Authors
Efraín Mendez-Flores, Agaton Pourshahidi, Magnus Egerstedt
Abstract
Environmental monitoring is used to characterize the health and relationship between organisms and their environments. In forest ecosystems, robots can serve as platforms to acquire such data, even in hard-to-reach places where wire-traversing platforms are particularly promising due to their efficient displacement. This paper presents the RaccoonBot, which is a novel autonomous wire-traversing robot for persistent environmental monitoring, featuring a fail-safe mechanical design with a self-locking mechanism in case of electrical shortage. The robot also features energy-aware mobility through a novel Solar tracking algorithm, that allows the robot to find a position on the wire to have direct contact with solar power to increase the energy harvested. Experimental results validate the electro-mechanical features of the RaccoonBot, showing that it is able to handle wire perturbations, different inclinations, and achieving energy autonomy.
Link
Supporting Media