)

where . The interface is located at

(7)

where is a parameter independent of time and determined from the following relation

obtained from equation (4):

erf erfc
(8)
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where , and

(9)

is the Stefan number.

2.2 The Stagnation-Flow Solidification Problem

We now consider the case of a stagnation flow in a half space (Fig.2). In general, the solu-

tion for the flow field is coupled with the thermal-field solution. If the physical properties

are assumed independent of temperature, the fluid mechanics and thermal solutions are

still coupled because of the rising solid front. In general, the unsteady, viscous Navier-

Stokes equation must be solved. If the flow is assumed inviscid, only Laplace’s equation

for the velocity potential needs to be solved. In this case, the unsteady fluid mechanics

solution is indeed a quasi-steady solution given by

(10)

(11)

We note here that the inviscid assumption is most appropriate for fluids with very small

Prandtl numbers, such as liquid metals. Neglecting viscous dissipation (inviscid flow),

the energy equation of the liquid phase can be written as

(12)

A straightforward scaling analysis shows that the tangential and perpendicular velocity

components are of the same order of magnitude. Moreover, the tangential temperature

gradient is much smaller than the normal temperature gradient. Recognizing this, the

liquid phase energy equation is simplified to

(13)

On the other hand, the solid phase energy equation equation (1), interface energy balance

equation equation (4), initial and boundary conditions remain unchanged.
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3. Quasi-Steady Solution

In the classical Stefan problem, the solid front moves with a velocity proportional to the

square root of time. As time approaches infinity, the velocity of the solidification front

approaches zero. The same behavior is expected in the convective solidification problem.

Therefore, a quasi-steady solution is expected for large values of times. In employing the

quasi-steady approximation, we neglect the time derivative in the governing equations (1)

and (13). The boundary and initial conditions remain unchanged.

The solid phase equation becomes

(14)

with the solution

(15)

The liquid phase equation is

(16)

with the solution

(17)

The energy balance [ equation (4)] can be written as

(18)

Employing the error function, equation (18) can be simplified to:

(19)

which can be rewritten in dimensionless form as

(20)
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after introducing the dimensionless variables:

(21)

(22)

The asymptotic value of can now be obtained by using the fact that as .

Then equation (20) gives

(23)

that is

(24)

Integrating equation (20) and employing this last result yields:

(25)

Equation (24) demonstrates that there exits an upper limit of the solid phase thickness

as time goes to infinity. This finding represents a significant difference between the

stagnation flow and the classical solidification problems. Note also that the maximum

solid thickness is independent of the Stefan number. Further discussion of this behavior

is provided in the results section.

4. Solution by the Method of Instantaneous-Similarity

A classical method for solving thermal boundary-layer problems is the method of local-

similarity. An especially attractive feature of the local-similarity method is that the solu-

tion at a particular stream-wise location can be found without having to perform calcula-

tions at upstream locations, that is, each solution is locally autonomous. Furthermore,

the governing partial-differential equations may be transformed into ordinary differential

equations with more straightforward solutions.

Here, the concept of local-similarity is applied to the time variation of the liquid phase

temperature. Strictly speaking, it should be referred to as an instantaneous-similarity

method to differentiate it from the local-similarity which refers to a similarity in space.

Mathematically, however, the solution proceeds in an analogous manner.

Firstly, the new variables ( ) are introduced and the coordinates ( ) are transformed
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to ( ), where

(26)

(27)

At the same time, the temperature is changed to the dimensionless form

(28)

The governing equations are transformed to

Solid phase [ equation (1)],

(29)

with at , and at .

Liquid phase [ equation (13)],

(30)

with at and at or .

The energy balance at the interface location [ equation (4)] becomes

at (31)

In accordance with the instantaneous similarity assumptions, we neglect terms involving

derivatives with respect to and integrate the remaining ordinary differential equations.

The results are expected to be valid for small values of , but as will be shown below, they

are also valid for large values of . The solid phase temperature distribution is

erf
erf

(32)

while the liquid phase temperature distribution is

(33)
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The interface energy balance equation becomes

erf
(34)

from which can be determined. By employing the error function, equation (34)can be

rewritten as

erf
erfc

(35)

Equation (35) shows that is a function of time, in contrast with the of the classical

Stefan problem which is independent of time. It should also be noted that equation

(35) reduces to the corresponding one for the stagnant case [equation (8)] for .

Equation (35) is evaluated numerically to determine the time variation of the solidification

front .

The existence of an asymptotic upper limit for can also be shown from the instantaneous-

similarity results. We first obtain the limit of as from equation (35)

as (36)

which yields:

as (37)

corresponding to the same result, equation (24), obtained in the quasi-steady analysis.

This is an indication of the validity of the instantaneous similarity method for large val-

ues of time. This fact becomes evident when one observes that all terms involving time

derivatives in the governing equation in the ( ) space are of the form which is small

for the initial times ( ). For large times, the term can be neglected after dividing

the governing equations by and taking the limit for ( ). This last procedure

is in fact equivalent to a quasi-steady approximation.

5. Results

Figure 3 shows the variation of with for different values of for the cases of (a) =1,

=1, =1; (b) =1, =0.5, =0.5; (c) =0.1, =1, =1; (d) =10, =1, =1. It can be seen

10



that for the same , decreases as increases, while for the same , increases with

increasing . Figure 4 shows the variation of with at an early time for the above

four cases of . It can be seen that during the initial stages of solidification ( )

and for very small Stefan number, the values of are very similar for all cases. On the

other hand, for large Stefan number, there are significant differences in for the different

cases, with smaller values of , and corresponding to larger values of as expected. It

can also been seen that as increases to , remains almost independent of the Stefan

number.

Figure 5a shows the variation of with for different values of for the case of =1,

=1 =1. It should be noted that approaches as approaches infinity. For small

values of , that is, during the initial stages of solidification, decreases faster for larger

values of the number, and larger values of the Stefan number correspond to higher .

In Fig.5b, a comparison is made of the variation of with for the four cases of (a) =1,

=1, =1; (b) =1, =0.5, =0.5; (c) =0.1, =1 =1; (d) =10, =1 =1 for a Stefan number

of 1. It can be seen that for the same value of the Stefan number, smaller values of ,

and correspond to higher value of .

An estimate of the accuracy of the instantaneous similarity method is obtained by

calculating the magnitude of the term for the solid phase. From the solution of the

solid phase temperature, equation (32),we obtain

erf

erf
(38)

The maximum value of is at , where

erf
(39)

Figure 6a shows the variation of with for different values of for the case of

=1, =1, =1. It can be seen that during the initial stages of solidification, the value of

is small enough to ensure the accuracy of the local similarity solution. In Fig.6b, a

comparison is made of the variation of with for fixed Stefan number for the four cases

(a) (b) (c) (d) . It

can be seen that for all cases, the value of is small in the initial stages of solidification,

particularly for smaller , and .
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Figure 7a shows the variation of the dimensionless thickness with for different val-

ues of the Stefan number for the case of =1, =1, =1 calculated from the instantaneous

similarity results. It can be seen that increases with , and that there exists an upper

limit of as approaches infinity, equation (37). It can also be observed that this limit

value is independent of the Stefan number and that increases faster for larger . Figure

7b shows a comparison of the variation of with for four cases (a) =1, =1, =1; (b)

=0.1, =1, =1; (c) =1, =0.5, =0.5; (d) =10, =1, =1 for the same Stefan number.

The dimensionless thickness increases faster for smaller , and .

Figure 8a shows the temperature distribution along the nondimensional coordinate,

during the initial and final stages of solidification obtained with the

instantaneous similarity method. It can be seen that at very large time, the temperature

distribution becomes independent of Stefan number. Fig.8b shows the temperature dis-

tribution during the initial stages of solidification ( ) and at very large time ( )

for the cases of (a) =1, =1, =1; (b) =0.5, =1, =1 and (c) =1, =0.5, =0.5. During

the initial stages of solidification and at the same position in the liquid phase, the liquid

temperature is lower for higher and as expected. For large time, however, at the same

position in the liquid phase or solid phase, the temperature or is lower for the cases

with lower , or . Thus, it can be concluded that variations in Stefan number bring

about changes in the temperature distribution and interface location in the initial stage

of solidification, while changes in the parameters , and affect both the initial stage

and the long time behavior of the solution.

The two solutions obtained from equations (34) and (25), corresponding to the instanta-

neous similarity solution and the quasi-steady approximation, respectively, are compared

in Fig.9. In Fig.9a, the variation of the solid phase thickness with time is plotted for

different Stefan numbers for the case of =1, =1, =1. The interface location obtained

from the quasi-steady solution approaches the upper limit much faster than that obtained

from the method of instantaneous similarity. It should be noted that the difference be-

tween the solutions is diminished as the Stefan number is made smaller. A comparison of

the two solutions for the cases of (a) =0.1, =1, =1; (b) =1, =0.5, =0.5; (c) =1, =1,

=1 and (d) =10, =1, =1 is made in Fig.9b. It can be seen that both methods predict

the same upper limit as time approaches infinity.

Figure 10a shows the quasi-steady temperature distributions in the initial and final

stages of solidification for various Stefan numbers for the case =1, =1 and =1. The

qualitative behavior of the solutions is similar to that of the instantaneous similarity
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solutions, although there are quantitative differences. Figure 10b shows the quasi-steady

the temperature distributions for the cases of (a) =1, =1, =1; (b) =0.5, =1, =1 and

(c) =1, =0.5, =0.5 with a Stefan number of 1.

A comparison of the temperature distributions obtained with the instantaneous simi-

larity solution and with the quasi-steady approximation in the initial stage of solidification

and at very large solidification times is shown in Fig.11. During the initial stages of solid-

ification, the solid phase thickness growth rate obtained with the quasi-steady solution

is higher than that computed with the instantaneous similarity solution. Because it ne-

glects the transient cooling of both the liquid and solid phases, the quasi-steady solution

predicts a faster solidification rate. On the other hand, during the final stages of solidi-

fication, both solutions approach one another. In fact, a scaling analysis shows that as

, the governing equations (29) and (30) used to derive the instantaneous similarity

solution of the solid and liquid phase temperature distributions have the same form as

equation (14) and equation (16) respectively. Considering this fact and that both methods

predict the same upper limit of interface location, it can be concluded that the instanta-

neous similarity solution is valid for both the initial and final stages of solidification. On

the other hand, the quasi-steady approximation is simpler but only valid for the long time

behavior of the problem. The intermediate time behavior could only be obtained with a

numerical solution.

The existence of a finite asymptotic limit for the solidification front in the stagnation-

flow problem may be understood with the aid of Fig.12 by realizing that the thermal field

in the liquid phase reaches a truly quasi steady solution after a finite time. This implies

that the heat flux at the interface on the liquid side decreases not to zero but to a finite

value in the limit of . This is not the case in the classical Stefan solidification

problem where the heat flux at the interface on the liquid side continues to decrease as

as . Moreover, the behavior of the heat flux at the interface on the solid side is

similar for both the classical and the stagnation flow problems. In the long-time behavior,

this heat flux is dictated by the conduction heat transfer through the solid:

(40)

In the classical problem, the solid thickness increases as and thus the solid heat flux

decreases as , the same rate of decrease of the liquid heat flux. Since energy arriving

at the interface by conduction from the liquid must ultimately be conducted through the
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solid into the substrate, the solid flux must be at least as large as the liquid heat flux. It

is actually larger since it must also carry the latent heat of solidification released at the

interface. In the stagnation-flow solidification problem, the solid front can only rise to a

height which results in a solid heat flux equal to the liquid heat flux. At that point, no

further solidification is possible.

A few calculations illustrating some practical cases for aluminum and tungsten are

discussed next. The initial liquid temperature is chosen as 100K above the melting tem-

perature. The substrate temperature is 300K. Other parameters are given in Fig.13 which

compares the evolution of the solid front with time for the stagnation-flow solidification

model with the Neumann solution of the classical Stefan problem (without liquid motion).

It can be seen that the solid front location obtained from the instantaneous similarity

method approaches an upper limit as time increases. On the other hand, the solid front

in the Neumann solution grows indefinitely with time. The effect of the liquid flow motion

on its solidification behavior can also be observed in Fig.13 by comparing the solid front

evolutions corresponding to different values of the strain rate ( , , ,

and , respectively ). In high speed metal spray deposition processing, the strain

rate is of the order of , where is the liquid drop impinging velocity and is the

droplet diameter. For example, if m/s, and m, the corresponding value of

would be . It can be observed that increasing the strain rate results in a decrease

of both the upper limit reached by the solidification front and the time to approach such

limit. It can also be concluded that as the strain rate is reduced to a very small value,

that is, as the fluid velocity approaches zero, the stagnation flow solidification behavior

coincides with the Neumann solution of the solidification problem without liquid motion.

6. Conclusions

The stagnation-flow Stefan solidification problem has been defined and both a quasi-

steady approximation and the instantaneous similarity method have been used to solve

it and to obtain the solid and liquid phase temperature distribution and the interface

location. The results reveal important differences in the solidification behavior between

the classical Stefan problem and the stagnation flow problem. When the position of the

solidification front is expressed as , the analysis show that is a decreasing

function of time, in contrast with the classical solution for the stagnant case in which

is constant in time. In addition, is a function of the Stefan number, the ratio of the
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liquid to solid thermal conductivity, the ratio of the liquid to solid thermal diffusivity,

and the dimensionless temperature ratio . Both methods show that there

exists an upper limit of the solid phase thickness as solidification time goes to infinity,

and comparisons show that the two methods yield the same value of the upper limit of

the nondimensionalized solid phase thickness. This is in contrast with the solution of the

classical Stefan problem in which the solid phase thickness continues to grow with the

square root of time as time goes to infinity.
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Figure Captions

Fig. 1. Solidification in a half space: the classical Stefan solidification problem.

Fig. 2. Solidification in a half space: the stagnation flow solidification problem.

Fig. 3. Variation of with Stefan number for different solidification times.

Fig. 4. Variation of with Stefan number at the initial stage of solidification.

Fig. 5. Variation of with time: (a) effect of Stefan number, (b) effect of , , and .

Fig. 6. Evaluation of the instantaneous similarity method.

Fig. 7. Temporal growth of the solid phase obtained by instantaneous similarity: (a) effect

of Stefan number, (b) effect of , , and .

Fig. 8. Temperature distribution at different times obtained with the instantaneous simi-

larity method: (a) effect of Stefan number, (b) effect of , , and .

Fig. 9. Variation of the solid phase thickness with time: comparison of methods: (a) effect

of Stefan number, (b) effect of , , and .

Fig. 10. Temperature distribution at different times obtained with the quasi-steady

method: (a) effect of Stefan number, (b) effect of , , and .

Fig. 11. Comparison of the temperature distributions obtained with the two methods.

Fig. 12. The time variation of the solid and liquid heat fluxes at the interface and the

solid-liquid interface growth rate.

Fig. 13. Comparison of the solid-front time evolution between the stagnation-flow solidi-

fication model and the Neumann solution of the classical Stefan problem. (a) Aluminum,

(b) Tungsten.
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