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Abstract

The inviscid stagnation-flow solidification problem is investigated by applying the

finite-difference method after a coordinate transformation to a fixed domain. Numeri-

cal solutions of the temperature distribution, the solid-liquid interface location as well

as its growth rate are obtained, and comparisons with the instantaneous-similarity

solution and the quasi-steady solution are made. Since the transformed system of

equations for this solidification problem has a singularity at , the finite-difference

solution is started at a small time using the instantaneous-similarity solution as the

initial field. The numerical solution confirms the existence of an asymptotic limit of the

solidification front as previously demonstrated by means of both a quasi-steady and an

instantaneous-similarity solution.
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Nomenclature

potential-flow strain rate

variable defined as

ratio of the liquid to solid thermal diffusivity ( )

ratio of the liquid to solid thermal conductivity ( )

specific heat

latent heat of solidification

grid point in direction

total grid points in direction

thermal conductivity

characteristic length ( )

heat flux

solid phase thickness

Stefan number

temperature

time

velocity component of liquid phase in x direction

velocity component of liquid phase in y direction

spatial coordinate normal to the substrate

transformed coordinate [ ]

spatial coordinate parallel to the substrate

Greek symbols

thermal diffusivity

density

nondimensional temperature [ ]

nondimensional time ( )

Subscripts

initial

liquid phase

substrate

melting

iteration index

solid phase

Superscripts
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nondimensional

discrete-time index

1. Introduction

Heat transfer accompanied by liquid-solid phase change is of great importance in many

industrial applications such as casting, welding and spray forming. The physical phe-

nomena associated with the behavior of the solid-liquid interface and the heat transfer in

both the solid and liquid phases have been the subject of several numerical and analytical

studies [1]-[12].

Examples of analytical or semi-analytical solutions to phase change problems are those

of Cho and Sunderland [1] and Madejski [2][3]. The most classical exact solution is prob-

ably the so called Neumann solution of the Stefan problem [13]-[15] which predicts the

temperature distribution and rate of solidification (or melting) of a semi-infinite medium.

With the development of high-speed computers, numerical methods have been devel-

oped as tools for the study of phase-change processes. Most of them are summarized

in [16]. The numerical methods used can be divided into two groups [5]: the enthalpy

method and the interface-tracking method. In the first group, enthalpy and temperature

are dependent variables for the energy equation. The location of the phase change inter-

face is determined from the calculated enthalpy. In the second group, the temperature

and the solid-liquid interface location are the dependent variables and the energy con-

servation equations are written separately for the solid and the liquid regions. The major

difficulty with this technique arises from the need to track a continuously moving phase

interface. The rate of propagation of this boundary into the liquid region (solidification)

or into the solid region (melting) depends on the thermal properties of the solid and liquid

phases, and in addition, in the cases where there exists motion in the liquid phase, such

as metal droplet deposition, it also depends on the fluid properties of the liquid region.

Various procedures have been developed to deal with this problem [6] [7], but most of

them have addressed the cases in which there is no liquid motion, or they simply have

taken into account heat conduction as the sole heat transfer mechanism [8] [9]. A notable

exception is reported in [10] where a boundary-conforming adaptive coordinate system is

used to track the interface. Those investigations on the droplet deformation and solidifi-

cation behavior during impingement on a cold substrate in the spray processing mainly
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rely on the classical Neumann solution of the Stefan solidification model to determine the

solid-liquid interface position [2], [11], [12]. The major shortcoming of these procedures

is that the classical Stefan model corresponds to a stagnant liquid phase. An appropriate

heat transfer and solidification model should account for convective effects due to fluid

motion.

Recently, a heat transfer and solidification model for the inviscid two-dimensional

stagnation flow was developed by Rangel and Bian [17] to investigate the effect of the

liquid motion on its solidification behavior in the process of the moving liquid impinging

on a cold substrate. A stability study of the stagnation-flow problem was presented in

[4]. In the present work, a finite-difference solution of the stagnation-flow solidification

problem is obtained and compared with the semi-analytical solution. The results provide

insight into situations such as the deformation and solidification of a droplet impinging

on a cold substrate in the spray forming process.

2. Numerical solution

The set of governing equations for the inviscid stagnation-flow solidification problem is

[17]:

for (1)

for (2)

and at (3)

New variables are introduced and the coordinates are transformed to ,

where

(4)

(5)

The spatial transformation serves two purposes: it transforms the semi-infinite do-

main into a finite one, and it converts the moving-interface problem into a fixed-interface

problem. A similar transformation was employed by Campo and Auguste [18] in a problem

of heat transfer in a pipe.
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The metrics of the transformation are:

(6)

(7)

(8)

(9)

(10)

so that:

(11)

(12)

(13)

Introducing the nondimensional variable

(14)

where is a characteristic length. Eqs. (1)-(3) are transformed to

for (15)

for (16)

and at (17)

By applying the Crank-Nicolson method, Eqs. (15)-(16) can be written in finite-
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difference form:

Solid phase:

for (18)

with boundary conditions:

, at ( ).

, at ( ).

Liquid phase:

for (19)

with boundary conditions:

, at ( ).

, at ( ).

Eq. (18) can be rewritten as

(20)
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where

(21)

(22)

while Eq. (19) can be rewritten as

(23)

where

(24)

(25)

Introducing the variable , the finite-difference form of Eq. (17) is

(26)

and B is obtained from the above equation by the improved Euler method

(27)

The iteration procedure to get the solution at is established by introducing

an iteration index and proceeds as follows:

1. Choose a sufficiently small value . Obtain the temperature distribution and solid

phase thickness at from the instantaneous-similarity method [17]. Use this solu-

tion as the initial field to start the numerical calculation.
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2. Calculate from Eq. (26).

3. Calculate by the Euler method

(28)

4. Use the value of and to calculate , , , and from Eqs. (21),

(22), (24) and (25). Then solve Eqs. (20) and (23) to obtain and by the TDMA

method [19].

5. Calculate from Eq. (26), and calculate from Eq. (27).

6. If

and,

the solution at is reached. Otherwise, let ,

, and go back to step (4).

3. Numerical Considerations

The transformed system of equations (15)-(16) has a singularity at . Due to

this fact, the numerical solution cannot be started at but instead must be initiated at

some sufficiently-small time . Rangel and Bian [17] showed that the instantaneous-

similarity solution yields the correct limiting form of the solution for . In order to

determine an appropriate value for , we consider the case of , and

carry out the numerical solution for starting times , and . In all cases,

the solution obtained with the instantaneous-similarity method is used as the initial

8



condition. Figure 1a shows the temporal growth of the solidification front as obtained from

the finite-difference solution started at different times in the manner just described. The

corresponding temperature distributions are shown in Fig. 1b. Figure 1a shows that there

is excellent agreement between the solutions started at and , indicating

that the former is an appropriate starting point (note that the two curves corresponding

to these two cases are indistinguishable from each other in Fig. 1a). Even the solution

started at yields satisfactory results. These conclusions are confirmed by the

results shown in Fig. 1b for the temperature distribution, which also indicate excellent

agreement between the cases started at and .

It should be noted that the instantaneous-similarity solution also yields the correct

solution in the limit of since it corresponds to the quasi-steady solution in that

limit [17]. The benefit of the numerical solution is that it permits one to obtain an accurate

solution at intermediate times.

All the numerical results are obtained by setting the number of grid points for

the solid phase and for the liquid phase. Setting values of or to or

show no significant difference in the evolution of the temperature distribution or the solid

phase thickness. The time step used by the finite-difference solution for the case with

is for , and for .

For cases with smaller , , and , the time step can be larger than that. However,

for the cases with higher Stefan number, the time step must be reduced to retain the

same accuracy, e.g. for the case with , is set to be for

.

Figure 2 shows a comparison of the solid-front growth obtained with the three different

methods. The quasi-steady method and the instantaneous-similarity method were used

in [17]. The other is the finite-difference method used here. The finite-difference solutions

use both the instantaneous-similarity and the quasi-steady solution as the initial fields.

It can be observed that the quasi-steady method overpredicts the solidification rate while

the instantaneous-similarity method underpredicts it. It can also be observed that the

three solutions approach the same upper limit as time becomes very large. In addition,

the finite-difference solution starting from the quasi-steady initial field goes rapidly to the

finite-difference solution which uses the instantaneous-similarity solution as the initial

field. This demonstrates that the finite-difference solution converges to the correct long-

time behavior even if it is started with an inaccurate initial condition, such as the one

obtained from the quasi-steady solution.
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Figure 3 shows a comparison of the temperature distributions obtained with the same

three methods mentioned above. It can be observed that during the initial stages of solid-

ification ( ), the numerical solution is much closer to the instantaneous-similarity

solution than to the quasi-steady solution, as expected. At , the numerical solution

lies between the solution obtained with the two analytical methods. Again expectedly, as

time becomes very large ( ), the three solutions converge to the same result, with

the instantaneous-similarity method behaving better than the quasi-steady solution.

In order to determine the appropriate starting value for cases other than the base

case discussed above, a similar comparison should be carried out. Because of the known

behavior of the solution for smaller values of the Stefan number [17] and in particular,

because it has been established that the instantaneous-similarity solution becomes in-

creasingly more accurate as , it is satisfactory to employ a value of for

any case with . On the other hand, for the cases with larger Stefan number, we

need to evaluate what the appropriate is. Such an evaluation is illustrated in Fig. 4,

which indicates that is again an appropriate choice since the results for

and are in excellent agreement. In the following parametric study, all the

finite-difference solutions are initiated at .

4. Parametric Study

This section contains solidification results obtained with the finite-difference method to

demonstrate the effect of the Stefan number and the dimensionless ratios , , and . As

a reference, approximate values of , , , and for some selected metals are given in

Table. 1. In constructing this table, we have chosen the initial liquid temperature to be

and the substrate temperature to be . The solid properties are

evaluated at while the liquid properties are evaluated at .

Returning now to the general results, Fig. 5 shows the temperature distribution along

the nondimensional coordinate, during the early ( ) and late

( ) stages of solidification for cases with different Stefan number. It can be observed

that variations in Stefan number bring about changes in the temperature distribution and

the interface location in the early stages of solidification when a larger Stefan number re-

sults in a more rapidly-growing solid front. At very large time, however, the temperature

distribution becomes independent of Stefan number. This long term behavior was demon-

strated analytically in [17].
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Figure 6 shows the temperature distribution during the early ( ) and late ( )

stages of solidification for cases with different values of , and . It can be seen that

during the early stages of solidification and at the same position in the liquid phase, the

liquid temperature is lower for higher and . Realize that a value of larger than one

would typically be associated with a value of also larger than one. In the early stages

of solidification, higher and means that heat transfer is more efficient in the liquid

phase, and therefore, the liquid temperature drops to a lower value as compared to a

case with lower and . However, during the late stages of solidification, the temperature

distribution and the solid front location approach their asymptotic limits. For a fixed

position in the liquid phase or solid phase, the temperature or is lower for the cases

with lower , . Thus, it can be concluded that variations in the parameters and affect

both the initial and the long time behavior of the solution.

Figure 7 shows the variation of the dimensionless thickness with for different values

of the Stefan number for the case of =1, =1, =1. It can be seen that increases with ,

and that there exists an upper limit of as approaches infinity. It can also be observed

that this limit is independent of the Stefan number and that increases faster for larger

. Higher Stefan number is indicative of a larger transfer number or an increase in

the energy transfer rate as compared with latent-heat release rate, resulting in a faster

solidification rate.

The effect of , , and on the solid front growth rate is shown in Fig. 8 for the same

Stefan number. The dimensionless thickness increases faster for smaller , and .

Smaller , or translates into less heat from the liquid to the solid phase through the

interface, so that solidification occurs more rapidly.

Figure 9 shows the growth rate of the solid-liquid interface location and the time

variation of the heat fluxes at the interface on both the liquid and solid sides for

, and . The existence of a finite asymptotic limit for the solidification front in the

stagnation-flow problem may be understood with the aid of this figure. Realize that the

thermal field in the liquid phase reaches a truly quasi steady behavior after a finite time.

This implies that the heat flux at the interface on the liquid side decreases not to zero

but to a finite value in the limit of . This is not the case in the classical Stefan

solidification problem where the heat flux at the interface on the liquid side continues to

decrease as as . Moreover, the behavior of the heat flux at the interface on the

solid side is similar for both the classical and the stagnation-flow solidification problems.

In the classical problem, the solid thickness increases as and thus the solid heat flux
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decreases as , the same rate of decrease of the liquid heat flux. Since energy arriving

at the interface by conduction from the liquid must ultimately be conducted through the

solid into the substrate, the solid heat flux must be at least as large as the liquid heat

flux. It is actually larger since it must also carry the latent heat of solidification released

at the interface. In the stagnation-flow solidification problem, the solid front can only rise

to a height which results in a solid heat flux equal to the liquid heat flux. At that point,

no further solidification is possible.

5. Conclusions

The stagnation-flow solidification problem has been solved numerically employing a finite-

difference method. The Crank-Nicolson method is applied to obtain the finite-difference

form of the liquid and solid phase energy equations, and the resulting difference equa-

tions are solved by the TDMA method. The location of the liquid-solid interface is tracked

by solving the interface energy balance equation coupled with the solid and liquid phase

energy equations. To avoid the singularity of the transformed system of equations at

the starting time ( ), the instantaneous similarity solution [17] at a sufficiently-small

time is used to initiate the finite-difference solution. The effect of the selected initial

time on the accuracy of the finite-difference solution is evaluated. Comparisons of

the temperature distributions and solid phase thicknesses obtained with the three meth-

ods show that in the initial stages of solidification ( ), the finite-difference method

and the instantaneous-similarity method yield equivalent results, while the quasi-steady

prediction of the solid phase thickness is higher. At intermediate times ( ), the

finite-difference solution, which can be considered exact, lies between the instantaneous

similarity solution and the quasi-steady solution. At very large time ( ), the three

solutions converge and the results show that the temperature distribution and the inter-

face location approach a quasi-steady behavior as time becomes very large. The results

confirm the existence of an important difference in the solidification behavior between the

classical Stefan solidification problem and the stagnation-flow solidification problem as

the latter results in a finite solid thickness as .
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.

Substance (k)

Al 933 0.16 0.88 0.43 0.40 1.67

Cu 1356 0.10 0.89 0.44 0.45 2.26

Ni 1727 0.07 0.89 0.77 0.83 2.68

Ti 1958 0.06 0.91 1.01 0.93 2.76

W 3650 0.03 0.91 0.56 0.70 3.05

Table 1. Some practical values of , ,
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Figure Captions

Fig. 1. Effect of the starting time on the finite difference solution. (a) Solidification front

vs. time; (b) Temperature distribution.

Fig. 2. Comparison of the solid-front evolution with time obtained with different methods.

Fig. 3. Comparison of the temperature distributions obtained with three different meth-

ods.

Fig. 4. Finite-difference temperature distributions obtained with the instantaneous simi-

larity solution as the initial field.

Fig. 5. Comparison of the temperature distributions at early and late stages of solidifica-

tion: effect of Stefan number.

Fig. 6. Comparison of the temperature distributions at early and late stages of solidifica-

tion: effect of , , and .

Fig. 7. Increase of the solid phase thickness with time: effect of Stefan number.

Fig. 8. Increase of the solid phase thickness with time: effect of , , and .

Fig. 9. The time variation of the solid and liquid heat fluxes at the interface and the

solid-liquid interface growth rate.
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